The Invariant Subspace Problem: General Operator Theory vs. Concrete Operator Theory?

Problems and Recent Methods in Operator Theory in Memory of Prof. James Jamison

Memphis, October 2015
Introduction
Introduction

- Invariant Subspace Problem
Introduction

- Invariant Subspace Problem

\[T : \mathcal{H} \rightarrow \mathcal{H}, \text{linear and bounded} \]
\[T(M) \subset (M), \text{closed subspace} \]
Introduction

- Invariant Subspace Problem

\[T : \mathcal{H} \to \mathcal{H}, \text{linear and bounded} \]
\[T(M) \subset (M), \text{closed subspace} \]

\[\implies M = \{0\} \text{ or } M = \mathcal{H}? \]

\[^1 \text{Finite dimensional complex Hilbert spaces.} \]
Introduction

- **Invariant Subspace Problem**

\[T : \mathcal{H} \to \mathcal{H}, \text{linear and bounded} \]
\[T(M) \subset (M), \text{closed subspace} \]
\[\implies M = \{0\} \text{ or } M = \mathcal{H}? \]

- **Remarks**

1. Finite dimensional complex Hilbert spaces.
Introduction

- Invariant Subspace Problem

\[T : \mathcal{H} \rightarrow \mathcal{H}, \text{linear and bounded} \]
\[T(M) \subset (M), \text{closed subspace} \]

\[\implies M = \{0\} \text{ or } M = \mathcal{H}? \]

- Remarks

1. Finite dimensional complex Hilbert spaces.
Example: \mathbb{R}^2

$$T = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix},$$

respect to the canonical bases $\{e_1, e_2\}$.
Example: \mathbb{R}^2

$$T = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix},$$

respect to the canonical bases $\{e_1, e_2\}$.

T has no non-trivial invariant subspaces in \mathbb{R}^2
Introduction

- Invariant Subspace Problem

\[T : \mathcal{H} \to \mathcal{H}, \text{linear and bounded} \]
\[T(M) \subset (M), \text{closed subspace} \]
\[\implies M = \{0\} \text{ or } M = \mathcal{H}? \]

- Remarks

1. Finite dimensional complex Hilbert spaces.
Introduction

• Invariant Subspace Problem

\[T : \mathcal{H} \rightarrow \mathcal{H}, \text{linear and bounded} \]
\[T(M) \subset (M), \text{closed subspace} \]

\[\implies M = \{0\} \text{ or } M = \mathcal{H}? \]

• Remarks

1. Finite dimensional complex Hilbert spaces.
Introduction

- $\ell^2 = \{\{a_n\}_{n \geq 1} \subset \mathbb{C} : \sum_{n=1}^{\infty} |a_n|^2 < \infty\}$

$\{e_n\}_{n \geq 1}$ canonical bases in ℓ^2
Introduction

\[\ell^2 = \left\{ \{a_n\}_{n \geq 1} \subset \mathbb{C} : \sum_{n=1}^{\infty} |a_n|^2 < \infty \right\} \]

\(\{e_n\}_{n \geq 1} \) canonical bases in \(\ell^2 \)

\[Se_n = e_{n+1} \quad n \geq 1 \]
Introduction

\[\ell^2 = \left\{ \{a_n\}_{n \geq 1} \subset \mathbb{C} : \sum_{n=1}^{\infty} |a_n|^2 < \infty \right\} \]

\{e_n\}_{n \geq 1} canonical bases in \(\ell^2 \)

\[Se_n = e_{n+1} \quad n \geq 1 \]

Characterization of the invariant subspaces of \(S \)?
Introduction

- $\ell^2 = \{ \{a_n\}_{n \geq 1} \subset \mathbb{C} : \sum_{n=1}^{\infty} |a_n|^2 < \infty \}$

$\{e_n\}_{n \geq 1}$ canonical bases in ℓ^2

$Se_n = e_{n+1}$ \quad $n \geq 1$

Characterization of the invariant subspaces of S?

$\ker(S - \lambda I) = \{0\}$ for any $\lambda \in \mathbb{C}$.
Introduction

- \(\ell^2 = \{ \{a_n\}_{n \geq 1} \subset \mathbb{C} : \sum_{n=1}^{\infty} |a_n|^2 < \infty \} \)

\(\{e_n\}_{n \geq 1} \) canonical bases in \(\ell^2 \)

\[Se_n = e_{n+1} \quad n \geq 1 \]

Characterization of the invariant subspaces of \(S \)?

\(\ker(S - \lambda I) = \{0\} \) for any \(\lambda \in \mathbb{C} \). That is, \(\sigma_p(S) = \emptyset \).
Introduction

\[\ell^2 = \left\{ \{a_n\}_{n \geq 1} \subset \mathbb{C} : \sum_{n=1}^{\infty} |a_n|^2 < \infty \right\} \]

\[\{e_n\}_{n \geq 1} \text{ canonical bases in } \ell^2 \]

\[Se_n = e_{n+1} \quad n \geq 1 \]

Characterization of the invariant subspaces of \(S \)?

Classical Beurling Theory:
Inner-Outer Factorization of the functions in the Hardy space.
Introduction

• Classes of operators with known invariant subspaces:
Introduction

- Classes of operators with known invariant subspaces:

 ★ Normal operators (Spectral Theorem)
Introduction

- Classes of operators with known invariant subspaces:
 - ★ Normal operators (Spectral Theorem)
 - ★ Compact Operators
Introduction

- Classes of operators with known invariant subspaces:
 - Normal operators (Spectral Theorem)
 - Compact Operators

\[\sigma(T) = \{\lambda_j\}_{j \geq 1} \cup \{0\} \]
Introduction

• Classes of operators with known invariant subspaces:

 ★ Normal operators (Spectral Theorem)

 ★ Compact Operators

 \[\sigma(T) = \{ \lambda_j \}_{j \geq 1} \cup \{0\} \]

★ 1951, J. von Newman, (Hilbert space case)
Introduction

- Classes of operators with known invariant subspaces:

 ★ Normal operators (Spectral Theorem)

 ★ Compact Operators

 \[\sigma(T) = \{\lambda_j\}_{j \geq 1} \cup \{0\} \]

 ★ 1951, J. von Newman, (Hilbert space case)

 ★ 1954, Aronszajn and Smith (general case)
Introduction

- Classes of operators with known invariant subspaces:
 - Normal operators (Spectral Theorem)
 - Compact Operators
 - Polynomialsly Compact Operators
Introduction

- Classes of operators with known invariant subspaces:
 - Normal operators (Spectral Theorem)
 - Compact Operators
 - Polynomially Compact Operators
 - 1966, Bernstein and Robinson, (Hilbert space case)
Introduction

- Classes of operators with known invariant subspaces:
 - Normal operators (Spectral Theorem)
 - Compact Operators
 - Polynomially Compact Operators
 - 1966, Bernstein and Robinson, (Hilbert space case)
 - 1967, Halmos
Introduction

- Classes of operators with known invariant subspaces:
 - Normal operators (Spectral Theorem)
 - Compact Operators
 - Polynomialsly Compact Operators
 - 1966, Bernstein and Robinson, (Hilbert space case)
 - 1967, Halmos
 - 1960’s, Gillespie, Hsu, Kitano...
In the Banach space setting

In 1975, P. Enflo showed in the *Semiaire Maurey-Schwartz* at the École Polytechnique in París:
In the Banach space setting

In 1975, P. Enflo showed in the *Seminaire Maurey-Schwartz* at the *École Polytechnique in París*:

There exists a separable Banach space \mathcal{B} and a linear, bounded operator T acting on \mathcal{B}, injective and with dense range, without no non-trivial closed invariant subspaces.
In 1975, P. Enflo showed in the *Séminaire Maurey-Schwartz* at the *École Polytechnique* in Paris:

There exists a separable Banach space B and a linear, bounded operator T acting on B, **injective and with dense range**, without no non-trivial closed invariant subspaces.

