Do three of following problems.

1. Let \(f(x) \) be an integrable function on \(\mathbb{R} \) and for each \(n \), let \(h_n(t) = \frac{t^{2n}}{2 + t^{2n}} \). Show that the limit \(\int_{n \to \infty} f(t)h_n(t)dt \) exists and find its limit.

2. The outer measure on \(\mathbb{R} \) is defined by

\[
m^*(A) = \inf \left\{ \sum_{n=1}^{\infty} \ell(I_n) : I_n \text{ are open intervals such that } A \subseteq \bigcup I_n \right\}.
\]

(\(\ell(I) \) denotes the length of the interval \(I \)) Show that for any countable subsets \(E_n \) of \(\mathbb{R} \), \(m^*(\cup E_n) \leq \sum_n m^*(E_n) \). (countable subadditivity).

3. Let \(\{f_n\} \) be a sequence of measurable function that converges to \(f \) in measure. Show there is a subsequence of \(\{f_n\} \) that converges to \(f \) a.e.

4. State the Minkowski and Hölder inequalities.

5. Let \(\{f_n\} \) be a sequence of nonnegative measurable functions on \(\mathbb{R} \) such that \(f_n \) converges to \(f \) a.e. Suppose that \(f \) is integrable and \(\lim_{n \to \infty} \int f_n(t)dt = \int f(t)dt \). Show that for any measurable subset \(E \) of \(\mathbb{R} \),

\[
\lim_{n \to \infty} \int_E f_n(t)dt = \int_E f(t)dt.
\]