Narrow operators

Beata Randrianantoanina

Department of Mathematics
Miami University
Ohio, USA

The Problems and Recent Methods in Operator Theory
in Memory of Professor James E. Jamison
The University of Memphis
October 15-16, 2015
Definition

An function x is called a **sign on a set** A if x takes values in the set $\{-1, 0, 1\}$ and $\text{supp}x = A$.

x is a **sign of mean zero** if $\int_{\Omega} x \, d\mu = 0$.

Definition (Plichko, Popov, 1990)

Let E be a Köthe function space and X be a Banach space. An operator $T : E \rightarrow X$ is called **narrow** if for each set A with positive measure, and for each $\varepsilon > 0$ there exists a mean zero sign x on A such that

$$\|Tx\| < \varepsilon \|x\|.$$
Can we adapt the definition of narrowness to avoid using non-continuous functions?
Can we adapt the definition of narrowness to avoid using non-continuous functions?

Is it enough to require the existence of a function x in E with milder restrictions on its distribution than the requirement that x^2 is the characteristic function of a subset A?
Definition: For any measurable function x and $M > 0$ we define the M-truncation x^M of x as

$$x^M(t) = \begin{cases}
 x(t), & \text{if } |x(t)| \leq M, \\
 M \cdot \text{sign}(x(t)), & \text{if } |x(t)| > M.
\end{cases}$$
Definition: For any measurable function x and $M > 0$ we define the M-truncation x^M of x as

$$x^M(t) = \begin{cases} x(t), & \text{if } |x(t)| \leq M, \\ M \cdot \text{sign}(x(t)), & \text{if } |x(t)| > M. \end{cases}$$

Definition: Let $1 < p \leq 2$. A function $\varphi : (0, +\infty) \rightarrow [0, 1]$ is said to be p-gentle if φ is decreasing and

$$\lim_{M \to +\infty} M^{2-p} (\varphi(M))^p = 0.$$
Definition: For any measurable function x and $M > 0$ we define the M-truncation x^M of x as

$$x^M(t) = \begin{cases} x(t), & \text{if } |x(t)| \leq M, \\ M \cdot \text{sign}(x(t)), & \text{if } |x(t)| > M. \end{cases}$$

Definition: Let $1 < p \leq 2$. A function $\varphi : (0, +\infty) \to [0, 1]$ is said to be p-gentle if φ is decreasing and

$$\lim_{M \to +\infty} M^{2-p}(\varphi(M))^p = 0.$$

Definition: Let $1 < p \leq 2$, X a Banach space. An operator $T \in \mathcal{L}(L^p, X)$ is called gentle-narrow if there exists a p-gentle function $\varphi : (0, +\infty) \to [0, 1]$ such that $\forall \varepsilon > 0 \forall M > 0 \forall A \in \Sigma^+$ there exists $x \in L^p$ such that

(i) $x \neq 0$ and $\text{supp } x \subseteq A,$

(ii) $\|x - x^M\| \leq \varphi(M)\|x\|,$

(iii) $\|Tx\| \leq \varepsilon\|x\|.$
For example an operator $T \in \mathcal{L}(L_p, X)$, $1 < p \leq 2$, is gentle-narrow if $\forall A \in \Sigma \forall \varepsilon > 0$ there exists a mean zero gaussian random variable $x \in L_p(A)$ with distribution

$$d_x \overset{\text{def}}{=} \mu \{ x < a \} = \frac{\mu(A)}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^{a} e^{-\frac{t^2}{2\sigma^2}} dt,$$

such that $\|Tx\| < \varepsilon \|x\|$.
For example an operator $T \in \mathcal{L}(L_p, X)$, $1 < p \leq 2$, is gentle-narrow if $\forall A \in \Sigma \ \forall \varepsilon > 0$ there exists a mean zero gaussian random variable $x \in L_p(A)$ with distribution

$$d_x \overset{\text{def}}{=} \mu\{x < a\} = \frac{\mu(A)}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^{a} e^{-\frac{t^2}{2\sigma^2}} dt,$$

such that $\|Tx\| < \varepsilon \|x\|$.

(Use $\varphi(M) = C e^{-\frac{M^2}{2\sigma^2}}$, where C is a constant independent of M.)
For example an operator $T \in \mathcal{L}(L_p, X)$, $1 < p \leq 2$, is gentle-narrow if $\forall A \in \Sigma \ \forall \varepsilon > 0$ there exists a mean zero gaussian random variable $x \in L_p(A)$ with distribution

$$d_x \overset{\text{def}}{=} \mu\{x < a\} = \frac{\mu(A)}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^{a} e^{-\frac{t^2}{2\sigma^2}} \, dt,$$

such that $\|Tx\| < \varepsilon \|x\|$.

(Use $\varphi(M) = Ce^{-\frac{M^2}{2\sigma^2}}$, where C is a constant independent of M.)

Note that every narrow operator is gentle-narrow with

$$\varphi(M) = \begin{cases} 1 - M, & \text{if } 0 \leq M < 1, \\ 0, & \text{if } M \geq 1. \end{cases}$$
Theorem (Mykhaylyuk, Popov, BR, Schechtman, 2012)

Let $1 < p \leq 2$. Then an operator $T \in \mathcal{L}(L_p)$ is narrow if and only if it is gentle-narrow.
Theorem (Mykhaylyuk, Popov, BR, Schechtman, 2012)

Let \(1 < p \leq 2\). Then an operator \(T \in \mathcal{L}(L_p)\) is narrow if and only if it is gentle-narrow.