In the Banach space setting

In 1975, P. Enflo showed in the *Sém. Maurey-Schwartz* at the École Polytechnique in París:

There exists a separable Banach space B and a linear, bounded operator T acting on B, *injective and with dense range*, without non-trivial closed invariant subspaces.

• 1985, C. Read, Construction of a linear bounded operator on ℓ^1 without non-trivial closed invariant subspaces.
The big open question
The big open question

Does every linear bounded operator T acting on a separable, reflexive complex Banach space \mathcal{B} (or a Hilbert space \mathcal{H}) have a non-trivial closed invariant subspace?
Classes of operators with known invariant subspaces

- 1973, Lomonosov
Classes of operators with known invariant subspaces

- 1973, Lomonosov

Theorem (Lomonosov) Let T be a linear bounded operator on \mathcal{H}, $T \neq \mathbb{C}Id$. If T commutes with a non-null compact operator, then T has a non-trivial closed invariant subspace.
Classes of operators with known invariant subspaces

- 1973, Lomonosov

Theorem (Lomonosov) Let T be a linear bounded operator on \mathcal{H}, $T \neq \mathbb{C} \text{Id}$. If T commutes with a non-null compact operator, then T has a non-trivial closed invariant subspace. Moreover, T has a non-trivial closed hyperinvariant subspace.
Classes of operators with known invariant subspaces

- 1973, Lomonosov

Theorem (Lomonosov) Let T be a linear bounded operator on \mathcal{H}, $T \neq \mathbb{C}Id$. If T commutes with a non-null compact operator, then T has a non-trivial closed invariant subspace. Moreover, T has a non-trivial closed hyperinvariant subspace.

Theorem (Lomonosov) Any linear bounded operator T, not a multiple of the identity, has a nontrivial invariant closed subspace if it commutes with a non-scalar operator that commutes with a nonzero compact operator.
Classes of operators with known invariant subspaces
Classes of operators with known invariant subspaces

- Does every operator satisfy “Lomonosov Hypotheses”?
Classes of operators with known invariant subspaces

- Does every operator satisfy “Lomonosov Hypotheses”?

- 1980, Hadwin; Nordgren; Radjavi y Rosenthal
Classes of operators with known invariant subspaces

- Does every operator satisfy “Lomonosov Hypotheses”?

- 1980, Hadwin; Nordgren; Radjavi y Rosenthal

Construction of a "quasi-analytic" shift S on a weighted ℓ^2 space which has the following property: if K is a compact operator which commutes with a nonzero, non scalar operator in the commutant of S, then $K = 0$.
A “Concrete Operator Theory” approach

- Universal Operators (in the sense of G. C. Rota)
A "Concrete Operator Theory" approach

- **Universal Operators** (in the sense of G. C. Rota)

 A linear bounded operator U in a Hilbert space \mathcal{H} is **universal** if for any linear bounded operator T in \mathcal{H}, there exists $\lambda \in \mathbb{C}$ and $M \in \text{Lat}(U)$ such that λT is similar to $U|_M$.
A “Concrete Operator Theory” approach

- **Universal Operators** (in the sense of G. C. Rota)

A linear bounded operator U in a Hilbert space \mathcal{H} is universal if for any linear bounded operator T in \mathcal{H}, there exists $\lambda \in \mathbb{C}$ and $\mathcal{M} \in \text{Lat}(U)$ such that λT is similar to $U|_{\mathcal{M}}$, i.e., $\lambda T = J^{-1}UJ$ where $J : \mathcal{H} \to \mathcal{M}$ is a linear isomorphism.
A “Concrete Operator Theory” approach

- **Universal Operators** (in the sense of G. C. Rota)

A linear bounded operator U in a Hilbert space \mathcal{H} is universal if for any linear bounded operator T in \mathcal{H}, there exists $\lambda \in \mathbb{C}$ and $M \in \text{Lat}(U)$ such that λT is similar to $U|_M$, i.e., $\lambda T = J^{-1}UJ$ where $J : \mathcal{H} \rightarrow M$ is a linear isomorphism.

- **Example.** Adjoint of a unilateral shift of infinite multiplicity.
A “Concrete Operator Theory” approach

- **Universal Operators** (in the sense of G. C. Rota)

A linear bounded operator U in a Hilbert space \mathcal{H} is **universal** if for any linear bounded operator T in \mathcal{H}, there exists $\lambda \in \mathbb{C}$ and $M \in \text{Lat}(U)$ such that λT is similar to $U |_{M}$, i.e., $\lambda T = J^{-1}UJ$ where $J : \mathcal{H} \to M$ is a linear isomorphism.

- **Example.** Adjoint of a unilateral shift of infinite multiplicity. It may be regarded as S^* in $(\ell^2(\mathcal{H}))$ defined by

 $$S^*((h_0, h_1, h_2, \cdots)) = (h_1, h_2, \cdots)$$

for $(h_0, h_1, h_2, \cdots) \in \ell^2(\mathcal{H})$.
A “Concrete Operator Theory” approach

• **Universal Operators** (in the sense of G. C. Rota)

A linear bounded operator U in a Hilbert space \mathcal{H} is **universal** if for any linear bounded operator T in \mathcal{H}, there exists $\lambda \in \mathbb{C}$ and $M \in \text{Lat}(U)$ such that λT is similar to $U|_{M}$, i.e., $\lambda T = J^{-1}UJ$ where $J : \mathcal{H} \rightarrow M$ is a linear isomorphism.

• **Example.** Adjoint of a unilateral shift of infinite multiplicity. It may be regarded as S^* in $(\ell^2(\mathcal{H}))$ defined by

$$S^*((h_0, h_1, h_2, \cdots)) = (h_1, h_2, \cdots)$$

for $(h_0, h_1, h_2, \cdots) \in \ell^2(\mathcal{H})$.

