Generalized Bicircular Projections on $H^p(U^n)$

Raena King
Christian Brothers University
Memphis, TN
rking2@cbu.edu

Abstract
A generalized bicircular projection is a projection P such that $P + \lambda(I - P)$ is an isometry for some real $\lambda \neq 1$ with $|\lambda| = 1$. Generalized bicircular projections are of interest because they have been shown to be bi-contractive. The form of the isometries on $H^p(U^n)$ were found by Schneider. We use the form of the the isometries to determine the generalized bicircular projections on the space $H^p(U^n)$.

Introduction
A linear projection P on a Banach space is said to be bi-circular if $P + \lambda(I - P)$ is an isometry for all real λ. Rather than being an isometry for all real λ, a generalized bicircular projection (GBP) [4], is given by $P + \lambda(I - P)$ is an isometry for some $\lambda \in T \setminus \{1\}$, where T is the unit circle in C. These projections are now referred to as generalized bi-circular projections. Botelho and Jamison [2, 3] and Lin [5] have studied generalized bi-circular projections in various settings. Projections provide information about geometric properties of spaces. Furthermore, GBPs are known to be bi-contractive and as a result they have become an interesting topic of investigation. In many cases, the generalized bi-circular projections have a representation as the average of the identity and an isometric reflection (see [2, 3, 5]). The form of GBPs on $H^p(U^n)$ are found. Unsurprisingly, they are also of the form of the average of the identity and a reflection. Due to this persistent pattern, there is also interest in when the average of two isometries gives a projection (see [1]).

Generalized Bicircular Projections of $H^p(U^n)$

Let Π represent a permutation that induces a map on functions of n complex variables by

$$\Pi(f(z_1, z_2, \ldots, z_n)) = f(z_{\Pi(1)}, z_{\Pi(2)}, \ldots, z_{\Pi(n)}).$$

R. B Schneider found the form of the isometries of $H^p(U^n)$ [6].

Theorem 0.1. Suppose $p \neq 2$, $0 < p < \infty$, and T is a linear isometry of $H^p(U^n)$ onto $H^p(U^n)$. Then there is a permutation Π such that

$$\Pi - T(f) = \frac{1}{2} \left(\frac{\partial f}{\partial z_1} - \frac{\partial f}{\partial z_2} \right) \overline{\overline{f}}(z_{\Pi(1)}, z_{\Pi(2)}, \ldots, z_{\Pi(n)})$$

where the ϕ_i are conformal maps of the unit disc onto itself and b is a unimodular complex number. Conversely, (1) defines a linear isometry of $H^p(U^n)$ onto $H^p(U^n)$.

A generalized bi-circular projection is a projection P, such that for some λ with $|\lambda| = 1$ and $\lambda \neq 1$, $P + \lambda(I - P)$ is an isometry.

Theorem 0.2. P is a generalized bicircular projection on $H^p(U^n)$ if and only if P is trivial or

$$P(f(z_1, z_2, \ldots, z_n)) = \frac{1}{2} \left(\frac{\partial f}{\partial z_1} - \frac{\partial f}{\partial z_2} \right) \overline{\overline{f}}(z_{\Pi(1)}, z_{\Pi(2)}, \ldots, z_{\Pi(n)}) + f(z_1, z_2, \ldots, z_n)$$

where each of the ϕ_i are conformal maps of the unit disk onto itself such that $\phi_{\Pi(i)} \circ \phi_{\Pi(i)}(z_{\Pi(i)}) = z_{\Pi(i)}$ and Π is a permutation that induces a map on functions of complex variables.

Sketch of Proof
Let T be an isometry. Then $P + \lambda(I - P) = T$. Solving for P gives that $P = \frac{T - \lambda I}{1 - \lambda}$. Since P is a projection, $P^2 = P$, thus $(T - \lambda I)^2 = (1 - \lambda)(T - \lambda I)$. This then can be reduced to

$$T^2 - (\lambda + 1)T + \lambda I = 0$$

Then

$$Tf(z_1, \ldots, z_n) = b((\phi_1(z_1), \ldots, \phi_n(z_n)))^{1/p} f(\phi_1(z_1), \ldots, \phi_n(z_n))$$

and

$$T^2f = b((\phi_1(z_1), \ldots, \phi_n(z_n)))^{1/p} \cdot (\phi_1(z_1), \ldots, \phi_n(z_n)) f(\phi_1(z_1), \ldots, \phi_n(z_n))$$

This makes (2):

$$b((\phi_1(z_1), \ldots, \phi_n(z_n)))^{1/p} \cdot (\phi_1(z_1), \ldots, \phi_n(z_n)) = \lambda f(z_1, \ldots, z_n)$$

Since this equation must hold for all functions $f(z_1, \ldots, z_n)$, consider $f(z_1, \ldots, z_n) = 1$ which reduces (3) to

$$\lambda f(z_1, \ldots, z_n) = \lambda f(z_1, \ldots, z_n)$$

This makes (2):

$$\lambda f(z_1, \ldots, z_n) = \lambda f(z_1, \ldots, z_n)$$

References

Acknowledgements
Thank you to Nadia Gal for her invaluable help in editing. Thank you to my husband Bryan King for his continuous support. Thank you also to James Jamison for your kindness, patience, compassion and love for mathematics. Your experience and passion have taught me so much.