Definition: \(T \in \mathcal{L}(L_p, X)\) is gentle-narrow if there exists a \(p\)-gentle function \(\varphi\) such that \(\forall \varepsilon > 0 \ \forall M > 0 \ \forall A \in \Sigma^+ \ \exists x \in L_p\) such that

(i) \(x \neq 0\) and \(\text{supp } x \subseteq A\),
(ii) \(\|x - x^M\| \leq \varphi(M)\|x\|\),
(iii) \(\|Tx\| \leq \varepsilon\|x\|\).

Question: Is it possible to replace conditions (i)-(iii) with conditions which only use functions with full support?
Theorem (Mykhaylyuk, Popov, BR, Schechtman, 2012)

Let $1 < p \leq 2$. Then an operator $T \in \mathcal{L}(L_p)$ is narrow if and only if it is gentle-narrow.

Definition: $T \in \mathcal{L}(L_p, X)$ is gentle-narrow if there exists a p-gentle function φ such that $\forall \varepsilon > 0 \ \forall M > 0 \ \forall A \in \Sigma^+ \ \exists x \in L_p$ such that

(i) $x \neq 0$ and $\text{supp } x \subseteq A$,
(ii) $\|x - x^M\| \leq \varphi(M)\|x\|$,
(iii) $\|Tx\| \leq \varepsilon\|x\|$.

Question: Is it possible to replace conditions (i)-(iii) with conditions which only use functions with full support?

Question 2: Is it possible to find an analogous characterization for $p > 2$?
Theorem (Mykhaylyuk, Popov, BR, Schechtman, 2012)

Let $1 < p \leq 2$. Then an operator $T \in \mathcal{L}(L_p)$ is narrow if and only if it is gentle-narrow.

Definition: $T \in \mathcal{L}(L_p, X)$ is gentle-narrow if there exists a p-gentle function φ such that $\forall \varepsilon > 0 \; \forall M > 0 \; \forall A \in \Sigma^+ \; \exists x \in L_p$ such that

(i) $x \neq 0$ and supp $x \subseteq A$,

(ii) $\|x - x^M\| \leq \varphi(M)\|x\|$,

(iii) $\|T x\| \leq \varepsilon\|x\|$.

Question: Is it possible to replace conditions (i)-(iii) with conditions which only use functions with full support?

Question 2: Is it possible to find an analogous characterization for $p > 2$? (This could be harder.)
Compact operators are narrow.
Compact operators are narrow.

The sequence of Rademachers \((r_n)\) on set \(A\) is weakly null, so, for a compact operator \(T\), the set \(\{Tr_n : n \in \mathbb{N}\}\) is relatively compact and thus \(\|Tr_{n_k}\| \longrightarrow 0\).
Compact operators are narrow.

The sequence of Rademachers \((r_n)\) on set \(A\) is weakly null, so, for a compact operator \(T\), the set \(\{Tr_n : n \in \mathbb{N}\}\) is relatively compact and thus \(\|Tr_{n_k}\| \rightarrow 0\).

Converse does not hold
Not every narrow operator is compact
Not every narrow operator is compact

Consider the conditional expectation operator

\[M^F x = \sum_{i \in I} \left(\frac{1}{\mu(A_i)} \int_{A_i} x \, d\mu \right) \cdot \chi_{A_i} \]
Not every narrow operator is compact

Consider the conditional expectation operator

\[M^\mathcal{F} x = \sum_{i \in I} \left(\frac{1}{\mu(A_i)} \int_{A_i} x \, d\mu \right) \cdot \chi_{A_i} \]

If \(M^\mathcal{F} \) is well defined on \(E \) and bounded then it is narrow (it is easy to construct mean zero signs that are mapped to zero).
Not every narrow operator is compact

Consider the conditional expectation operator

\[M^\mathcal{F} x = \sum_{i \in I} \left(\frac{1}{\mu(A_i)} \int_{A_i} x \, d\mu \right) \cdot \chi_{A_i} \]

If \(M^\mathcal{F} \) is well defined on \(E \) and bounded then it is narrow (it is easy to construct mean zero signs that are mapped to zero).

If \(I \) is infinite, then \(M^\mathcal{F} \) is non-compact.
Not every narrow operator is compact

Consider the conditional expectation operator

$$M^F x = \sum_{i \in I} \left(\frac{1}{\mu(A_i)} \int_{A_i} x \, d\mu \right) \cdot \chi_{A_i}$$

If M^F is well defined on E and bounded then it is narrow (it is easy to construct mean zero signs that are mapped to zero).

If I is infinite, then M^F is non-compact.

For example, on L_p, M^F is a projection onto ℓ_p, so M^F is an isomorphism on an infinite dimensional subspace of L_p.
Why do we study narrow operators?

Ultimate answer for operators from $L_1[0, 1]$ to $L_1[0, 1]$.

Theorem (Rosenthal, 1984)

An operator $T : L_1 \rightarrow L_1$ is narrow if and only if, for each measurable set $A \subseteq [0, 1]$ the restriction $T|_{L_1(A)}$ is not an isomorphic embedding.
Why do we study narrow operators?

Ultimate answer for operators from $L_1[0, 1]$ to $L_1[0, 1]$.

Theorem (Rosenthal, 1984)

An operator $T : L_1 \to L_1$ is narrow if and only if, for each measurable set $A \subseteq [0, 1]$ the restriction $T|_{L_1(A)}$ is not an isomorphic embedding.

Let me rephrase this:

Theorem (Rosenthal, 1984)

For an operator $T : L_1 \to L_1$ TFAE:

(i) T is non-narrow,

(ii) there exists a set $A \subseteq [0, 1]$ of positive measure so that the restriction $T|_{L_1(A)}$ is an isomorphic embedding,
Why do we study narrow operators?

Ultimate answer for operators from $L_1[0,1]$ to $L_1[0,1]$.

