Do six of the following eight problems. But you need to do at least one of each of the following area Real Analysis (1-3), Algebra (4-5), and Topology (6-7).

1. Use the δ-ϵ proof to show that the product of two continuous functions is continuous.

2. (a) Give an example of a sequence (f_n) of continuous functions that converges to f pointwise that is not continuous.

 (b) Show that if (f_n) is a sequence of continuous functions that converges to f uniformly. Then f is continuous.

3. Let f be a function from $[a, b]$ to \mathbb{R} such that f is differentiable at $c \in (a, b)$. Show that f is continuous at c.

4. Let M, N be two normal subgroups of G. Suppose that $M \cap N = \{e\}$. Show that $mn = nm$ for all $n \in N$ and $m \in M$.

5. Let $F \subseteq K \subseteq L$. Suppose that the dimension of L over K is $m(< \infty)$ and the dimension of K over F is $n(< \infty)$. What is the dimension of L over F? Prove your argument.

6. Let K be a compact set and f a continuous from K to \mathbb{R}. Show that there is $x \in K$ such that

 $$f(x) = \sup\{f(y) : y \in K\}.$$

7. Show that every metric space is first countable. Give an example of metric space that is not second countable.

8. Let T be a linear transformation from a vector space X to another vector space Y. Show that ker(T) is a subspace of X.