Masters’ Comprehensive Exam: Core Topics

February 9, 2008

Answer any five of the following seven problems.

1. Define a sequence \((x_n)_{n=0}^{\infty} \) by \(x_0 = 2 \) and \(x_{n+1} = \frac{x_n}{2} + \frac{1}{x_n} \) for \(n \geq 0 \).
 (a) Show that \(x_n \) converges as \(n \to \infty \).
 (b) Identify the limit of the sequence \((x_n)_{n=0}^{\infty} \).

2. Prove or disprove:
 (a) The product of two uniformly continuous functions on \(\mathbb{R} \) is also uniformly continuous.
 (b) The product of two uniformly continuous functions on \([0, 1]\) is also uniformly continuous.

3. Let \((x_n)_{n=0}^{\infty} \) be a sequence of real numbers. Prove that the following are equivalent.
 (a) \(\lim_{n \to \infty} x_n = a \).
 (b) Every subsequence of \((x_n)_{n=0}^{\infty} \) contains a subsequence that converges to \(a \).

4. Prove that a compact subset of a Hausdorff space is closed.

5. Determine which of the following groups are isomorphic.
 (i) \(\mathbb{Z}_2 \times \mathbb{Z}_4 \), (ii) \(\mathbb{Z}_8 \), (iii) \(\mathbb{Z}_2 \times \mathbb{Z}_3 \), (iv) \(\mathbb{Z}_6 \).

Please Turn Over
6. Let G be the group of 2×2 invertible upper triangular real matrices under matrix multiplication, i.e., matrices of the form
\[
\begin{pmatrix}
a & b \\
0 & d
\end{pmatrix}
\]
with $a, b, d \in \mathbb{R}$, $ad \neq 0$.

(a) Show that the set K of matrices in G that are of the form \[
\begin{pmatrix}
1 & b \\
0 & 1
\end{pmatrix}
\] form a normal subgroup of G.

(b) Show that the quotient group G/K is isomorphic to $\mathbb{R}^\times \times \mathbb{R}^\times$.

7. Let $T: V \to V$ be a linear map on a real vector space V such that $T^2 = 1$.

(a) Show that $V_+ = \{x \mid Tx = x\}$ and $V_- = \{x \mid Tx = -x\}$ are subspaces of V.

(b) Show that V is isomorphic to the direct sum of V_+ and V_-.