Answer any six of the following eight questions. You must state clearly any general results you use.

1. Prove that if G is a non-trivial p-group then the center of G is non-trivial. Deduce that every p-group is solvable.

2. Prove that if G is a simple group of order 168 then G contains exactly 48 elements of order 7.

3. Let R be a ring with 1. Show that if x is contained in every maximal ideal of R then $1 + x$ is a unit.

4. Let R be a commutative ring with 1.
 (a) Show that every maximal ideal is prime.
 (b) Show that if R is a PID then every non-zero prime ideal is maximal.

5. Let $K = \mathbb{Q}(t)$ be the field of rational functions in the indeterminate t. Let $\phi: \mathbb{Q}(t) \to \mathbb{Q}(t)$ be the field homomorphism which fixes \mathbb{Q} and sends t to $\frac{2}{7}t$.
 (a) Show that ϕ is an automorphism of K of order 2.
 (b) Show that the fixed field of $G = \{1, \phi\}$ is $F = \mathbb{Q}(t + \frac{2}{7})$.
 (c) Find the minimal polynomial of t over F.

6. What is the Galois group of $X^3 + 7X + 7$ over
 (a) \mathbb{F}_2 (the field of 2 elements),
 (b) \mathbb{F}_3 (the field of 3 elements),
 (c) \mathbb{Q}.

 State clearly any results you use.

7. Suppose A and B are finitely generated abelian groups and $A \oplus A \cong B \oplus B$. Show that $A \cong B$.

8. Find the characteristic polynomial, invariant factors, elementary divisors, rational canonical form, and Jordan canonical form of the matrix
\[
\begin{pmatrix}
-1 & 1 & 1 \\
-2 & 2 & 1 \\
-2 & 1 & 2
\end{pmatrix}
\]