Molecular Mechanics

Chem 8711/7711

Some Basic Theory - Energetics

Energies can be calculated at several levels of theory
- **Ab initio**
 - Most theoretically rigorous
 - Energies calculated from electronic structure
 - Requires no experimental parameters
- **Semi-Empirical**
 - Simplifying assumptions made
 - Experimental parameters compensate
- **Molecular Mechanics**
 - Electrons essentially ignored
 - Many experimental parameters required

Reasonable Simplification

- **Born-Oppenheimer Approximation:**
 - Movements of electrons are so rapid relative to movements of nuclei that they adapt essentially instantly to the nuclear positions - thus the motions of electrons and nuclei can be separated
 - Molecular (classical) mechanics relies on this approximation to the extreme of allowing electrons to be IMPLIED by their associated nuclei

Additional Approximations

- Potential energy can be represented by terms describing deformation from “standard” values
- Deformations from “standard” values can be represented harmonically
- Potential functions and parameters are transferable across molecules

Transferability

- Forcefields are generally parameterized to give accurate relative energies for isomeric structures
- Energy values will not be comparable from one forcefield to another

Exercise

- Build a simple molecule in MOE or Spartan (cyclohexane, an amino acid, a monosaccharide, etc)
- Compute and record its energy using every available forcefield
- Forcefields can be changed in MOE using the Window->Potential Control dialog box
- Forcefield control in Spartan is controlled during calculation setup
- What is the range of energies you noted?
Molecular Mechanics - Goals

- To reproduce molecular geometries and RELATIVE energies
- Bond lengths: ± 0.005 Å
- Bond angles: ± 1°
- Torsion angles: ± 5°
- ΔH°: ± 0.7 kcal/mol

Molecular Mechanics

- Energy broken down into terms
 - Bond stretching
 - Angle bending
 - Torsional potential
 - Non-bonded interactions

Forcefields

- The combination of mathematical formulae and parameters used to represent the energy of a chemical system
- Different forcefields are optimized for different problems:
 - MMFF94: optimized for small organic compounds - wide structural variety
 - Sybyl: general purpose – reasonable (but not excellent) parameters for wide variety of atom environments
 - AMBER94: optimized for proteins - often missing parameters for other organics
 - PEFSAC95: optimized for carbohydrates
 - UFF: universal forcefield, contains parameters even for metals

Question

1. Sketch the energy as a function of distance (r) between two bonded atoms (start @ r=0 Å)
2. If this interaction is expressed harmonically \[V = k_s (r - r_0)^2 \] what will the curve look like?
3. Where will the greatest error be?
4. What chemical process(es) will therefore not be modeled accurately?

Bond Stretching

- Approximated with a harmonic potential

Experimental Bond Distances

- \(r_e \): equilibrium bond distance - bottom of energy well
- \(r_{av} \): average distance (slightly longer than \(r_e \))
- \(r_t \): thermal average, from electron diffraction radial distribution function
- \(r_s \): derived from \(r_t \) (~0.002 Å longer) averaged over all molecular vibrations
- \(r_{av} \): distance between mean atom positions at a given T
- \(r_{ex} \): extrapolated to 0 K
- \(r_{ex} \): directly obtained from microwave
- \(r_{ex} \): directly obtained from microwave
- \(r_{ex} \): microwave result with vibrational correction (should agree with \(r_{ex} \))
Experimental Bond Distances

- Electron Diffraction
 - Thermal average of occupied states
 - Gives r_a, r_g, r_{α}
- Microwave
 - Values for the state examined
 - Gives r_a, r_g, r_{α}
 - Molecular Mechanics
 - Usually parameterized to give room-temperature vibrationally-averaged structures: r_a
 - Comparable to x-ray or electron diffraction (usually)
 - NOT identical to Ab Initio (which gives r_e)!

Angle Bending

- Treated Harmonically
 - $E = k (\theta - \theta_0)^2$
 - Displacement from equilibrium bond angle
- Requires two parameters for each combination of three atom types

Question

1. Sketch the energy as a function of rotation around the central bond of butane
2. Draw structures of minimum energy structures and transition structures

Torsional Potential

$$E_{\omega} = Vn (1 + s \cos n\omega)$$

(Two--fold term added to compensate for non-equivalent minima)

Three parameters needed for each combination of atom types

Van der Waals

- Usually expressed as a Lennard-Jones potential (6-12 shown):

$$V_{VDW} = 4\varepsilon \left(\frac{S}{r} \right)^{12} - 2 \left(\frac{S}{r} \right)^6$$

$$r_0 = 2^{1/6} \sigma$$

Van der Waals potential:

- V_{VDW} is repulsive
- V_{VDW} is attractive

Question

- What value of n do you expect for an sp2-sp3 bond?
- Sketch the energy as a function of distance for non-bonded atoms
Ionic Interactions
- Generally approximated using partial point charges
- Point charges come from
 - Forcefield
 - Quantum mechanics

\[V = \frac{q_1 q_2}{Dr} \]

Effective dielectric constant

Dipolar Interactions
- Directional
- Often computed using Jeans’ formula

\[V = \frac{\mu_i \mu_j}{Dr} (\cos x - 3 \cos\alpha_i \cos\alpha_j) \]

Angle formed by dipole tails
Angles dipoles form with vector between midpoints

Reading
- Required
 - Chapter 1 in Leach (will discuss questions only)
 - Chapter 3 in Leach
- Historical Interest
 - Molecular Mechanics, Burkert and Allinger, ACS Monograph, 1982