Theorem (Rosenthal, 1984)

An operator $T : L_1 \rightarrow L_1$ is narrow if and only if, for each measurable set $A \subseteq [0,1]$ the restriction $T \big|_{L_1(A)}$ is not an isomorphic embedding.

Let me rephrase this:

Theorem (Rosenthal, 1984)

For an operator $T : L_1 \rightarrow L_1$ TFAE:

(i) T is non-narrow,
(ii) there exists a set $A \subseteq [0,1]$ of positive measure so that the restriction $T \big|_{L_1(A)}$ is an isomorphic embedding,

Proof:
Why do we study narrow operators?

Ultimate answer for operators from $L_1[0, 1]$ to $L_1[0, 1]$.

Theorem (Rosenthal, 1984)

An operator $T : L_1 \rightarrow L_1$ is narrow if and only if, for each measurable set $A \subseteq [0, 1]$ the restriction $T \big|_{L_1(A)}$ is not an isomorphic embedding.

Let me rephrase this:

Theorem (Rosenthal, 1984)

For an operator $T : L_1 \rightarrow L_1$ TFAE:

(i) T is non-narrow,

(ii) there exists a set $A \subseteq [0, 1]$ of positive measure so that the restriction $T \big|_{L_1(A)}$ is an isomorphic embedding,

Proof: (ii) \implies (i) Clear.
Why do we study narrow operators?

Ultimate answer for operators from $L_1[0, 1]$ to $L_1[0, 1]$.

Theorem (Rosenthal, 1984)

An operator $T : L_1 \to L_1$ is narrow if and only if, for each measurable set $A \subseteq [0, 1]$ the restriction $T|_{L_1(A)}$ is not an isomorphic embedding.

Let me rephrase this:

Theorem (Rosenthal, 1984)

For an operator $T : L_1 \to L_1$ TFAE:

(i) T is non-narrow,

(ii) there exists a set $A \subseteq [0, 1]$ of positive measure so that the restriction $T|_{L_1(A)}$ is an isomorphic embedding,

Proof: (ii) \implies (i) Clear. (i) \implies (ii) Homework.
BIG QUESTION:
Does Rosenthal’s theorem hold in other spaces besides L_1?
BIG QUESTION:
Does Rosenthal’s theorem hold in other spaces besides L_1?

This question is open.
BIG QUESTION:
Does Rosenthal’s theorem hold in other spaces besides L_1?

This question is open. However we do know that Rosenthal’s Theorem does not generalize to spaces $L_p[0, 1]$ when $2 < p < \infty$.

Example

Let $2 < p < \infty$ and

$$T = S \circ J,$$

where $J : L_p \to L_2$ is the formal identity embedding, and $S : L_2 \to L_p$ is an isomorphic embedding.

Then T is not narrow, and for all $A \subseteq [0, 1]$, $T|_{L_p(A)}$ is not an isomorphism.
Open Problem

Is Rosenthal’s Theorem true in L_p, for $1 < p \leq 2$?
Open Problem

Is Rosenthal’s Theorem true in L_p, for $1 < p \leq 2$?

Theorem (Johnson, Maurey, Schechtman, Tzafriri, 1979;
Open Problem

Is Rosenthal’s Theorem true in L_p, for $1 < p \leq 2$?

Theorem (Johnson, Maurey, Schechtman, Tzafriri, 1979; noticed by Bourgain in 1981;
Open Problem

Is Rosenthal’s Theorem true in L_p, for $1 < p \leq 2$?

Theorem (Johnson, Maurey, Schechtman, Tzafriri, 1979; noticed by Bourgain in 1981; recent proof of the full strength of the statement in Dosev, Johnson, Schechtman, 2011; see also book by Popov, BR 2013)
Open Problem

Is Rosenthal’s Theorem true in L_p, for $1 < p \leq 2$?

Theorem (Johnson, Maurey, Schechtman, Tzafriri, 1979; noticed by Bourgain in 1981; recent proof of the full strength of the statement in Dosev, Johnson, Schechtman, 2011, see also book by Popov, BR 2013)

For all $1 < p < 2$, there exists a constant $K_p \in \mathbb{R}$ so that for every non-narrow operator $T : L_p \rightarrow L_p$, there exists a subspace $Z \subset L_p$ isomorphic to L_p, so that $T|_Z$ is an isomorphism on Z.
Open Problem

Is Rosenthal’s Theorem true in L_p, for $1 < p \leq 2$?

Theorem (Johnson, Maurey, Schechtman, Tzafriri, 1979; noticed by Bourgain in 1981; recent proof of the full strength of the statement in Dosev, Johnson, Schechtman, 2011, see also book by Popov, BR 2013)

For all $1 < p < 2$, there exists a constant $K_p \in \mathbb{R}$ so that for every non-narrow operator $T : L_p \rightarrow L_p$, there exists a subspace $Z \subset L_p$ isomorphic to L_p, so that $T|_Z$ is an isomorphism on Z.

Moreover, Z is K_p-complemented in L_p, X is K_p-isomorphic to L_p, $T|_Z$ is a K_p-isomorphism, and $T(Z)$ is K_p-complemented in L_p.
Open Problem

Is Rosenthal’s Theorem true in L_p, for $1 < p \leq 2$?

Theorem (Johnson, Maurey, Schechtman, Tzafriri, 1979; noticed by Bourgain in 1981; recent proof of the full strength of the statement in Dosev, Johnson, Schechtman, 2011, see also book by Popov, BR 2013)

For all $1 < p < 2$, there exists a constant $K_p \in \mathbb{R}$ so that for every non-narrow operator $T : L_p \to L_p$, there exists a subspace $Z \subset L_p$ isomorphic to L_p, so that $T|_Z$ is an isomorphism on Z.