• **Example.** Let $a > 0$ and $T_a : L^2(0, \infty) \rightarrow L^2(0, \infty)$ defined by

$$T_afa(t) = f(t + a), \quad \text{for } t > 0.$$

T_a is universal.
A “Concrete Operator Theory” approach: universal operators

- **Proposition.** Let \mathcal{H} be a Hilbert space and U a linear bounded operator. Suppose that U is a universal operator. The following conditions are equivalent:
A “Concrete Operator Theory” approach: universal operators

• **Proposition.** Let \mathcal{H} be a Hilbert space and U a linear bounded operator. Suppose that U is a universal operator. The following conditions are equivalent:

1. Every linear bounded operator T on \mathcal{H} has a non-trivial closed invariant subspace.
A “Concrete Operator Theory” approach: universal operators

- **Proposition.** Let H be a Hilbert space and U a linear bounded operator. Suppose that U is a universal operator. The following conditions are equivalent:

 1. Every linear bounded operator T on H has a non-trivial closed invariant subspace.

 2. Every closed invariant subspace M of U of dimension greater than 1 contains a proper closed and invariant subspace.
A “Concrete Operator Theory” approach: universal operators

- Proposition. Let \mathcal{H} be a Hilbert space and U a linear bounded operator. Suppose that U is a universal operator. The following conditions are equivalent:

1. Every linear bounded operator T on \mathcal{H} has a non-trivial closed invariant subspace.

2. Every closed invariant subspace M of U of dimension greater than 1 contains a proper closed and invariant subspace (i.e. the minimal non-trivial closed and invariant subspaces for U are one-dimensional).
Providing universal operators

• **Universal Operators** (in the sense of G. C. Rota)

A linear bounded operator U in a Hilbert space \mathcal{H} is **universal** if for any linear bounded operator T in \mathcal{H}, there exists $\lambda \in \mathbb{C}$ and $M \in \text{Lat}(U)$ such that λT is similar to $U|_M$, i.e., $\lambda T = J^{-1}UJ$ where $J : \mathcal{H} \to M$ is a linear isomorphism.

1. Ker(U) is infinite dimensional,
2. U is surjective.
Providing universal operators

- **Universal Operators** (in the sense of G. C. Rota)

 A linear bounded operator U in a Hilbert space \mathcal{H} is universal if for any linear bounded operator T in \mathcal{H}, there exists $\lambda \in \mathbb{C}$ and $M \in \text{Lat}(U)$ such that λT is similar to $U|_M$, i.e., $\lambda T = J^{-1}UJ$ where $J: \mathcal{H} \to M$ is a linear isomorphism.

- 1969, Caradus

 1. $\text{Ker}(U)$ is infinite dimensional,
 2. U is surjective.
Providing universal operators

- **Universal Operators** (in the sense of G. C. Rota)

A linear bounded operator U in a Hilbert space \mathcal{H} is *universal* if for any linear bounded operator T in \mathcal{H}, there exists $\lambda \in \mathbb{C}$ and $\mathcal{M} \in \text{Lat}(U)$ such that λT is similar to $U|_{\mathcal{M}}$, i.e., $\lambda T = J^{-1}UJ$ where $J : \mathcal{H} \to \mathcal{M}$ is a linear isomorphism.

- 1969, Caradus

Let U be a linear bounded operator on a Hilbert space. Assume that

1. $\text{Ker}(U)$ is infinite dimensional,
2. U is surjective.
Providing universal operators

- **Universal Operators** (in the sense of G. C. Rota)

A linear bounded operator U in a Hilbert space \mathcal{H} is universal if for any linear bounded operator T in \mathcal{H}, there exists $\lambda \in \mathbb{C}$ and $M \in \text{Lat}(U)$ such that λT is similar to $U|_M$, i.e., $\lambda T = J^{-1}UJ$ where $J : \mathcal{H} \to M$ is a linear isomorphism.

- 1969, Caradus

Let U be a linear bounded operator on a Hilbert space. Assume that

1. $\text{Ker}(U)$ is infinite dimensional,
2. U is surjective.
Providing universal operators

- **Universal Operators** (in the sense of G. C. Rota)

A linear bounded operator U in a Hilbert space \mathcal{H} is *universal* if for any linear bounded operator T in \mathcal{H}, there exists $\lambda \in \mathbb{C}$ and $M \in \text{Lat}(U)$ such that λT is similar to $U|_M$, i.e., $\lambda T = J^{-1}UJ$ where $J : \mathcal{H} \to M$ is a linear isomorphism.

- 1969, Caradus

Let U be a linear bounded operator on a Hilbert space. Assume that

1. $\text{Ker}(U)$ is infinite dimensional,
2. U is surjective.
Providing universal operators

- **Universal Operators** (in the sense of G. C. Rota)

A linear bounded operator U in a Hilbert space \mathcal{H} is **universal** if for any linear bounded operator T in \mathcal{H}, there exists $\lambda \in \mathbb{C}$ and $\mathcal{M} \in \text{Lat}(U)$ such that λT is similar to $U|_{\mathcal{M}}$, i.e., $\lambda T = J^{-1}UJ$ where $J : \mathcal{H} \to \mathcal{M}$ is a linear isomorphism.

- 1969, Caradus

Let U be a linear bounded operator on a Hilbert space. Assume that

1. $\text{Ker}(U)$ is infinite dimensional,
2. U is surjective.

Then U is universal.
Idea of the Proof

Write $\mathcal{K} \rightleftharpoons \text{Ker } U$

1. $UV = \text{Id}$,
2. $UW = 0$,
3. $\ker W = \{0\}$,
4. $\text{Im } W = \mathcal{K}$ and $\text{Im } V = \mathcal{K}^\perp$.

- $\mathcal{M} = \text{Im } J$ is a closed subspace of U.
- J is an isomorphism onto \mathcal{M}.
Idea of the Proof

Write $\mathcal{K} = \text{Ker } U$

Step 1: Construct $V, W \in L(\mathcal{H})$ such that

1. $UV = \text{Id}$,
2. $UW = 0$,
3. $\ker W = \{0\}$,
4. $\text{Im } W = \mathcal{K}$ and $\text{Im } V = \mathcal{K}^\perp$.

- $\mathcal{M} = \text{Im } J$ is a closed subspace of U.
- J is an isomorphism onto \mathcal{M}.
Idea of the Proof

Write $\mathcal{K} = \text{Ker } U$

Step 1: Construct $V, W \in \mathcal{L}(\mathcal{H})$ such that

1. $UV = \text{Id}$,
2. $UW = 0$,
3. $\ker W = \{0\}$,
4. $\text{Im } W = \mathcal{K}$ and $\text{Im } V = \mathcal{K}^\perp$.

- $\mathcal{M} = \text{Im } J$ is a closed subspace of U.
- J is an isomorphism onto \mathcal{M}.
Idea of the Proof

Write $\mathcal{K} = \ker U$

Step 1: Construct $V, W \in \mathcal{L}(\mathcal{H})$ such that

1. $UV = \text{Id}$,
2. $UW = 0$,
3. $\ker W = \{0\}$,
4. $\text{Im} W = \mathcal{K}$ and $\text{Im} V = \mathcal{K}^\perp$.

