COMP 7125: COMPUTER FORENSICS

Instructor: Dipankar Dasgupta
Room:: FIT 324
Class Time:: 7:10 – 8:35PM (MW)

Contact Information:

<table>
<thead>
<tr>
<th>Office: 333 Dunn Hall</th>
<th>Department Office: 375 Dunn Hall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phone: 678-4147</td>
<td>Department Phone: 678-5465</td>
</tr>
<tr>
<td>E-mail: <a href="mailto:dasgupta@memphis.edu">dasgupta@memphis.edu</a></td>
<td></td>
</tr>
</tbody>
</table>

Office Hours:

<table>
<thead>
<tr>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:30PM – 3:30PM</td>
<td>2:30PM – 3:30PM</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*By Appointment and participation in ecourseware discussion board (https://www.elearn.memphis.edu)*

Course Description:

**COMP 7125.** Societal and legal impact of computer activity: computer crime, intellectual property, privacy issues, legal codes; risks, vulnerabilities, and countermeasures; methods and standards for extraction, preservation, and deposition of legal evidence in a court of law. PREREQUISITE: COMP 7105 or equivalent, or permission of instructor.

**Motivation & Objectives:**

Computer forensic is a hybrid science which offers professionals a systematic approach to perform comprehensive investigation in order to solve computer crimes. The needs for computer forensic experts are growing in corporations, law firms, insurance agencies, and law enforcement. Organizations are now realizing that evidence retrieved from computers and other digital media are becoming more relevant to convicting hackers and criminals. Though this digital evidence can be powerful, but if it is not retrieved through proper investigative procedure, it can be easily damaged and ruled inadmissible in a court of law.

The course covers both the principles and practice of digital forensics. Societal and legal impact of computer activity: computer crime, intellectual property, privacy issues, legal codes; risks, vulnerabilities, and countermeasures; methods and standards for extraction, preservation, and deposition of legal evidence in a court of law. This course provides hands-on experience in different computer forensics situations that are applicable to the real world. Students will learn different aspects of digital evidence: ways to uncover illegal or illicit activities left on disk and recovering files from intentionally damaged media with computer forensics tools and techniques.

**Course Syllabus** *Topics will be covered subject to availability of time):*

- Introduction to Computer Forensics: computer crimes, evidence, extraction, preservation, etc.
- Overview of hardware and operating systems: structure of storage media/devices; windows/Macintosh/Linux -- registry, boot process, file systems, file metadata.
- Data recovery: identifying hidden data, Encryption/Decryption, Steganography, recovering deleted files.
- Digital evidence controls: uncovering attacks that evade detection by Event Viewer, Task Manager, and other Windows GUI tools, data acquisition, disk imaging, recovering swap files, temporary &cache files.
- Computer Forensic tools: Encase, Helix, FTK, Autopsy, Sleuth kit Forensic Browser, FIRE, Foundation Forensic ToolKit, WinHex, Linux dd and other open source tools.
Network Forensic: Collecting and analyzing network-based evidence, reconstructing web browsing, e-mail activity, and windows registry changes, intrusion detection, tracking offenders, etc.
Software Reverse Engineering: defend against software targets for viruses, worms and other malware, improving third-party software library, identifying hostile codes-buffer overflow, provision of unexpected inputs, etc.
Computer crime and Legal issues: Intellectual property, privacy issues, Criminal Justice system for forensic, audit/investigative situations and digital crime scene, investigative procedure/standards for extraction, preservation, and deposition of legal evidence in a court of law.

Suggested Textbook:

Reference Books:
- *EnCase Computer Forensics*. 2014
- NIST *Computer Forensic Tool Testing Program* (www.cftt.nist.gov/)

Other Resources:
- Computer Forensic Training Center Online  http://www.cftco.com/
- Computer Forensics World  http://www.computerforensicsworld.com/
- Computer Forensic Services  http://www.computer-forensic.com/
- Digital Forensic Magazine  http://www.digitalforensicsmagazine.com/
- Journal of Digital Forensic Practice  http://www.tandf.co.uk/15567281
- CERIAS Forensics Research (http://www.cerias.purdue.edu/research/forensics/)
- DoD Cyber Crime Center (http://www.dc3.mil)
Evaluation:
Students are expected to participate in class discussions. In-class participation will be viewed as a continuous two-sided feedback process, which (a) allow students to assess themselves on their progress in learning the material/understanding the computer forensic issues; and (b) allows the instructor to assess how well he is fostering the communication process with and among students. Good evaluations will thus reflect not only your grasp of the material, but also how well you take advantage of class time and how well you end up communicating with other people (class participants) about the course material. The evaluation process will include paper presentations, assignments, software testing, class tests (or quizzes), and a term project to make sure that you have integrated the material into your general practice of computer forensics. You should read all material available in the textbook, lecture notes and other assigned papers to gather knowledge.

