Peer Reviewed Publications

  1. Lewandowska-Andralojc, A.; Baine, T.; Zhao, X.; Muckerman, J. T.; Fujita, E.; Polyanskya, D.
    E. Mechanistic studies of hydrogen evolution in aqueous solution catalyzed by a tertpyridineamine cobalt complex. Inorg. Chem. 2015, 54, 4310-4321.

  2. Vennampalli, M.; Liang, G.; Katta, L.; Webster, C. E.; Zhao, X. Electronic Effects on Mononuclear Cobalt Complex with Pentadentate Ligand for Catalytic H2 Evolution, Inorg. Chem. 2014, 53, 10094-10100.

  3. Vennampalli, M.; Liang, G.; Webster, C. E.; Zhao, X. Water Oxidation by Mononuclear Rhthenium Complex with a Pentadentate Isoquinoline-Bipyridyl Ligand. Eur. J. Inorg. Chem., 2014715-721.

  4. Shan, B.; Baine, T.; Ma, Xuan A. N.; Zhao, X.; Schmehl, R. H. Mechanistic Details for Cobalt Catalyzed Photochemical Hydrogen Production in Aqueous Solution: Efficiencies of the Photochemical and Non-Photochemical Steps. Inorg. Chem.2013, 52, 4853-4859.

  5. Singh, W. M.; Baine, T.; Kudo, S.; Tian, S.; Ma, X. A. N.; Zhou, H.; DeYonker, N. J.; Pham, T. C.; Bollinger, J. C.; Baker, D. L.; Yan, B.; Webster, C. E.; Zhao, X. Electrocatalytic and Photocatalytic Hydrogen Production in Aqueous Solution by a Molecular Cobalt Complex. Angew. Chem., Int. Ed. 201251, 5941-5944.

  6. Miner, K. D.; Mukherjee, A.; Gao, Y.-G.; Null, E. L.; Petrik, I. D.; Zhao, X.; Yeung, N.; Robinson, H.; Lu, Y. A Designed Functional Metalloenzyme that Reduces O2 to H2O with Over One Thousand Turnovers. Angew. Chem., Int. Ed201251, 5589-5592.

  7. Singh, W. M.; Pegram, D.; Duan, H.; Kalita, D.; Simone, P.; Emmert. G. L.; Zhao, X. “Hydrogen Production Coupled to Hydrocarbon Oxygenation from Photocatalytic Water Splitting“ Angew. Chem., Int. Ed. 201251, 1653-1656 (Highlighted as Inside Back Cover).

  8. Radaram, B.; Ivie, J.A.; Singh, W.; Grudzien, R.M.; Reibenspies, J.; Webster, C.; Zhao, X.  Water Oxidation by Mononuclear Ruthenium Complexes with TPA-based Ligands, Inorg. Chem.2011, 50, 10564-10571.

  9. Kalita, D.; Radaram, B.; Brooks, B.; Kannam, P. P.; Zhao, X. "Photocatalytic Oxidation of Hydrocarbons in Water by Ruthenium Complexes" ChemCatChem. 20113, 571-573.

  10. Lu, C.; Zhao, X.; Lu, Y.; Rousseau, D. L.; Yeh, S.-R. “Role of Copper Ion in Regulating Ligand Binding in a Myoglobin-Based Cytochrome c Oxidase Model” J. Am. Chem. Soc.2010132, 1598-1605.

  11. Yeung, N.; Lin, Y.-W.; Gao, Y.-G.; Zhao, X.; Russell, B. S.; Lei, L.; Miner, K. D.; Robinson, H.; Lu, Y. “Rational Design of a Structural and Functional Nitric Oxide Reductase,” Nature, 2009, 462, 1079-1082.

  12. Pfister, T.D.; Mirarefi, A.Y.; Gengenbach, A.J.; Zhao, X.; Danstrom, C.; Conaster, N.; Gao, Y.G.; Robinson, H.; Zukoski, C.F.; Wang, A.H.-J.; Lu, Y. “Kinetic and Crystallographic Studies of a Redesigned  Manganese-Binding Site in Cytochrome c Peroxidase,” J. Biol. Inorg. Chem. 200712, 126-137.

  13. Zhao, X.; Yeung, Natasha; Russell, Brandy S.; Garner, Dewain K.; Lu, Yi.  “Catalytic Reduction of NO to N2O by a Designed Heme Copper Center in Myoglobin: Implications for the Role of Metal Ions.  J. Am. Chem. Soc. 2006, 128, 6766-6767.

  14. Wang, N.; Zhao, X.; Lu, Y. “Role of Heme Types in Heme-Copper Oxidases: Effects of Replacing a Heme b with a heme o Mimic in an Engineered Heme-Copper Center in Myoglobin,” J. Am. Chem. Soc2005127, 16541-16547.

  15. Zhao, X.; Nilges, M.J.; Lu, Y. “Redox Dependent Structural Changes in an Engineered Heme-Copper Center in Myoglobin: Insights into Chloride Binding to CuB in Heme Copper Oxidases,” Biochemistry 2005, 44, 6559-6564.

  16. Zhao, X.; Yeung, N.; Wang, Z.; Lu, Y. “Effects of Metal Ions in the CuB Center on the Redox Properties of Heme in Heme-Copper Oxidases: Spectroelectrochemical Studies of an Engineered Heme-Copper Center in Myoglobin,” Biochemistry2005, 44, 1210-1214.

  17. Darensbourg, M. Y.; Lyon, E. J.; Zhao, X.; Georgakaki, I. P. “The organometallic active site of [Fe]hydrogenase: Models and entatic states,” Proc. Natl. Acad. Sci. USA,  2003, 100, 3683-3688.

  18. Sigman, J. A.; Kim, H. K.; Zhao, X.; Carey, J. R.; Lu, Y. “The role of copper and protons in heme-copper oxidases: Kinetic study of an engineered heme-copper center in myoglobin,” Proc. Natl. Acad. Sci. USA, 20032003, 100, 3629-3634.

  19. Zhao, X.; Chiang, C.-Y.; Miller, M. L.; Rampersad, M. V.; Darensbourg, M. Y. “Activation of Alkenes and H2 by [Fe]-H2ase Model Complexes,” J. Am. Chem. Soc2003, 125, 518-524.

  20. Zhao, X.; Georgakaki, I. P.; Miller, M. L.; Mejia-Rodriguez, R.; Chiang, C.-Y.; Darensbourg, M. Y. “Catalysis of H2/D2Scrambling and Other H/D Exchange Processes by [Fe]-Hydrogenase Model Complexes,” Inorg. Chem.  2002, 41, 3917-3928.

  21. Zhao, X.; Hsiao, Y.-M.; Lai, C.-H.; Reibenspies, J. H.; Darensbourg, M. Y. “Oxidative Addition of Phosphine-Tethered Thiols to Iron Carbonyl: Binuclear Phosphinothiolate Complexes, (µ-SCH2CH2PPh2)2Fe2(CO)4, and Hydride Derivatives,” Inorg. Chem. 200241, 699-708.

  22. Zhao, X.; Georgakaki, I. P.; Miller, M. L.; Yarbrough, J. C.; Darensbourg, M. Y. “H/D Exchange Reactions in Dinuclear Iron Thiolates as Activity Assay Models of Fe-H2ase,” J. Am. Chem. Soc. 2001, 123, 9710-9711.

  23. Wang, J.; Zhao, X.; Xu, Z. “Study of interactions of [CpFe(CO)2]2 with surface of alumina and titania supports by Fourier transform diffuse reflection and photoacoustic infrared spectroscopy,”  Guangpuxue Yu Guangpu Fenxi  199717, 45-54.