Step 2: Prove that U is universal.

- $\mathcal{M} = \text{Im} J$ is a closed subspace of U.
- J is an isomorphism onto \mathcal{M}.
Idea of the Proof

Write $\mathcal{K} = \text{Ker } U$

Step 1: Construct $V, W \in \mathcal{L}(\mathcal{H})$ such that

1. $UV = \text{Id}$,
2. $UW = 0$,
3. $\ker W = \{0\}$,
4. $\text{Im } W = \mathcal{K}$ and $\text{Im } V = \mathcal{K}^\perp$.

Step 2: Prove that U is universal.
Let T be a linear bounded operator on \mathcal{H}.

- $\mathcal{M} = \text{Im } J$ is a closed subspace of U.
- J is an isomorphism onto \mathcal{M}.
Idea of the Proof

Write $\mathcal{K} = \text{Ker } U$

Step 1: Construct $V, W \in \mathcal{L}(\mathcal{H})$ such that

1. $UV = \text{Id}$,
2. $UW = 0$,
3. $\text{ker} W = \{0\}$,
4. $\text{Im} W = \mathcal{K}$ and $\text{Im} V = \mathcal{K}^\perp$.

Step 2: Prove that U is universal.

Let T be a linear bounded operator on \mathcal{H}.

Let $\lambda \neq 0$ such that $|\lambda| \|T\| \|U\| < 1$ and define

$$J = \sum_{k=0}^{\infty} \lambda^k V^k W T^k.$$

- $\mathcal{M} = \text{Im } J$ is a closed subspace of U.
- J is an isomorphism onto \mathcal{M}.
Idea of the Proof

Write $\mathcal{K} = \text{Ker } \mathcal{U}$

Step 1: Construct $V, W \in \mathcal{L}(\mathcal{H})$ such that

1. $UV = \text{Id},$
2. $UW = 0,$
3. $\ker W = \{0\},$
4. $\text{Im } W = \mathcal{K}$ and $\text{Im } V = \mathcal{K}^\perp.$

Step 2: Prove that \mathcal{U} is universal.

Let T be a linear bounded operator on $\mathcal{H}.$

Let $\lambda \neq 0$ such that $|\lambda| \|T\| \|\mathcal{U}\| < 1$ and define

$$J = \sum_{k=0}^{\infty} \lambda^k V^k W T^k.$$

J satisfies $J = W + \lambda V J T$ and therefore, $UJ = \lambda JT.$

- $\mathcal{M} = \text{Im } J$ is a closed subspace of $\mathcal{U}.$
- J is an isomorphism onto $\mathcal{M}.$
Idea of the Proof

Write \(\mathcal{K} = \ker U \)

Step 1: Construct \(V, W \in \mathcal{L}(\mathcal{H}) \) such that

1. \(UV = \text{Id} \),
2. \(UW = 0 \),
3. \(\ker W = \{0\} \),
4. \(\text{Im} W = \mathcal{K} \) and \(\text{Im} V = \mathcal{K}^\perp \).

Step 2: Prove that \(U \) is universal.

Let \(T \) be a linear bounded operator on \(\mathcal{H} \).

Let \(\lambda \neq 0 \) such that \(|\lambda| \|T\| \|U\| < 1 \) and define

\[
J = \sum_{k=0}^{\infty} \lambda^k V^k W T^k.
\]

\(J \) satisfies \(J = W + \lambda VJT \) and therefore, \(UJ = \lambda JT \). In addition,

- \(\mathcal{M} = \text{Im} J \) is a closed subspace of \(U \).
- \(J \) is an isomorphism onto \(\mathcal{M} \).
Examples of universal operators

- **Theorem** (1987, Nordgren, Rosenthal y Wintrobe)
Examples of universal operators

- **Theorem** (1987, Nordgren, Rosenthal y Wintrobe)

Let φ be a hyperbolic automorphism of \mathbb{D}. For every λ in the interior of the spectrum of C_φ, $C_\varphi - \lambda I$ is universal in H^2.
Examples of universal operators

- **Theorem** (1987, Nordgren, Rosenthal y Wintrobe)

Let φ be a hyperbolic automorphism of \mathbb{D}. For every λ in the interior of the spectrum of C_φ, $C_\varphi - \lambda I$ is universal in \mathcal{H}^2.

- **Disc automorphisms**

$$
\varphi(z) = e^{i\theta} \frac{p - z}{1 - \overline{p}z} \quad (z \in \mathbb{D}).
$$

where $p \in \mathbb{D}$ and $-\pi < \theta \leq \pi$.
Examples of universal operators

- **Theorem** (1987, Nordgren, Rosenthal y Wintrobe)

Let \(\varphi \) be a hyperbolic automorphism of \(\mathbb{D} \). For every \(\lambda \) in the interior of the spectrum of \(C_\varphi \), \(C_\varphi - \lambda I \) is universal in \(\mathcal{H}^2 \).

- **Disc automorphisms**

\[
\varphi(z) = e^{i\theta} \frac{p - z}{1 - \overline{p}z} \quad (z \in \mathbb{D}).
\]

where \(p \in \mathbb{D} \) and \(-\pi < \theta \leq \pi \).

- Parabolic.
- Hyperbolic.
- Elliptic.
Examples of universal operators

- **Theorem** (1987, Nordgren, Rosenthal y Wintrobe)

Let φ be a hyperbolic automorphism of \mathbb{D}. For every λ in the interior of the spectrum of C_φ, $C_\varphi - \lambda I$ is universal in \mathcal{H}^2.

- **Disc automorphisms**

$$\varphi(z) = e^{i\theta} \frac{p - z}{1 - \overline{p}z} \quad (z \in \mathbb{D}).$$

where $p \in \mathbb{D}$ and $-\pi < \theta \leq \pi$.

- **Parabolic.** φ has just one fixed point $\alpha \in \partial \mathbb{D}$ ($\iff |p| = \cos(\theta/2)$)
- **Hyperbolic.**
- **Elliptic.**
Examples of universal operators

- **Theorem** (1987, Nordgren, Rosenthal y Wintrobe)

Let φ be a hyperbolic automorphism of \mathbb{D}. For every λ in the interior of the spectrum of $C\varphi$, $C\varphi - \lambda I$ is universal in \mathcal{H}^2.

- **Disc automorphisms**

 $\varphi(z) = e^{i\theta} \frac{p - z}{1 - \overline{p}z} \quad (z \in \mathbb{D}).$

 where $p \in \mathbb{D}$ and $-\pi < \theta \leq \pi$.