Moreover, Z is K_p-complemented in L_p, X is K_p-isomorphic to L_p, $T|_Z$ is a K_p-isomorphism, and $T(Z)$ is K_p-complemented in L_p, but we don’t know if Z can be equal to $L_p(A)$, for some $A \subset [0, 1]$.
Open Problem

Is Rosenthal’s Theorem true in L_p, for $1 < p \leq 2$?

Theorem (Johnson, Maurey, Schechtman, Tzafriri, 1979; noticed by Bourgain in 1981; recent proof of the full strength of the statement in Dosev, Johnson, Schechtman, 2011, see also book by Popov, BR 2013)

For all $1 < p < 2$, there exists a constant $K_p \in \mathbb{R}$ so that for every non-narrow operator $T : L_p \to L_p$, there exists a subspace $Z \subset L_p$ isomorphic to L_p, so that $T|_Z$ is an isomorphism on Z.

Moreover, Z is K_p-complemented in L_p, X is K_p-isomorphic to L_p, $T|_Z$ is a K_p-isomorphism, and $T(Z)$ is K_p-complemented in L_p, but we don’t know if Z can be equal to $L_p(A)$, for some $A \subset [0, 1]$, or if $K_p = 1$.
Natural question

Since we can’t resolve the BIG QUESTION that I stated above we consider the following natural question arising from it.
Natural question

Since we can’t resolve the BIG QUESTION that I stated above we consider the following natural question arising from it.

Problem

Let E be a function space, X a Banach space, and suppose that $T \in \mathcal{L}(E, X)$ is non-narrow. Does this imply that there exists an infinite dimensional nice subspace $Z \subseteq E$ so that $T|_Z$ is an isomorphism onto $T(Z)$?
Since we can’t resolve the BIG QUESTION that I stated above we consider the following natural question arising from it.

Problem

Let E be a function space, X a Banach space, and suppose that $T \in \mathcal{L}(E,X)$ is non-narrow. Does this imply that there exists an infinite dimensional nice subspace $Z \subseteq E$ so that $T|_Z$ is an isomorphism onto $T(Z)$?

What does it mean nice?
Natural question

Since we can’t resolve the BIG QUESTION that I stated above we consider the following natural question arising from it.

Problem

Let E be a function space, X a Banach space, and suppose that $T \in \mathcal{L}(E, X)$ is non-narrow. Does this imply that there exists an infinite dimensional nice subspace $Z \subseteq E$ so that $T|_Z$ is an isomorphism onto $T(Z)$?

What does it mean nice?

Well, it depends who (and when) you ask.
Natural question

Since we can’t resolve the BIG QUESTION that I stated above we consider the following natural question arising from it.

Problem

Let E be a function space, X a Banach space, and suppose that $T \in \mathcal{L}(E, X)$ is non-narrow. Does this imply that there exists an infinite dimensional nice subspace $Z \subseteq E$ so that $T|_Z$ is an isomorphism onto $T(Z)$?

What does it mean nice?
Well, it depends who (and when) you ask.
Sometimes we are happy just to get any infinite dimensional subspace.
Natural question

Since we can’t resolve the BIG QUESTION that I stated above we consider the following natural question arising from it.

Problem

Let E be a function space, X a Banach space, and suppose that $T \in \mathcal{L}(E, X)$ is non-narrow. Does this imply that there exists an infinite dimensional nice subspace $Z \subseteq E$ so that $T|_Z$ is an isomorphism onto $T(Z)$?

What does it mean nice?

Well, it depends who (and when) you ask.

Sometimes we are happy just to get any infinite dimensional subspace.

Sometimes it may mean that Z is isomorphic to E
Natural question

Since we can’t resolve the BIG QUESTION that I stated above we consider the following natural question arising from it.

Problem

Let E be a function space, X a Banach space, and suppose that $T \in \mathcal{L}(E, X)$ is non-narrow. Does this imply that there exists an infinite dimensional nice subspace $Z \subseteq E$ so that $T|_Z$ is an isomorphism onto $T(Z)$?

What does it mean nice?

Well, it depends who (and when) you ask.

Sometimes we are happy just to get any infinite dimensional subspace.

Sometimes it may mean that Z is isomorphic to E, or to responder’s favorite space.
Natural question

Since we can’t resolve the BIG QUESTION that I stated above we consider the following natural question arising from it.

Problem

Let E be a function space, X a Banach space, and suppose that $T \in \mathcal{L}(E, X)$ is non-narrow. Does this imply that there exists an infinite dimensional nice subspace $Z \subseteq E$ so that $T|_Z$ is an isomorphism onto $T(Z)$?

What does it mean nice?

Well, it depends who (and when) you ask.

Sometimes we are happy just to get any infinite dimensional subspace.

Sometimes it may mean that Z is isomorphic to E, or to responder’s favorite space, or to Hilbert space...*
Natural question

Since we can’t resolve the BIG QUESTION that I stated above we consider the following natural question arising from it.

Problem

Let E be a function space, X a Banach space, and suppose that $T \in \mathcal{L}(E, X)$ is non-narrow. Does this imply that there exists an infinite dimensional nice subspace $Z \subseteq E$ so that $T\big|_Z$ is an isomorphism onto $T(Z)$?

What does it mean nice?

Well, it depends who (and when) you ask.

Sometimes we are happy just to get any infinite dimensional subspace.

