ANALYSIS QUALIFYING EXAM,
SEPTEMBER 13, 2008

Do all 5 problems. Good luck.

1. (a) State carefully and precisely the Fundamental Theorem of Calculus for the Lebesgue integral.

(b) Let \(f(x) = x^\theta \sin(1/x) \) for \(0 \leq x < 1 \) and \(f(0) = 0 \). For which real values of \(\theta \) is \(f \) absolutely continuous on \([0,1]\)?

2. Let \((\Omega, \Sigma, m)\) be a measure space. For \(A_n \in \Sigma \) let

\[
\limsup A_n = \left\{ x \in \Omega : x \in A_n \text{ for infinitely many positive integers } n \right\}.
\]

(a) Show that \(\limsup A_n = \bigcap_{j=1}^{\infty} \bigcup_{k=j}^{\infty} A_k \) and conclude \(\limsup A_n \in \Sigma \).

(b) Assuming \(\sum_{n \geq 1} m(A_n) < \infty \), prove that \(m(\limsup A_n) = 0 \).

3. For \(j = 1,2 \) let

\[f_j(t) = \int_0^\infty e^{-xt} g_j(x) dx \]

where \(g_j \) is continuous on \([0,\infty)\) and

\[|g_j(x)| \leq 100 e^{\sqrt{x}} \]

for all positive \(x \).

(a) Prove that \(f_1 \) is continuous on \((0,\infty)\).

(b) Prove that \(\lim_{t \to \infty} f_1(t) = 0 \).

(c) Give examples of \(g_1, g_2 \) so that \(\lim_{t \to 0} f_1(t) = 5, \lim_{t \to 0} f_2(t) = -\infty \).

4. Let \(A : \text{Dom}(A) \subset H \to H \) be a linear operator satisfying the condition

\[< Ax, y > = < x, Ay > \]
for all x, y in the domain $Dom(A)$; here $< \cdot, \cdot >$ is the inner product on a complex Hilbert space H. Call Φ_j an eigenvector of A corresponding to the eigenvalue b_j if Φ_j is a nonzero vector in $Dom(A)$ and $A\Phi_j = b_j \Phi_j$; here b_j is a complex number. Suppose that b_1 and b_2 are two different eigenvalues.

(a) Show that b_1 is real.

(b) Show that the corresponding eigenvectors satisfy $< \Phi_1, \Phi_2 > = 0$.

5. Consider two measures m_1, m_2 on $[0, \infty)$ equipped with its Borel sets; here m_1 is Lebesgue measure and m_2 has density e^{-x}. That is, for every Borel set E in $[0, \infty)$,

$$m_2(E) = \int_E e^{-x} \, dx.$$

Let M_j be the measure space $([0, \infty), \text{Borel sets}, m_j)$. Is there any containment relationship between $L^1(M_j)$ and $L^2(M_j)$? That is, either prove that

$$L^1(M_1) \subset L^2(M_1) \quad \text{or} \quad L^2(M_1) \subset L^1(M_1)$$

or give examples of functions in $L^2(M_1) \setminus L^1(M_1)$ and $L^1(M_1) \setminus L^2(M_1)$, and do the same thing with m_2 replacing m_1.