 * **Parabolic.** φ has just one fixed point $\alpha \in \partial\mathbb{D}$ ($\iff |p| = \cos(\theta/2)$)
 * **Hyperbolic.** φ has two fixed points α and β, such that $\alpha, \beta \in \partial\mathbb{D}$ ($\iff |p| > \cos(\theta/2)$)
 * **Elliptic.**
Examples of universal operators

- **Theorem** (1987, Nordgren, Rosenthal y Wintrobe)

Let \(\varphi \) be a hyperbolic automorphism of \(\mathbb{D} \). For every \(\lambda \) in the interior of the spectrum of \(C_\varphi \), \(C_\varphi - \lambda I \) is universal in \(\mathcal{H}^2 \).

- **Disc automorphisms**

\[
\varphi(z) = e^{i\theta} \frac{p - z}{1 - \overline{p}z} \quad (z \in \mathbb{D}).
\]

where \(p \in \mathbb{D} \) and \(-\pi < \theta \leq \pi\).

- **Parabolic.** \(\varphi \) has just one fixed point \(\alpha \in \partial \mathbb{D} \) (\(\Leftrightarrow |p| = \cos(\theta/2) \))

- **Hyperbolic.** \(\varphi \) has two fixed points \(\alpha \) and \(\beta \), such that \(\alpha, \beta \in \partial \mathbb{D} \) (\(\Leftrightarrow |p| > \cos(\theta/2) \))

- **Elliptic.** \(\varphi \) has two fixed points \(\alpha \) and \(\beta \), with \(\alpha \in \mathbb{D} \) (\(\Leftrightarrow |p| < \cos(\theta/2) \))
Examples of universal operators

- **Theorem** (1987, Nordgren, Rosenthal y Wintrobe)

Let φ be a hyperbolic automorphism of \mathbb{D}. For every λ in the interior of the spectrum of C_φ, $C_\varphi - \lambda I$ is universal in \mathcal{H}^2.

Let φ be a hyperbolic automorphism of \mathbb{D}.
Examples of universal operators

- **Theorem** (1987, Nordgren, Rosenthal y Wintrobe)

Let φ be a hyperbolic automorphism of \mathbb{D}. For every λ in the interior of the spectrum of C_φ, $C_\varphi - \lambda I$ is universal in \mathcal{H}^2.

Let φ be a hyperbolic automorphism of \mathbb{D}.

We may assume that φ fixes 1 and -1.
Examples of universal operators

- **Theorem** (1987, Nordgren, Rosenthal y Wintrobe)

Let \(\varphi \) be a hyperbolic automorphism of \(\mathbb{D} \). For every \(\lambda \) in the interior of the spectrum of \(C_\varphi \), \(C_\varphi - \lambda I \) is universal in \(\mathcal{H}^2 \).

Let \(\varphi \) be a hyperbolic automorphism of \(\mathbb{D} \).

We may assume that \(\varphi \) fixes 1 and \(-1\). Then,

\[
\varphi(z) = \frac{z + r}{1 + rz}, \quad 0 < r < 1.
\]
Examples of universal operators

Every linear bounded operator T has a closed non-trivial invariant subspace
Examples of universal operators

Every linear bounded operator T has a closed non-trivial invariant subspace

$$\uparrow$$

for any $f \in \mathcal{H}^2$, not an eigenfunction of C_φ, there exists $g \in \overline{\text{span}\{C_\varphi^n f : n \geq 0\}}$ such that $g \neq 0$ and

$$\overline{\text{span}\{C_\varphi^n g : n \geq 0\}} \neq \overline{\text{span}\{C_\varphi^n f : n \geq 0\}}.$$
Examples of universal operators

Every linear bounded operator T has a closed non-trivial invariant subspace

\[\forall \]

for any $f \in \mathcal{H}^2$, not an eigenfunction of C_φ, there exists $g \in \text{span}\{C_\varphi^n f : n \geq 0\}$ such that $g \neq 0$ and

\[\text{span}\{C_\varphi^n g : n \geq 0\} \neq \text{span}\{C_\varphi^n f : n \geq 0\}. \]

\[\forall \]

the **minimal** non-trivial closed invariant subspaces for C_φ are one-dimensional
Which conditions on f ensure that $K_f := \overline{\text{span}}\{C^n\phi f : n \geq 0\}$ is (or not) minimal?
Minimal invariant subspaces

Theorem (Matache, 1993) Let \(\varphi \) be a hyperbolic automorphism of \(\mathbb{D} \) and 1 one of the fixed points of \(\varphi \). Let \(f \in \mathcal{H}^2 \) a non-constant function such that \(f \) extends continuously to 1 and \(f(1) \neq 0 \). Then \(K_f \) is not minimal.

Theorem (Mortini, 1995) Let \(\varphi \) be a hyperbolic automorphism of \(\mathbb{D} \) and 1 the attractive fixed point of \(\varphi \). Let \(f \in \mathcal{H}^\infty \) a non-constant function such that there exists the radial limit at 1 and \(f(1) \neq 0 \). Then \(K_f \) is not minimal.

Theorem (Matache, 1998) Let \(\varphi \) be a hyperbolic automorphism of \(\mathbb{D} \) and 1 one of the fixed points of \(\varphi \). Let \(f \in \mathcal{H}^2 \) a non-constant function such that there exists the radial limit of \(f \) at 1 and \(f(1) \neq 0 \). Assume that \(f \) is essentially bounded in an arc \(\gamma \subset \partial \mathbb{D} \) so that \(1 \in \gamma \). Then \(K_f \) is not minimal.
Minimal invariant subspaces

1. \(\lim_{z \to -1} |f(z)| < \infty \),

2. \(|f(z)| \leq C|z - 1|^\varepsilon \) for some constant \(C \), and \(\varepsilon > 0 \) in a neighborhood of 1.
Minimal invariant subspaces

Theorem (Chkliar, 1997) Let \(\varphi \) be a hyperbolic automorphism of \(\mathbb{D} \) with fixed points 1 and \(-1\). Assume 1 is the attractive fixed point of \(\varphi \). Suppose that \(f \in \mathcal{H}^2 \) such that

1. \(\lim_{z \to -1} |f(z)| < \infty \),

2. \(|f(z)| \leq C|z - 1|^\varepsilon \) for some constant \(C \), and \(\varepsilon > 0 \) in a neighborhood of 1.

Then the point spectrum of \(C\varphi \) acting on \(\text{span}\{C^n f : n \in \mathbb{Z}\} \mathcal{H}^2 \) contains the annulus

\[
\{ z \in \mathbb{C} : |\varphi'(1)|^{\min\{\varepsilon, \frac{1}{2}\}} < |z| < 1 \},
\]

except, possibly, a discrete subset.
Minimal invariant subspaces

- **Theorem** (2011, Shapiro) Let φ be a hyperbolic automorphism of \mathbb{D} with fixed points 1 and -1.

1. If $f \in \sqrt{(z - 1)(z + 1)} \mathcal{H}^2 \setminus \{0\}$, then the point spectrum of C_φ acting on $\overline{\text{span}\{C^n_\varphi f : n \in \mathbb{Z}\}} \mathcal{H}^2$ intersects the unit circle in a set of positive measure.

