Quiz

Select a method you are using for your project and write ~1/2 page discussing the method. Address:
- What does it do?
- How does it work?
- What assumptions are made?
- Are there particular situations in which it will NOT give good results?

QSAR

QSAR = Quantitative Structure Activity Relationships
- Current Applications:
 - Two-dimensional
 - Three-dimensional: requires molecular alignment
- Foundation: Physical Organic Chemistry
 - Relationships between structure and reactivity (equilibrium and rate constants for related structures)
 - Originally formulated by Hammett, extended by Taft and others

Hammett's Standard Reference Reaction

Where \(X=H \) at 25°C

Remember: \(K_i = \left[H^+ \right] \frac{X - C_4H_7CO_2-}{X - C_4H_7CO_2H} \)

Substituent Effects on Equilibria

Hammett defined substituent constants
\[\sigma_X = \log K_X - \log K_H \]

What are your expectations for the values of \(\sigma \) for \(X=H \), \(X=NH_2 \) and \(X=NO_2 \)?

Explain your expectations based on the reference reaction.

The Hammett Equation

\[\log k_X = \rho \sigma_X + \log K_H \]

or \[\log K_X = \rho \sigma_X + \log K_H \]

\(\rho \) (slope) reflects the reaction’s sensitivity to the electronic effect of substituents

\(\rho = 1 \) for the reference reaction
Important Implications

- σ values implicitly account for the influence of solvation (H-bonding, dipole-dipole)
- No consideration of geometry is included
 - Problematic if steric interactions cause a change in electronic character
 - Problematic for extensions to flexible systems
 - Conformation is implicitly included

Limitations

- Ortho substituents often interact sterically
- σ values are determined in water, for H-bonding substituents may see problems for non-aqueous phenomenon
- Reactions often change mechanism when substituents with drastically different electronic characteristics (σ) are present
- σ for charged groups is dependent on the ionic strength of the media
- Direct resonance can cause problems

Hansch’s Application of the Hammett Equation

- Biological activity of indoleacetic acid-like synthetic hormones
- $\log(1/C) = -k_1(\log P)^2 + k_2(\log P) + k_3\sigma + k_4$
 - C: Concentration having a standard response in a standard time
 - P: Octanol/water partition coefficient
 - $\log P$ reflects pharmacokinetic influence on activity – does the compound get where it needs to go?
 - σ reflects pharmacodynamic influence on activity – does the electronic nature of the compound induce activity?

- Why is there a squared $\log P$ term?

Log (1/C) Versus Log (P)

- Poor bioavailability
 - Compounds that are too polar will not partition into membranes in the first place
 - Compounds that are not polar enough cannot partition back out

Importance of Hansch’s Work

- Demonstrated that biological activities could be quantitatively related to physical and chemical characteristics
- Developed a group-additive method for calculating $\log P$ (so that compounds could be predicted prior to their synthesis)
- Utilized a QSAR equation to assist in developing a physical interpretation or generalization about biological activity

Descriptors

- Descriptor: A numeric representation of structure
- Descriptors used in the Hansch approach ($\log P$, σ) are empirical (derived from experimental observation)

- Limitations
 - σ is a substituent descriptor -> won’t be applicable to non-congeneric series
 - $\log P$ is an experimentally determined value -> a computational method is needed before it can be used to make predictions
Computing Log P

- Initial attempt - π method
 - Use measured log P for largest possible substructure
 - Add contributions (π values) for substituents
- More Common - Fragment summation methods
 - Hansch's implementation: CLOGP
 - Defines two hydrophobic fragment types
 - Isolating carbons (ICs) - carbons not double or triple bonded to a heteroatom
 - Hydrogens attached to ICs (ICHs)
 - Contiguous remaining groups are polar fragments

Example Fragmentation

- 2 Polar Fragments
- 7 ICs
- 7 ICHs

Other Considerations

- Fragment environment -> different values stored for fragments in these environments
 - Aliphatic
 - Benzyl
 - Vinyl
 - Styryl
 - Aromatic
- Interactions among fragments
 - Handled by adding correction factors

Example LogP Calculation

\[
\text{Cl} \quad \text{amide} \quad C_{\text{alk}} \quad C_{\text{aur}} \quad H \quad \text{correction factors}
\]
\[
0.94 + (-1.51) + 0.2 + 6(0.13) + 7(0.225) - 0.12 + 0.30 - 0.84 = 1.34
\]
Measured value = 1.28

Non-Empirical Descriptors

- Topological
 - Descriptors computed from structural formula
 - Conformation independent
- Geometric
 - Descriptors computed from molecular geometry
 - Conformation and stereochemistry dependent
- Electrostatic
 - Descriptors computed from the charges or charge distribution of the molecule
 - Some are conformation/stereochemistry dependent

