Lipid and DNA Modeling

General Lipid Structure

Lipid Aggregates (Phases)

- Bilayer – gel phase
- Micelle
- Hexagonal tube
- Bilayer – liquid crystalline phase
Greatest Challenge

- Setting up an appropriate starting system
 - Conformation of lipid chains
 - Surface area/lipid head group
 - Solvation

Acyl Chain Disorder

- Liquid crystalline phase lipids (most relevant for studying biological membranes) have increased mobility relative to gel phase lipids
- Increased mobility gives rise to ‘gauche defects’ which are found in increasing concentration toward the center of the bilayer
- The acyl chain disorder can be represented by statistically averaged molecular order parameters

Molecular Order Parameters

\[S_j^{mol} = 0.5 \langle 3 \cos^2 \phi_j - 1 \rangle \]
Experimental Order Parameters

- 2H NMR with deuterium labeled lipids
 - Series of measurements made on lipids with deuterium at different positions down the chain
 - Angle measured is between magnetic field and carbon-deuterium bond
 - NMR order parameter profile must be multiplied by -0.5 for comparison to previously defined profile

Example Experimental Order Profile

Lipid Surface Areas

- Examples
 - Dilauroylphosphatidylethanolamine (DLPE)
 - Ammonium head group
 - 39-51 Å2
 - Dimyristoylphosphatidylcholine (DMPC)
 - Tetraalkylammonium head group
 - 60-70 Å2
Hydration

- Most lipid headgroups are hydrated with water and may require counterions.
- Bilayer surfaces are subject to hydration pressure when they are brought into close proximity.
- These repulsive forces may require substantial layers of water if periodic boundary conditions are used.

DNA Structure – Class Exercise

- Download a segment of double-stranded DNA from the protein databank.
- Examine the structure for the following features:
 - Charged groups
 - Hydrogen bonding interactions
 - Overall morphology (shape)

Greatest Challenge

- Electrostatic Treatment and Counterions
 - Polyanionic DNA chain is surrounded by a cloud of ions that compensate for the concentration of anionic groups.
 - This ion cloud is referred to as the ion atmosphere.
 - The ions are mobile as they are not covalently attached to any particular phosphate group.
Manning Theory

- \(\xi = \frac{q^2}{\varepsilon kTb} \)
 - \(q \): charge on the counterion
 - \(\varepsilon \): solvent dielectric
 - \(k \): Boltzmann constant
 - \(T \): temperature
 - \(b \): distance between backbone phosphates along axis

- Net charge on phosphate = \(1/(N \xi) \) where \(N \) is the valency of the counterion
 - -0.24 with Na\(^+\) counterions
 - -0.12 with Mg\(^{2+}\) counterions

Applying Manning Theory

- DNA simulations lacking explicit counterions utilize Manning Theory to assign charges
 - Usually to phosphorous and attached oxygens
 - Either scaled by a factor of 0.24-0.34
 - Or assigned to sum to \(-0.34\)
 - Sometimes all charges in DNA scaled by 0.25

Explicit Counterions

- Placement – First method
 - Solvate DNA
 - Compute electrostatic potential (EP) on each water
 - Replace those with highest negative EP with counterions

- Placement – Second method
 - Calculate electrostatic potential around DNA
 - Place counterion at grid point with highest negative EP
 - Repeat

- Placement – Third method
 - Place ions 4.5-6.0 Å from P bisecting the O-P-O angle
Counterion Equilibration

- Regardless of placement method, counterion positions need sufficient equilibration to find optimal positions
- Often such equilibration is performed while holding the DNA fixed and just allowing the water and counterions to relax
Subsequent Modeling (DNA and Lipid)

- Once the initial challenges are met, subsequent modeling of these systems can be done with methods we've already discussed

Further (optional) Reading

- Reviews in Computational Chemistry, volume 11, chapter 6 (DNA counterion treatment)
- Reviews in Computational Chemistry, volume 5, chapter 5 (Lipid simulations)