2. If $f \in \sqrt{(z - 1)(z + 1)} \mathcal{H}^p \setminus \{0\}$ for some $p > 2$, then the point spectrum of C_φ acting on $\overline{\text{span}\{C^n_\varphi f : n \in \mathbb{Z}\}} \mathcal{H}^2$ contains an open annulus centered at the origin.
Minimal invariant subspaces

Theorem. (2011, GG-Gorkin) Let φ be a hyperbolic automorphism of \mathbb{D} fixing 1 and -1. Assume that 1 is the attractive fixed point. Let f be a nonzero function in \mathcal{H}^2 that is continuous at 1 and -1 and such that $f(1) = f(-1) = 0$. Then there exists $g \in \mathcal{H}^2$ satisfying the following conditions:

1. $g \in K_f := \text{span}\{C^nf : n \geq 0\}^{\mathcal{H}^2}$.
2. There exists a subsequence $\{\varphi_{n_k}\}$ such that $g \circ \varphi_{-n_k}$ converges to f uniformly on compact subsets of \mathbb{D} as $k \to \infty$.
3. g has no radial limit at -1.
Minimal invariant subspaces

Theorem. (2011, GG-Gorkin) Let φ be a hyperbolic automorphism of \mathbb{D} fixing 1 and -1. Assume that 1 is the attractive fixed point. Let f be a nonzero function in \mathcal{H}^2 that is continuous at 1 and -1 and such that $f(1) = f(-1) = 0$. Then there exists $g \in \mathcal{H}^2$ satisfying the following conditions:

1. $g \in K_f := \overline{\text{span}\{C^n_{\varphi}f : n \geq 0\}}^{\mathcal{H}^2}$.
2. There exists a subsequence $\{\varphi_{n_k}\}$ such that $g \circ \varphi_{-n_k}$ converges to f uniformly on compact subsets of \mathbb{D} as $k \to \infty$.
3. g has no radial limit at -1.

Furthermore, if f belongs to the disc algebra $\mathcal{A}(\mathbb{D})$, then $g \in \mathcal{H}^\infty$ and, consequently, if K_f is minimal, then $K_g = K_f$.
Question

Eigenfuntions of C_φ?
Question

Eigenfunctions of C_φ?

- 2012, GG, Gorkin and Suárez, Constructive characterization of eigenfunctions of C_φ in the Hardy spaces \mathcal{H}^p
Universal operators vs. Lomonosov Theorem
Universal operators vs. Lomonosov Theorem

- **Naive Question**: Does there exist a universal operator which commutes with a non-null compact operator *in a non-trivial way*?
Universal operators

Suppose S is a multiplication operator on the Hardy space \mathcal{H}^2 whose symbol is a singular inner function or infinite Blaschke product.

1. S is an isometric operator.
2. S^* has infinite dimensional kernel and maps \mathcal{H}^2 onto \mathcal{H}^2.
Universal operators

Suppose S is a multiplication operator on the Hardy space \mathcal{H}^2 whose symbol is a singular inner function or infinite Blaschke product.

- Remarks

1. S is an isometric operator.
2. S^* has infinite dimensional kernel and maps \mathcal{H}^2 onto \mathcal{H}^2.
Universal operators

Suppose \(S \) is a multiplication operator on the Hardy space \(\mathcal{H}^2 \) whose symbol is a singular inner function or infinite Blaschke product.

- **Remarks**

1. \(S \) is an isometric operator.
2. \(S^* \) has infinite dimensional kernel and maps \(\mathcal{H}^2 \) onto \(\mathcal{H}^2 \).
Universal operators
Suppose S is a multiplication operator on the Hardy space \mathcal{H}^2 whose symbol is a singular inner function or infinite Blaschke product.

- Remarks
 1. S is an isometric operator.
 2. S^* has infinite dimensional kernel and maps \mathcal{H}^2 onto \mathcal{H}^2.
Universal operators
Suppose S is a multiplication operator on the Hardy space \mathcal{H}^2 whose symbol is a singular inner function or infinite Blaschke product.

Remarks

- S^* is universal.
- Using the Wold Decomposition Theorem, such an operator can be represented as a block matrix on $\mathcal{H} = \bigoplus_{k=1}^{\infty} S^k W$, where $W = \mathcal{H}^2 \ominus S\mathcal{H}^2$. Such a matrix is an upper triangular and has the identity on the super-diagonal:
Universal operators

Suppose S is a multiplication operator on the Hardy space \mathcal{H}^2 whose symbol is a singular inner function or infinite Blaschke product.

- Remarks

 - S^* is universal.

 - Using the Wold Decomposition Theorem, such an operator can be represented as a block matrix on $\mathcal{H} = \bigoplus_{k=1}^{\infty} S^k W$, where $W = \mathcal{H}^2 \ominus S\mathcal{H}^2$. Such a matrix is an upper triangular and has the identity on the super-diagonal:
Universal operators

Suppose S is a multiplication operator on the Hardy space \mathcal{H}^2 whose symbol is a singular inner function or infinite Blaschke product.

- **Remarks**
 - S^* is universal.
 - Using the Wold Decomposition Theorem, such an operator can be represented as a block matrix on $\mathcal{H} = \bigoplus_{k=1}^{\infty} S^k W$, where $W = \mathcal{H}^2 \ominus S \mathcal{H}^2$. Such a matrix is an upper triangular and has the identity on the super-diagonal:

$$
S^* \sim \begin{pmatrix}
0 & I & 0 & 0 & \cdots \\
0 & 0 & I & 0 & \cdots \\
0 & 0 & 0 & I & \cdots \\
& & & & \ddots
\end{pmatrix}
$$
Universal operators

An easy computation shows that every operator that commutes with S^* has the form

- This is an upper triangular block matrix whose entries on each diagonal are the same operator on the infinite dimensional Hilbert space W.
- Every block in such a matrix occurs infinitely often.
- So, the only compact operator that commutes with the universal operator S^* is 0,
Universal operators

An easy computation shows that every operator that commutes with \(S^* \) has the form

\[
A \sim \begin{pmatrix}
A_0 & A_{-1} & A_{-2} & A_{-3} & \cdots \\
0 & A_0 & A_{-1} & A_{-2} & \cdots \\
0 & 0 & A_0 & A_{-1} & \cdots \\
\vdots & \vdots & \vdots & \ddots & \ddots
\end{pmatrix}
\]

an upper triangular block Toeplitz matrix.

Observe that:

- This is an upper triangular block matrix whose entries on each diagonal are the same operator on the infinite dimensional Hilbert space \(W \).
- Every block in such a matrix occurs infinitely often.
- So, the only compact operator that commutes with the universal operator \(S^* \) is 0,
Universal operators

An easy computation shows that every operator that commutes with S^* has the form

$$A \sim \begin{pmatrix}
A_0 & A_{-1} & A_{-2} & A_{-3} & \cdots \\
0 & A_0 & A_{-1} & A_{-2} & \cdots \\
0 & 0 & A_0 & A_{-1} & \cdots \\
& & & & \ddots
\end{pmatrix}$$

an upper triangular block Toeplitz matrix.