Your final grade for the course will be based on the following course-related activities (given in percentages):

Grading:

<table>
<thead>
<tr>
<th>Activity</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class performance</td>
<td>10%</td>
</tr>
<tr>
<td>Paper presentation</td>
<td>10%</td>
</tr>
<tr>
<td>Tests/quizzes/Exams</td>
<td>30%</td>
</tr>
<tr>
<td>Experiments/Assignments/Lab exercises</td>
<td>35%</td>
</tr>
<tr>
<td>Final paper/project + proposal</td>
<td>15%</td>
</tr>
</tbody>
</table>

Grading Scale:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Score Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>95.1 - 100</td>
</tr>
<tr>
<td>A</td>
<td>90.1 - 95</td>
</tr>
<tr>
<td>A-</td>
<td>88.1 - 90</td>
</tr>
<tr>
<td>B+</td>
<td>85.1 - 88</td>
</tr>
<tr>
<td>B</td>
<td>82.1 - 85</td>
</tr>
<tr>
<td>B-</td>
<td>79.1 - 82</td>
</tr>
<tr>
<td>C+</td>
<td>76.1 - 79</td>
</tr>
<tr>
<td>C</td>
<td>70.1 - 76</td>
</tr>
<tr>
<td>C-</td>
<td>66.1 - 70</td>
</tr>
<tr>
<td>D+</td>
<td>60.1 - 66</td>
</tr>
<tr>
<td>D</td>
<td>50 - 60</td>
</tr>
<tr>
<td>F</td>
<td>&lt; 50</td>
</tr>
</tbody>
</table>

Term Paper/Project:
The paper/project (on computer forensics) is one of the important components of this course. The work should reflect much deeper level of understanding (beyond what covered in class lectures) with an evidence of some contribution. The topic/problem needs to be approved by the instructor. Two students can form a project group. The paper/project needs to be completed into two phases:

Phase 1:
Submission of the paper/project proposal: October 6, 2014
A one-page proposal (identifying techniques/software/methods to solve the given forensic problem, provide 5 references) of worth 5 marks (of the project's grade) must be submitted to the instructor for approval.

Phase 2:
Completion/Implementation of the paper/project and demo: December 3, 2014

Your final paper/project report should be about 5-6 pages long. The report may be a survey of latest forensic-related topic/tool or you may develop a new tool/technique for forensic analysis. You need to search on the web for the references and for further resources. Also, feel free to think and propose new ideas that may better solve the problem.

Due dates: Last day of class (12/03/2014)-Submission of the report, presentation/demo. It will be extremely difficult to get any extensions, so plan on finishing by the due date.

Course Policies:

Students are expected to attend all scheduled classes and submit assignments on time. If you miss a class, it is your responsibility to obtain the notes for the missed class from classmates, check course website and catch up on the course content. There will be no make up test for this course.

Ethical behavior is an important part of this course. Since some of the methods, codes and tools that will be discussed and experimented in the course can be very harmful, if abused, it is expected that students will behave in a responsible fashion. In particular, always ask your local site administrator for permission before experimenting with security-related tools. In-class discussions of techniques for exploiting potential security threats and risks do not imply to use them! You will be sole responsible for any such violation.

Plagiarism/Cheating Policy:

"Plagiarism or cheating behavior in any form is unethical and detrimental to proper education and will not be tolerated. All work submitted by a student (projects, programming assignments, lab assignments, quizzes, tests, etc.) is expected to be a student's own work. The plagiarism is incurred when any part of anybody else's work is passed as your own (no proper credit is listed to the sources in your own work) so the reader is led to believe it is therefore your own effort. Students are allowed and encouraged to discuss with each other and look up resources in the literature (including the internet) on their assignments, but appropriate references must be included for the materials consulted, and appropriate citations made when the material is taken verbatim. If plagiarism or cheating occurs, the student will receive a failing grade on the assignment and (at the instructor’s discretion) a failing grade in the course. The course instructor may also decide to forward the incident to the Office of Student Conduct for further disciplinary action. For further information on U of M code of student conduct and academic discipline procedures, please refer to: http://www.memphis.edu/studentconduct/misconduct.htm”