Sometimes it may mean that Z is isomorphic to E, or to responder’s favorite space, or to Hilbert space, or...
Definition of strictly singular operators

Definition

Let E be a function space, Z a subspace of E, X a Banach space and $T \in \mathcal{L}(E, X)$. We say that

- T fixes a copy of Z if there exists a subspace $Z_1 \subseteq E$ so that Z_1 is isomorphic to Z, and $T|_{Z_1}$ is an isomorphism onto $T(Z_1)$,
Definition of strictly singular operators

Let E be a function space, Z a subspace of E, X a Banach space and $T \in \mathcal{L}(E, X)$. We say that

- T fixes a copy of Z if there exists a subspace $Z_1 \subseteq E$ so that Z_1 is isomorphic to Z, and $T|_{Z_1}$ is an isomorphism onto $T(Z_1)$,

- T is Z-strictly singular if T does not fix Z.
Definition of strictly singular operators

Let E be a function space, Z a subspace of E, X a Banach space and $T \in \mathcal{L}(E, X)$. We say that

- T fixes a copy of Z if there exists a subspace $Z_1 \subseteq E$ so that Z_1 is isomorphic to Z, and $T|_{Z_1}$ is an isomorphism onto $T(Z_1)$,
- T is Z-strictly singular if T does not fix Z,
- T is strictly singular if for every infinite dimensional subspace W of E, $T|_W$ is not an isomorphism.
Thus our natural question:
Suppose that $T \in \mathcal{L}(E, X)$ is non-narrow. Does this imply that there exists an infinite dimensional nice subspace $Z \subseteq E$ so that $T|_Z$ is an isomorphism onto $T(Z)$?

can be phrased as:
Thus our natural question:
Suppose that $T \in \mathcal{L}(E, X)$ is non-narrow. Does this imply that there exists an infinite dimensional nice subspace $Z \subseteq E$ so that $T|_Z$ is an isomorphism onto $T(Z)$?

can be phrased as:

Problem
- Is every strictly singular operator $T : E \to X$ narrow?
- Is every E-strictly singular operator $T : E \to X$ narrow?
- Is every ℓ_2-strictly singular operator $T : E \to X$ narrow?
- Is every ℓ_p-strictly singular operator $T : E \to X$ narrow?

[Plichko, Popov 1990]
Some known answers
Some known answers

Theorem (Johnson, Maurey, Schechtman, Tzafriri, 1979)

Let $1 < p < 2$ and $T : L_p \rightarrow L_p$. If T is L_p-strictly singular, then T is narrow.

Theorem (Bourgain, Rosenthal, 1983)

Let $T : L_1 \rightarrow X$. If T is ℓ_1-strictly singular, then T is narrow.

Theorem (Rosenthal, 1984)

Let $T : L_1 \rightarrow L_1$. If T is L_1-strictly singular, then T is narrow.
Theorem (Flores, Ruiz, 2003)

Every regular ℓ_2-strictly singular operator T from L_p, $1 \leq p < \infty$, to an order continuous Banach lattice is narrow.

Theorem (book of Popov, BR, 2013)

Every regular ℓ_2-strictly singular operator T from any q-concave Banach lattice, $1 \leq q < \infty$, to an order continuous Banach lattice is narrow.

Recall that an operator between Banach lattices is called regular if it is a difference of two positive operators (i.e. operators which map positive elements to positive elements).
Theorem (Flores, Ruiz, 2003)

Every regular ℓ_2-strictly singular operator T from L_p, $1 \leq p < \infty$, to an order continuous Banach lattice is narrow.

Theorem (book of Popov, BR, 2013)

Every regular ℓ_2-strictly singular operator T from any q-concave Banach lattice, $1 \leq q < \infty$, to an order continuous Banach lattice is narrow.

Recall that an operator between Banach lattices is called **regular** if it is a difference of two positive operators (i.e. operators which map positive elements to positive elements).

Theorem (Mykhaylyuk, Popov, BR, Schechtman, 2012)

Every ℓ_2-strictly singular operator T from L_p, $1 < p < \infty$, to any Banach space with an unconditional basis is narrow.
There are very many open problems remaining in this vein.
Additional open problems

• For a space E of functions, possibly other than a Köthe function space, identify a “small” subclass of functions, such that if an operator $T \in \mathcal{L}(E)$ is not arbitrarily small on functions from the subclass, then there exists an infinite dimensional subspace F of E, so that $T|_F$ is an isomorphism.

Additional open problems

- For a space E of functions, possibly other than a Köthe function space, identify a “small” subclass of functions, such that if an operator $T \in \mathcal{L}(E)$ is not arbitrarily small on functions from the subclass, then there exists an infinite dimensional subspace F of E, so that $T|_{F}$ is an isomorphism.

- Identify additional properties characterizing narrow operators.
Additional open problems

- For a space E of functions, possibly other than a Köthe function space, identify a “small” subclass of functions, such that if an operator $T \in \mathcal{L}(E)$ is not arbitrarily small on functions from the subclass, then there exists a infinite dimensional subspace F of E, so that $T|_F$ is an isomorphism.

- Identify additional properties characterizing narrow operators.

Theorem: $T \in \mathcal{L}(L_1)$ is narrow iff

$$\lim_{n \to \infty} \| \max_{1 \leq k \leq 2^n} |T \chi_{I_n^k}|_1 = 0,$$

where I_n^k are dyadic intervals.
• Study additional properties of the set of narrow operators.
• Study additional properties of the set of narrow operators. Some properties are known, and are usually bad, e.g. the set of narrow operators usually is not an ideal, or a subspace,
• Study additional properties of the set of narrow operators. Some properties are known, and are usually bad, e.g. the set of narrow operators usually is not an ideal, or a subspace, the spectrum of a narrow operator can be any compact set containing 0.

● Study additional properties of the set of narrow operators. Some properties are known, and are usually bad, e.g. the set of narrow operators usually is not an ideal, or a subspace, the spectrum of a narrow operator can be any compact set containing 0.

Questions:
Does every narrow operator have an invariant subspace?
• Study additional properties of the set of narrow operators. Some properties are known, and are usually bad, e.g. the set of narrow operators usually is not an ideal, or a subspace, the spectrum of a narrow operator can be any compact set containing 0.