Observe that:

- This is an upper triangular block matrix whose entries on each diagonal are the same operator on the infinite dimensional Hilbert space W.
- Every block in such a matrix occurs infinitely often.
- So, the only compact operator that commutes with the universal operator S^* is 0,
Universal operators

An easy computation shows that every operator that commutes with S^* has the form

$$A \sim \begin{pmatrix}
A_0 & A_{-1} & A_{-2} & A_{-3} & \cdots \\
0 & A_0 & A_{-1} & A_{-2} & \cdots \\
0 & 0 & A_0 & A_{-1} & \cdots \\
& & & & \ddots
\end{pmatrix}$$

an upper triangular block Toeplitz matrix.

Observe that:

- This is an upper triangular block matrix whose entries on each diagonal are the same operator on the infinite dimensional Hilbert space W.
- Every block in such a matrix occurs infinitely often.
- So, the only compact operator that commutes with the universal operator S^* is 0,
Universal operators

An easy computation shows that every operator that commutes with S^* has the form

$$A \sim \begin{pmatrix} A_0 & A_{-1} & A_{-2} & A_{-3} & \cdots \\ 0 & A_0 & A_{-1} & A_{-2} & \cdots \\ 0 & 0 & A_0 & A_{-1} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

an upper triangular block Toeplitz matrix.

Observe that:

- This is an upper triangular block matrix whose entries on each diagonal are the same operator on the infinite dimensional Hilbert space W.
- Every block in such a matrix occurs infinitely often.
- So, the only compact operator that commutes with the universal operator S^* is 0,
Universal operators

An easy computation shows that every operator that commutes with S^* has the form

$$A \sim \begin{pmatrix}
A_0 & A_{-1} & A_{-2} & A_{-3} & \cdots \\
0 & A_0 & A_{-1} & A_{-2} & \cdots \\
0 & 0 & A_0 & A_{-1} & \cdots \\
& & & & \ddots
\end{pmatrix}$$

an upper triangular block Toeplitz matrix.

Observe that:

- This is an upper triangular block matrix whose entries on each diagonal are the same operator on the infinite dimensional Hilbert space W.
- Every block in such a matrix occurs infinitely often.
- So, the only compact operator that commutes with the universal operator S^* is 0, not an interesting compact operator!
Universal operators

- **Theorem** (2011, Cowen-GG)

Let \(\varphi \) be a hyperbolic automorphism of \(\mathbb{D} \). Then \(C^*_\varphi \) is similar to the Toeplitz operator \(T_\psi \), where \(\psi \) is the covering map of the unit disc onto the interior of the spectrum \(\sigma(C_\varphi) \).
Universal operators

- **Theorem** (2011, Cowen-GG)

 Let φ be a hyperbolic automorphism of \mathbb{D}. Then C^*_φ is similar to the Toeplitz operator T_ψ, where ψ is the covering map of the unit disc onto the interior of the spectrum $\sigma(C_\varphi)$.

- **Theorem** (1980, Cowen)

 A Toeplitz operator T_ψ in H^2, where $\psi \in H^\infty$ is an inner function or a covering map commutes with a compact operator K if and only if $K = 0$.
Universal operators

• **Theorem** (2011, Cowen-GG)

Let φ be a hyperbolic automorphism of \mathbb{D}. Then C^*_φ is similar to the Toeplitz operator T_ψ, where ψ is the covering map of the unit disc onto the interior of the spectrum $\sigma(C_\varphi)$.

• **Theorem** (1980, Cowen)

A Toeplitz operator T_ψ in H^2, where $\psi \in H^\infty$ is an inner function or a covering map commutes with a compact operator K if and only if $K = 0$.

• **Straightforward consequence**

Known universal operators are not commuting with non-null compact operators.
Universal operators
Universal operators

- **Theorem [2013, Cowen-GG]** There exists a universal operator which commutes with an injective, dense range compact operator.
A universal operator which commutes with a compact operator
Compact operators commuting with universal operators

We have seen that some universal operators commute with a compact operator and others do not.
We have seen that some universal operators commute with a compact operator and others do not.

Observation: There are many more compact operators than just one commuting with the universal operator T^φ.
We have seen that some universal operators commute with a compact operator and others do not.

Observation: There are many more compact operators than just one commuting with the universal operator T^*_φ.

Definition. Let \mathcal{K}_φ be the set of compact operators that commute with T^*_φ, that is,

$$\mathcal{K}_\varphi = \{ G \in B(H^2) : G \text{ is compact, and } T^*_\varphi G = GT^*_\varphi \}$$
Compact operators commuting with universal operators

We have seen that some universal operators commute with a compact operator and others do not.

Observation: There are many more compact operators than just one commuting with the universal operator T^*_φ.

Definition. Let \mathcal{K}_φ be the set of compact operators that commute with T^*_φ, that is,

$$\mathcal{K}_\varphi = \{ G \in \mathcal{B}(H^2) : \text{G is compact, and} \quad T^*_\varphi G = GT^*_\varphi \}$$

Remark. $\mathcal{K}_\varphi \neq (0)$.
If F is a bounded operator on H^2, we will write $\{F\}'$ for the commutant of F, the set of operators that commute with F, that is,

$$\{F\}' = \{G \in \mathcal{B}(H^2) : GF = FG\}.$$
If F is a bounded operator on H^2, we will write $\{F\}'$ for the commutant of F, the set of operators that commute with F, that is,

$$\{F\}' = \{G \in \mathcal{B}(H^2) : GF = FG\}.$$

For any operator F, the commutant $\{F\}'$ is a norm-closed subalgebra of $\mathcal{B}(H^2)$.
Theorem [2015, Cowen, GG] The set \mathcal{K}_ϕ is a closed subalgebra of $\{T_\phi^*\}'$ that is a two-sided ideal in $\{T_\phi^*\}'$. In particular, if G is a compact operator in \mathcal{K}_ϕ and g and h are bounded analytic functions on the disk, then T_g^*G, GT_h^*, and $T_g^*GT_h^*$ are all in \mathcal{K}_ϕ. Moreover, every operator in \mathcal{K}_ϕ is quasi-nilpotent.
Let A be a linear bounded operator on a Hilbert space and T a universal operator which commutes with a compact operator W.
Consequences, Further Observations, and a Question

Let A be a linear bounded operator on a Hilbert space and T a universal operator which commutes with a compact operator W.

- WLOG A is the restriction of T to M.
Consequences, Further Observations, and a Question

Let A be a linear bounded operator on a Hilbert space and T a universal operator which commutes with a compact operator W.

- WLOG A IS the restriction of T to M.
- WLOG $M \neq \mathcal{H}$ because if so, Lomonosov gives hyperinvariant subspace.
Consequences, Further Observations, and a Question

Let A be a linear bounded operator on a Hilbert space and T a universal operator which commutes with a compact operator W.

