Solve one of the problems 1 and 2, and one of the problems 3 and 4.

1. (a) Suppose that an entire function is bounded by M along $|z| = R$. Show that the coefficients C_k in its power series expansion about 0 satisfy

$$|C_k| \leq \frac{M}{R^k}.$$

(b) Suppose that a polynomial is bounded by 1 in the unit disc. Show that all its coefficients are bounded by 1.

2. (a) Classify the singularities of the function

$$f(z) = \frac{e^{\frac{1}{z}}}{z - 1}.$$

(b) If f is holomorphic on a deleted neighborhood of 0, and satisfies $|f(z)| > 1/|z|$ for all nonzero z on the unit disc, what kind of singularity does f have at 0?

3. Compute the integral

$$\int_0^\infty \frac{\cos x}{x^2 + 1} \, dx.$$

4. (a) Find a conformal mapping between the strip $\{ z \mid 0 < \text{Re}(z) < 1 \}$ and the upper half-plane.

(b) Find a conformal mapping between the unit disc and the first quadrant.