Questions:
Does every narrow operator have an invariant subspace?
Can numerical index of L_p be approximated by numerical radii of narrow operators?
Study additional properties of the set of narrow operators. Some properties are known, and are usually bad, e.g. the set of narrow operators usually is not an ideal, or a subspace, the spectrum of a narrow operator can be any compact set containing 0.

Questions:
Does every narrow operator have an invariant subspace?
Can numerical index of L_p be approximated by numerical radii of narrow operators?
Are polynomials on function spaces narrow? (yes, for 2-homogenous polynomials on L_p, $1 \leq p < 2$)
• Study additional properties of the set of narrow operators. Some properties are known, and are usually bad, e.g. the set of narrow operators usually is not an ideal, or a subspace, the spectrum of a narrow operator can be any compact set containing 0.

Questions:
Does every narrow operator have an invariant subspace? Can numerical index of L_p be approximated by numerical radii of narrow operators? Are polynomials on function spaces narrow? (yes, for 2-homogenous polynomials on L_p, $1 \leq p < 2$)

Proof techniques

Theorem (Mykhaylyuk, Popov, BR, Schechtman, 2012)

Every ℓ_2-strictly singular operator T from L_p, $1 < p < \infty$, to a Banach space X with an unconditional basis is narrow.

Recall: A Schauder basis $(b_n)_n$ is unconditional if whenever the series $\sum \alpha_n b_n$ converges, it converges unconditionally, that is if there exists a constant C such that for all n and $\varepsilon_k = \pm 1$,

$$\left\| \sum_{k=0}^{n} \varepsilon_k \alpha_k b_k \right\| \leq C \left\| \sum_{k=0}^{n} \alpha_k b_k \right\|$$
We claim that, given an operator with domain L_p which sends some functions to vectors of small norm, there exist also signs which are sent by T to vectors of relatively small norm.

Our proof shows how to build such signs out of given functions.
We claim that, given an operator with domain L_p which sends some functions to vectors of small norm, there exist also signs which are sent by T to vectors of relatively small norm.

Our proof shows how to build such signs out of given functions.

We use two methods.

geometric we use fine estimates on L_p norms of functions of special type,
Philosophy

We claim that, given an operator with domain L_p which sends some functions to vectors of small norm, there exist also signs which are sent by T to vectors of relatively small norm.

Our proof shows how to build such signs out of given functions.

We use two methods.

geometric we use fine estimates on L_p norms of functions of special type,

probabilistic we use the martingale structure of the partial sums of the Haar system, stopping times and the central limit theorem.

A similar idea originated in V. Kadets and Schechtman (1992) and was also used in V. Kadets, Kalton and Werner (2005).
Reduction of the form of the operator

Let h_n denote the Haar basis in L_p.

Proposition

Suppose $1 \leq p < \infty$, X is a Banach space with a basis (x_n), $T : L_p \rightarrow X$ so that

$$\|Tx\| \geq 2\delta$$

for each mean zero sign $x \in L_p$ on $[0, 1]$ and some $\delta > 0$. Then for each $\varepsilon > 0$ there exist an operator $S : L_p \rightarrow X$, a normalized block basis (u_n) of (x_n) and numbers (a_n) so that

1. $Sh_n = a_n u_n$ for each $n \in \mathbb{N}$ with $a_1 = 0$;
2. $\|Sx\| \geq \delta$, for each mean zero sign $x \in L_p$ on $[0, 1]$;
3. S is ℓ_2-strictly singular, if T is ℓ_2-strictly singular.
Construction - Probabilistic technique

S is ℓ_2-strictly singular, so, since Rademachers span an ℓ_2, $\forall \varepsilon > 0 \ \forall C > 0 \ \exists f$ of the form

$$f = \sum_{m=1}^{N} b_m r_m,$$

so that

$$\|f\|_p = 1, \ \|Sf\|_X < \frac{\delta}{2C},$$

and

$$\max_{m \leq N} |b_m| \leq \frac{\varepsilon}{C}.$$
Flattening of f

Fix an $M \in \mathbb{N}$, pick disjoint $\sigma_k \subset \mathbb{N}$ each of size M, and put

$$f_k = M^{-1/2} \sum_{n \in \sigma_k} r_n$$

The sequence $\{f_k\}$ is equivalent to an orthonormal basis so the subspace H spanned by the f_k-s is isomorphic to a Hilbert space and so an f with $\|Sf\| < \frac{\delta}{2C}$ can be chosen as

$$f = \sum_{k=1}^{K} a_k f_k.$$

Since $\|f\| = 1$, the a_k are uniformly bounded, and if M is large enough then the coefficients of f with respect to the Rademacher system, a_k / \sqrt{M} are smaller than ε.
"Stopping time"-like technique

If f were a sign we would be done, since $\|Sf\| < \frac{\delta}{2C}$ would give a contradiction with $\|Sx\| < \delta$ for all signs.
"Stopping time"-like technique

If f were a sign we would be done, since $\|Sf\| \leq \frac{\delta}{2C}$ would give a contradiction with $\|Sx\| < \delta$ for all signs.

If f is not a sign, for each $\omega \in [0, 1]$, we start adding the individual summands forming $Cf(\omega)$, namely $Cb_kh_k(\omega)$, one by one stopping whenever we leave the interval $[-1, 1]$.
"Stopping time"-like technique

If \(f \) were a sign we would be done, since \(\| Sf \| < \frac{\delta}{2C} \) would give a contradiction with \(\| Sx \| < \delta \) for all signs.

If \(f \) is not a sign, for each \(\omega \in [0, 1] \), we start adding the individual summands forming \(C f(\omega) \), namely \(C b_k h_k(\omega) \), one by one stopping whenever we leave the interval \([-1, 1] \).