Class Exercise I

- Build a small molecule containing multiple functional groups
- Perform a conformational search of your choice, with an appropriate forcefield
- Open the resulting database and use Compute->Descriptors to calculate all descriptors implemented in MOE for each of your conformations
 - Which ones do not change with conformation?
 - Which ones do change with conformation?
Weiner’s Path Number, \(w \)
- An example topological descriptor
- Applied to QSPR of hydrocarbon boiling points in 1947
- Sum of bond distances between carbon atom pairs in the molecule
- Physical meaning: a reflection of size and compactness

Weiner’s Path Number (cont’d)
\[C_1-C_2: 1 \quad C_2-C_3: 1 \quad C_3-C_4: 1 \quad C_4-C_5: 3 \]
\[C_1-C_3: 2 \quad C_3-C_4: 2 \quad C_4-C_5: 2 \]
\[C_1-C_5: 1 \]
\[C_2-C_5: 2 \]
\[\text{Sum} = 18 \]

Calculation is simplified by multiplying the number of heavy atoms on each side of every bond and summing
\((1\times4)+(3\times2)+(4\times1)+(1\times4) = 18 \)

Comparison of Structures

\(\text{C}_6\text{H}_{12} \) Isomers
- \(2(1\times4)+2(2\times3) = 20 \)
- \(3(1\times4)+1(2\times3) = 18 \)
- \(4(1\times4) = 16 \)

\(\text{C}_6\text{H}_{14} \) Isomers
- \(2(1\times5)+2(2\times4)+(3\times3) = 35 \)
- \(3(1\times5)+2(2\times4) = 31 \)
- \(3(1\times5)+2(2\times4)+(3\times3) = 32 \)
- \(4(1\times5)+2(2\times4) = 28 \)
- \(4(1\times5)+(3\times3) = 29 \)

Maximum Negative Charge
- An example electronic descriptor
- A measure of the atom with the greatest partial negative charge
- Physical meaning:
 - Might indicate ability of the molecule to accept a hydrogen bond or interact with a metal ion
 - Conformation dependence varies based on partial charge assignment method
 - Forcefield partial charges are generally conformation and stereochemically independent
 - Quantum mechanical charge distributions are generally conformation and stereochemically variable

Shadow Indices
- An example geometric descriptor
- Calculated from the area of the molecule projected onto the XY, YZ and XZ planes
- Physical meaning:
 - Captures shape and size of molecule
 - Orientation dependent
 - Conformation dependent
 - Stereochemistry independent

Shadow Indices (S1, S2, S3)
Electronic/Geometric

- Common 3D QSAR methods (COMFA, COMSIA...) use electronic descriptors calculated on a grid (thus having geometric dependence)
 - First requires alignment of molecules on the grid
 - Alignment should place groups interacting with common receptor sites in the same location
 - This process results in a huge number of descriptors per molecule
 - Many of the descriptors are correlated

The Descriptor Explosion

- Most programs used in QSAR can calculate hundreds of standard descriptors + field-based descriptors
- Quantitative models with an overwhelming number of independent variables are over-determined
 - Multiple sets of coefficients exist that reproduce the dependent variables
 - Most of these will not be predictive (fit the data, but without physical meaning)

Variable Selection

- Principle Components Analysis
- Elimination of Correlated Descriptors
- Genetic Function Approximation (GFA)
 - Implemented in Cerius²
 - Evolves models with subsets of possible descriptors to improve the fit of the data
 - Initially develops random population of QSAR models
 - Evaluates fitness (fit) of the models
 - Selects those with better features to create next generation of models from

Principal Components Analysis

- Principal components analysis is a variable reduction method (an alteration of the coordinate system) – allowing visual analysis of multi-dimensional data in fewer dimensions
 - The first principal component explains the maximum amount of variation possible in the data set in one direction – the % of variation explained can be precisely calculated

Suggested Preprocessing

- Autoscaling
 - Needed if measurements are of different types with different ranges
- Mean centering
 - Always required for PCA due to orthogonality of the components
Why Mean Centering?

How Many Components (Rank)?

Class Exercise II

- Compute the principle components for your database from the first exercise (you may need to delete fields with identical values for all structures first)
- Generate a principle components report
- How many principle components are needed to describe >75% of the variability in the descriptors? How many for >90%?
- Which descriptors contribute most significantly to the first principle component?

PCA Strengths/Weaknesses

- **Strengths**
 - Displays highly dimensional data with relatively few plots
 - Can filter noise from data sets
 - Can determine amount of variation contained in each descriptor (loading)
- **Weaknesses**
 - Inherent dimensionality (rank) must be determined
 - If the dimensionality is greater than three, visualization is still difficult

Reading

- Second Edition - Section 12.12