Do three of following problems.

1. A ring \(R \) is called a \textit{Boolean ring} if \(a^2 = a \) for all \(a \in R \). Prove that every Boolean ring is commutative.

2. Show that every ideal in a Euclidean Domain is principal.

3. Let \(R \) be a commutative ring with identity and \(M \) an ideal of \(R \). Show that \(M \) is a maximal ideal if and only if \(R/M \) is a field.

4. List all non-isomorphic abelian groups of order 2704.

5. (The second isomorphism theorem) Let \(N \) be a normal subgroup of a group \(G \) and \(A \) another subgroup of \(G \). Show that \(AN \) is a subgroup of \(G \) and \(AN/N \) is isomorphic to \(A/(A \cap N) \).

6. Let \(G \) be a finite group with order \(n \), and \(H \) a subgroup of \(G \) such that \(n \) is not a divisor of \(i_G(H)! \) where \(i_G(H) = \frac{o(G)}{o(H)} \) and \(o(H) \) is the order of the group \(H \). Show that there is a normal subgroup \(N \) of \(G \) contained in \(H \).