• WLOG A IS the restriction of T to M.
• WLOG $M \neq \mathcal{H}$ because if so, Lomonosov gives hyperinvariant subspace
• WLOG T and A are invertible: replace T by $T + (1 + \|T\|)I$
Consequences, Further Observations, and a Question

Let A be a linear bounded operator on a Hilbert space and T a universal operator which commutes with a compact operator W.

- **WLOG** A IS the restriction of T to M.
- **WLOG** $M \neq \mathcal{H}$ because if so, Lomonosov gives hyperinvariant subspace.
- **WLOG** T and A are invertible: replace T by $T + (1 + \|T\|)I$.
- $\mathcal{H} = M \oplus M^\perp$ and with respect to this decomposition

\[T \sim \begin{pmatrix} A & B \\ 0 & C \end{pmatrix} \quad \text{and} \quad W \sim \begin{pmatrix} P & Q \\ R & S \end{pmatrix} \]

where A, C are invertible and P, Q, R, S are compact.
Let A be a linear bounded operator on a Hilbert space and T a universal operator which commutes with a compact operator W.

- WLOG A is the restriction of T to M.
- WLOG $M \neq \mathcal{H}$ because if so, Lomonosov gives hyperinvariant subspace.
- WLOG T and A are invertible: replace T by $T + (1 + \|T\|)I$.
- $\mathcal{H} = M \oplus M^\perp$ and with respect to this decomposition

\[T \sim \begin{pmatrix} A & B \\ 0 & C \end{pmatrix} \quad \text{and} \quad W \sim \begin{pmatrix} P & Q \\ R & S \end{pmatrix} \]

where A, C are invertible and P, Q, R, S are compact.
- NOT $P = 0$ and $R = 0$ because $\text{kernel}(W) = (0)$.
Consequences, Further Observations, and a Question

- From the relation, $TW = WT$, it follows that

$$AP + BR = PA \quad \text{and} \quad CR = RA$$
Consequences, Further Observations, and a Question

- From the relation, $TW = WT$, it follows that

$$AP + BR = PA \quad \text{and} \quad CR = RA$$

Observation: Since A is the operator of primary interest, Equation

$$AP + BR = PA$$

is not so interesting if $P = 0$.
Lemma. If the universal operator $T = T^*$ and the compact operator $W = W^*_{\psi,J}$ have the representations

$$T \sim \begin{pmatrix} A & B \\ 0 & C \end{pmatrix} \quad \text{and} \quad W \sim \begin{pmatrix} P & Q \\ R & S \end{pmatrix}$$

respect $\mathcal{H} = M \oplus M^\perp$, then there are a universal operator \tilde{T} and an injective compact operator \tilde{W} with dense range that commute for which \tilde{P} in a replacement of P is not zero, that is, without loss of generality, we may assume $P \neq 0$.

Consequences, Further Observations, and a Question
Consequences, Further Observations, and a Question

Theorem [Cowen, GG] Let the universal operator T and the commuting injective compact operator W with dense range having the representations with $P \neq 0$. Then the following are true:

- Either $R \neq 0$ or A has a nontrivial hyperinvariant subspace.
- Either $\ker(R) = (0)$ or A has a nontrivial invariant subspace.
- Either $B \neq 0$ or A has a nontrivial hyperinvariant subspace.
Consequences, Further Observations, and a Question

- **Theorem [Cowen, GG]** Let the universal operator T and the commuting injective compact operator W with dense range having the representations with $P \neq 0$. Then the following are true:

 - Either $R \neq 0$ or A has a nontrivial hyperinvariant subspace.

 - Either $\ker(R) = (0)$ or A has a nontrivial invariant subspace.

 - Either $B \neq 0$ or A has a nontrivial hyperinvariant subspace.
Consequences, Further Observations, and a Question

- **Theorem [Cowen, GG]** Let the universal operator T and the commuting injective compact operator W with dense range having the representations with $P \neq 0$. Then the following are true:

 - Either $R \neq 0$ or A has a nontrivial hyperinvariant subspace.

 - Either $\ker(R) = (0)$ or A has a nontrivial invariant subspace.

 - Either $B \neq 0$ or A has a nontrivial hyperinvariant subspace.
Consequences, Further Observations, and a Question

- **Theorem [Cowen, GG]** Let the universal operator T and the commuting injective compact operator W with dense range having the representations with $P \neq 0$. Then the following are true:

 - Either $R \neq 0$ or A has a nontrivial hyperinvariant subspace.

 - Either $\ker(R) = (0)$ or A has a nontrivial invariant subspace.

 - Either $B \neq 0$ or A has a nontrivial hyperinvariant subspace.
Theorem [Cowen, GG] Suppose \(L \) is an invariant subspace for the universal operator \(T^*_\varphi \) and the block matrix

\[
\begin{pmatrix}
A & B \\
0 & C
\end{pmatrix}
\]

represents \(T^*_\varphi \) based on the splitting \(H^2 = M \oplus M^\perp \). Then, the projection of \(L^\perp \) onto \(M \) is an invariant linear manifold for \(A^* \), the adjoint of the restriction of \(T^*_\varphi \) to \(M \).
Consequences, Further Observations, and a Question

Theorem [Cowen, GG] Suppose L is an invariant subspace for the universal operator T^*_φ and the block matrix

$$
\begin{pmatrix}
A & B \\
0 & C
\end{pmatrix}
$$

represents T^*_φ based on the splitting $H^2 = M \oplus M^\perp$. Then, the projection of L^\perp onto M is an invariant linear manifold for A^*, the adjoint of the restriction of T^*_φ to M.
Theorem [Cowen, GG] Suppose L is an invariant subspace for the universal operator T^*_φ and the block matrix

\[
\begin{pmatrix}
A & B \\
0 & C
\end{pmatrix}
\]

represents T^*_φ based on the splitting $H^2 = M \oplus M^\perp$. Then, the projection of L^\perp onto M is an invariant linear manifold for A^*, the adjoint of the restriction of T^*_φ to M.

Remark.
Theorem [Cowen, GG] Suppose \(L \) is an invariant subspace for the universal operator \(T^*_\varphi \) and the block matrix

\[
\begin{pmatrix}
A & B \\
0 & C
\end{pmatrix}
\]

represents \(T^*_\varphi \) based on the splitting \(H^2 = M \oplus M^\perp \). Then, the projection of \(L^\perp \) onto \(M \) is an invariant linear manifold for \(A^* \), the adjoint of the restriction of \(T^*_\varphi \) to \(M \).

Remark. Any of the linear manifolds provided by this Theorem are proper and invariant but, in principle, they are not necessarily non-dense.
Consequences, Further Observations, and a Question

Question: Is any of those proper A^*-invariant linear manifolds non-dense?
Bibliography (basic)

Bibliography (basic)