“Your written work may be submitted to Turnitin.com, or a similar electronic detection method, for an evaluation of the originality of your ideas and proper use and attribution of sources. As part of this process, you may be required to submit electronic as well as hard copies of your written work, or be given other instructions to follow. By taking this course, you agree that all assignments may undergo this review process and that the assignment may be included as a source document in Turnitin.com's restricted access database solely for the purpose of detecting plagiarism in such documents. Any assignment not submitted according to the procedures given by the instructor may be penalized or may not be accepted at all.” (Office of Legal Counsel, October 17, 2005).
### Detailed Course Syllabus (Topics will be covered subject to availability of time):

<table>
<thead>
<tr>
<th>Week</th>
<th>Starting Date</th>
<th>Lecture Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8/25</td>
<td>Course Overview, Scope and Agenda, Introduction to Computer Forensics</td>
</tr>
</tbody>
</table>
| 2    | 9/3           | **Labor Day: September 1st**  
Introduction to computer crimes, evidence, extraction, préservation, etc. |
| 3    | 9/8           | Overview of hardware and operating systems: structure of storage media/devices  
Overview of hardware and operating systems: windows/Macintosh/Linux -- registry, boot process, file systems, file metadata. |
| 4    | 9/15          | Data recovery: identifying hidden data, Encryption/Decryption, Steganography, recovering deleted files, identifying forged images, etc  
**Paper presentation starts on 9/15/14**  
*Computer Forensic tool: WinHex.* |
| 5    | 9/22          | **Class Test – I (9/22/14)**  
*Computer Forensic tool: TBD* |
| 6    | 9/29          | Digital evidence controls: uncovering attacks that evade detection by Event Viewer, Task Manager, and other Windows GUI tools. |
| 7    | 10/6          | Digital evidence controls (continued): data acquisition, disk imaging, recovering swap files, temporary &cache files, memory forensic.  
*Computer Forensic tools: TBD*  
**Project Proposal Submission (10/6/14)** |
|      | 10/15         | **Fall Break: October 13th**  
*Computer Forensic tools: TBD* |
| 8    | 10/20         | Data Erasers, File & Disk Lockers  
Demonstration of Various Computer Forensic tools by students |
| 9    | 10/27         | Network forensic: Collecting and analyzing network-based evidence in windows and Unix environments, reconstructing web browsing, cyber forensics |
| 10   | 11/03         | Network and Mobile Network forensic: e-mail activity, and windows registry changes, intrusion detection, tracking offenders, mobile network architecture etc.  
**Lab session on Encase**  
**Project Progress Presentation (tentative)** |
| 11   | 11/10         | Software reverse engineering: defend against software targets for viruses, worms, hostile codes and other malware, improving third-party software library.  
**Class Test – II (11/12/14)** |
| 12   | 11/17         | Software reverse engineering: identifying hostile codes-buffer overflow, provision of unexpected inputs, etc.  
*Lab session on Encase* |
| 13   | 11/24         | Computer crime and Legal issues: Intellectual property, privacy issues, Criminal Justice system for forensic, audit/investigative situations and digital crime scene, investigative procedure/standards for extraction, preservation, and deposition of legal evidence in a court of law. |
Thanksgiving Break: November 26th

<table>
<thead>
<tr>
<th>14</th>
<th>12/01</th>
<th>Mobile Device Forensics, Cloud Forensics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Project Demo, Report submission (12/03/14)</td>
</tr>
</tbody>
</table>

**NOTE 1:** Paper presentation will start from September 15th. Each paper presentation will be of 15 minutes long (plus 5 minutes for question & answer). Discussants need to ask questions to get 50% of class performance credit.

**NOTE 2:** There will be a term project and final demo as per the schedule (instead of Final Exam); also students should come prepared (on previous lectures and topics covered) in each class for quizzes.

**NOTE 3:** There will be a number of Lab sessions on forensic tools; in case Lab set ups cannot be done in time, alternative arrangements (lectures/assignments) will be made.

**NOTE 4:** All course-related information will be available from elearn.memphis.edu. Check the course Web page at [http://elearn.memphis.edu](http://elearn.memphis.edu) for class notes and updated information. This schedule will be updated regularly during the semester to reflect class activity changes.

**NOTE 5:** If I need to communicate with the class as a group, I’ll be using elearn email. You may need to check your email regularly or forward to your other email account.

**POSSIBLE TERM PROJECT TOPIC AREAS, BUT NOT LIMITED TO:**

(_forensic aspects only_)

- Windows 7 and 8 executables
- Web Browsers (web OS)/Apps/Plug-In forensic
- Memory partitioning
- Digital image/audio/video
- IP Telephony/Skype/Cell phone forensics
- Infrastructure/Smart Grid/ICS/PLC Forensic
- Mobile Device Forensics
- Virtual Machine/Cloud forensics
- Online social network data analysis
- Other topics