Masters’ Comprehensive Exam: Topology

September 20, 2008

Do any three of the following four problems. You have 1 hour.

1. (a) Prove or disprove that the subspace topology on the set of integers, \(\mathbb{Z} \), in \(\mathbb{R} \) (with its usual topology) is the same as the discrete topology on \(\mathbb{Z} \).
(b) Prove or disprove that the subspace topology on the set of rationals, \(\mathbb{Q} \), in \(\mathbb{R} \) (with its usual topology) is the same as the discrete topology on \(\mathbb{Q} \).

2. Let \(X \) be a metric space. Show that the following are equivalent:
 (a) \(X \) has a countable basis;
 (b) \(X \) is Lindelöf (i.e., every open cover of \(X \) has a countable subcover);
 (c) \(X \) has a countable dense subset.

3. Suppose that \(A \times B \subseteq U \subseteq H \times K \), where \(A, B, H, \) and \(K \) are compact Hausdorff spaces and \(U \) is open in the product space \(H \times K \). Show that there exist open subsets \(V \) of \(H \) and \(W \) of \(K \) such that \(A \times B \subseteq V \times W \subseteq U \).

4. Let \(f : [a, b] \to \mathbb{R} \) be a real-valued function on a closed interval and let \(G = \{(x, f(x)) \mid x \in [a, b]\} \subseteq \mathbb{R}^2 \) be its graph. Prove or give a counterexample for the following.
 (a) If \(G \) is connected, then \(f \) is continuous.
 (b) If \(f \) is continuous, then \(G \) is connected.