If \(\varepsilon \) is small enough, we do leave this interval for the vast majority of the \(\omega \)-s (by the Central Limit Theorem).
"Stopping time"-like technique

If \(f \) were a sign we would be done, since \(\| Sf \| < \frac{\delta}{2C} \) would give a contradiction with \(\| Sx \| < \delta \) for all signs.

If \(f \) is not a sign, for each \(\omega \in [0, 1] \), we start adding the individual summands forming \(Cf(\omega) \), namely \(Cb_k h_k(\omega) \), one by one stopping whenever we leave the interval \([-1, 1]\). If \(\varepsilon \) is small enough, we do leave this interval for the vast majority of the \(\omega \)-s (by the Central Limit Theorem).

Whenever we leave the interval, since we just stopped the summation and each \(C|b_k| < \varepsilon \), we get that the absolute value of the stopped sum is 1, to within an error of \(\varepsilon \).

We thus got a function \(g \) which is almost a sign.
"Stopping time"-like technique

If f were a sign, we would be done, since $\|Sf\| < \frac{\delta}{2C}$ would give a contradiction with $\|Sx\| < \delta$ for all signs.
If f is not a sign, for each $\omega \in [0, 1]$, we start adding the individual summands forming $Cf(\omega)$, namely $Cb_k h_k(\omega)$, one by one stopping whenever we leave the interval $[-1, 1]$.
If ε is small enough, we do leave this interval for the vast majority of the ω-s (by the Central Limit Theorem).
Whenever we leave the interval, since we just stopped the summation and each $C|b_k| < \varepsilon$, we get that the absolute value of the stopped sum is 1, to within an error of ε.
We thus got a function g which is almost a sign.
Since $Sh_n = a_n u_n$, where u_n form an unconditional basis,

$$\|Sg\| \leq C\|Sf\| \leq \frac{\delta}{2},$$

and there is a sign \tilde{g} close to g, with $\|S\tilde{g}\| < \delta$. **Contradiction**
Let h_{2^n+i} be L_∞ normalized Haar functions, and

$$A = \left\{ \omega \in [0, 1] : \max_{1 \leq 2^m + k \leq 2^{N+1}} \left| C \sum_{2^n+i=2}^{2^m+k} b_n h_{2^n+i}(\omega) \right| > 1 \right\},$$
Let \bar{h}_{2^n+i} be L_∞ normalized Haar functions, and

$$A = \left\{ \omega \in [0, 1] : \max_{1 \leq 2^m+k \leq 2^{N+1}} \left| C \sum_{2^n+i=2}^{2^m+k} b_n \bar{h}_{2^n+i}(\omega) \right| > 1 \right\},$$

Note that as $\varepsilon \downarrow 0$, by the Central Limit Theorem, f converges to a Gaussian random variable so, if ε is small enough (independently of C),

$$\mu([0, 1] \setminus A) \leq \mu\left\{ \omega : \left| \sum_{n=1}^{N} \sum_{i=1}^{2^n} b_n \bar{h}_{2^n+i}(\omega) \right| \leq \frac{1}{C} \right\} \approx \frac{1}{\sqrt{2\pi}} \int_{-\frac{1}{C}}^{\frac{1}{C}} e^{-\frac{\omega^2}{2}} d\omega \leq \frac{1}{2C}.$$
We define
\[\tau(\omega) = \begin{cases} \min \left\{ 2^m + k \leq 2^{N+1} : \left| C \sum_{2^n+i=2}^{2^{m+k}} b_n h_{2n+i}(\omega) \right| > 1 \right\}, & \text{if } \omega \in A \\ 2^N + k, & \text{if } \omega \not\in A \text{ and } \omega \in l^k_N, \end{cases} \]
We define

\[\tau(\omega) = \begin{cases}
\min \left\{ 2^m + k \leq 2^{N+1} : \left| C \sum_{2^n+i=2}^{2^m+k} b_n h_{2^n+i}(\omega) \right| > 1 \right\}, & \text{if } \omega \in A \\
2^N + k, & \text{if } \omega \notin A \text{ and } \omega \in I_N^k,
\end{cases} \]

and

\[g(\omega) = C \sum_{2^m+k \leq \tau(\omega)} b_m h_{2^m+k}(\omega). \]
We define

\[
\tau(\omega) = \begin{cases}
\min \left\{ 2^m + k \leq 2^{N+1} : \left| C \sum_{2^n+i=2}^{2^m+k} b_n \bar{h}_{2^m+k}(\omega) \right| > 1 \right\}, & \text{if } \omega \in A \\
2^N + k, & \text{if } \omega \notin A \text{ and } \omega \in l_N^k,
\end{cases}
\]

and

\[g(\omega) = C \sum_{2^m+k \leq \tau(\omega)} b_m \bar{h}_{2^m+k}(\omega).\]

For every \(\omega \in A\),

\[1 < |g(\omega)| < 1 + C\varepsilon.\]
We define
\[
\tau(\omega) = \begin{cases}
\min \left\{ 2^m + k \leq 2^{N+1} : \left| C \sum_{2^n+i=2}^{2^{m+k}} b_n h_{2^{n+i}}(\omega) \right| > 1 \right\}, & \text{if } \omega \in A \\
2^N + k, & \text{if } \omega \not\in A \text{ and } \omega \in I_N^k,
\end{cases}
\]
and
\[
g(\omega) = C \sum_{2^m+k \leq \tau(\omega)} b_m h_{2^m+k}(\omega).
\]
For every \(\omega \in A \),
\[
1 < |g(\omega)| < 1 + C\varepsilon.
\]
Since \(S \) sends the Haar functions to functions with disjoint support with respect to the basis \(\{ x_i \} \), by the 1-unconditionality of this basis we get
\[
\| Sg \|_X \leq C \| Sf \|_X < \frac{\delta}{2}.
\]
Let \([0, 1] \setminus A = A_1 \sqcup A_2\), where \(\mu(A_1) = \mu(A_2)\), and define

\[
\tilde{g}(\omega) = \begin{cases}
\text{sgn}(g(\omega)) & \text{if } \omega \in A \\
1 & \text{if } \omega \in A_1 \\
-1 & \text{if } \omega \in A_2.
\end{cases}
\]
Let \([0, 1] \setminus A = A_1 \sqcup A_2\), where \(\mu(A_1) = \mu(A_2)\), and define

\[
\tilde{g}(\omega) = \begin{cases}
\text{sgn}(g(\omega)) & \text{if } \omega \in A \\
1 & \text{if } \omega \in A_1 \\
-1 & \text{if } \omega \in A_2.
\end{cases}
\]

Then \(\tilde{g}\) is a mean zero sign on \([0, 1]\) and

\[
\|g - \tilde{g}\|_p \leq C\varepsilon + \left(1 + \frac{1}{C}\right)\left(\frac{1}{2C}\right)^{1/p},
\]

\(C > 0\) and \(\varepsilon\) so that \(\|S\tilde{g}\|_X < \delta\), which contradicts our assumption about \(S\) and hence \(T\).
Let $[0, 1] \setminus A = A_1 \sqcup A_2$, where $\mu(A_1) = \mu(A_2)$, and define

$$
\tilde{g}(\omega) = \begin{cases}
\text{sgn}(g(\omega)) & \text{if } \omega \in A \\
1 & \text{if } \omega \in A_1 \\
-1 & \text{if } \omega \in A_2.
\end{cases}
$$

Then \tilde{g} is a mean zero sign on $[0, 1]$ and

$$
\|g - \tilde{g}\|_p \leq C\varepsilon + \left(1 + \frac{1}{C}\right)\left(\frac{1}{2C}\right)^{1/p},
$$

$$
\|S(\tilde{g})\|_X \leq \|S(g)\|_X + \|S\|\|g - \tilde{g}\|_p \leq \frac{\delta}{2} + 2\|T\|\left(C\varepsilon + \left(1 + \frac{1}{C}\right)\left(\frac{1}{2C}\right)^{1/p}\right).
$$
Let $[0, 1] \setminus A = A_1 \sqcup A_2$, where $\mu(A_1) = \mu(A_2)$, and define

\[
\tilde{g}(\omega) = \begin{cases}
 \text{sgn}(g(\omega)) & \text{if } \omega \in A \\
 1 & \text{if } \omega \in A_1 \\
 -1 & \text{if } \omega \in A_2.
\end{cases}
\]

Then \tilde{g} is a mean zero sign on $[0, 1]$ and

\[
\|g - \tilde{g}\|_p \leq C \varepsilon + \left(1 + \frac{1}{C}\right)\left(\frac{1}{2C}\right)^{1/p},
\]

\[
\|S(\tilde{g})\|_X \leq \|S(g)\|_X + \|S\|\|g - \tilde{g}\|_p \\
\leq \frac{\delta}{2} + 2\|T\|\left(C \varepsilon + \left(1 + \frac{1}{C}\right)\left(\frac{1}{2C}\right)^{1/p}\right).
\]

Hence there exist $C > 0$ and ε so that

\[
\|S\tilde{g}\|_X < \delta,
\]

which contradicts our assumption about S and hence T. \hfill \Box
Theorem (Bourgain, Rosenthal, 1983)

Let $T : L_1 \rightarrow X$. If T is ℓ_1-strictly singular, then T is narrow.
Proof techniques II

Theorem (Bourgain, Rosenthal, 1983)

Let $T : L_1 	o X$. If T is ℓ_1-strictly singular, then T is narrow.

The main tool is a Ramsey-type result
Lemma

Let S be any set, $0 < a < b < 1$, and $(f_n)_n$ be a sequence of functions on S uniformly bounded by 1. For all $n \in \mathbb{N}$, let

$$A_n = \{ s \in S : |f_n(s)| > b \}, \quad B_n = \{ s \in S : |f_n(s)| < a \}.$$

If for all finite disjoint subsets I, J of \mathbb{N}

$$\bigcap_{i \in I} A_i \cap \bigcap_{j \in J} B_j \neq \emptyset,$$

then there exists a subsequence $(f_{n_k})_k \subseteq (f_n)_n$ so that

$$\forall m \in \mathbb{N} \ \forall scalars \ (c_k)_{k=1}^m$$

$$\sup_{s \in S} \left| \sum_{k=1}^{m} c_k f_{n_k}(s) \right| \geq \frac{b - a}{2} \sum_{k=1}^{m} |c_k|$$
Lemma

Let S be any set, $0 < a < b < 1$, and $(f_n)_n$ be a sequence of functions on S uniformly bounded by 1. For all $n \in \mathbb{N}$, let

$$A_n = \{ s \in S : |f_n(s)| > b \}, \quad B_n = \{ s \in S : |f_n(s)| < a \}.$$

If for all finite disjoint subsets I, J of \mathbb{N}

$$\bigcap_{i \in I} A_i \cap \bigcap_{j \in J} B_j \neq \emptyset,$$

then there exists a subsequence $(f_{n_k})_k \subseteq (f_n)_n$ so that

$$\forall m \in \mathbb{N} \forall \text{scalars } (c_k)_{k=1}^m$$

$$\sup_{s \in S} \left| \sum_{k=1}^m c_k f_{n_k}(s) \right| \geq \frac{b-a}{2} \sum_{k=1}^m |c_k| = \frac{b-a}{2} \| (c_k)_{k=1}^m \|_1.$$
The lemma is related to a lemma from

see also