Statistics Ph.D. Qualifying Exam: Part II
November 14, 2009

Student Name: __

1. Answer 8 out of 12 problems. Mark the problems you selected in the following table.

<table>
<thead>
<tr>
<th>Problem</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selected</td>
<td></td>
</tr>
<tr>
<td>Scores</td>
<td></td>
</tr>
</tbody>
</table>

2. Write your answer right after each problem selected, attach more pages if necessary. **Do not** write your answers on the back.

3. Assemble your work in right order and in the original problem order. (Including the ones that you do not select)
1. Let X_1, \ldots, X_n be a sample of size n from $U(0, \theta)$ where θ is unknown parameter.

 (a) Show that $Y_i = -\ln(X_i/\theta)$ has an exponential distribution with unit mean.

 (b) Show that if n is large, the “geometric mean” of X_i,

 $$\left(\prod_{i=1}^n X_i\right)^{\frac{1}{n}}$$

 has approximately a $N(\mu, \sigma^2)$ distribution. Find μ and σ^2. [hint: use the relation $x = e^{\ln(x)}$.]
2. Let X_1, \ldots, X_n be a random sample from the geometric distribution

$$f(x; \theta) = \theta(1 - \theta)^x I_{(0,1,2,\ldots)}(x)$$

where $0 < \theta < 1$.

(a) Derive $E(X_i)$ and $Var(X_i)$.

(b) Find the probability distribution of $S = X_1 + X_2 + \cdots + X_n$.

(c) Find the Cramér-Rao lower bound for the variance of unbiased estimators of $(1 - \theta)/\theta^2$.
3. Consider the regression model

\[Y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \epsilon_i, \ i = 1, \ldots, n \]

where \(x_i \)'s are known and \(\epsilon_i \) i.i.d with \(N(0, \sigma^2) \) for \(i = 1, \ldots, n \).

(a) Derive the MLE \(\hat{\beta}_i, i = 0, 1, 2 \) and \(\hat{\sigma}^2 \).

(b) Find the asymptotic distribution of \(e^{\hat{\beta}_0 + \hat{\beta}_1} \).
4. Let \(X_1 \leq \cdots \leq X_n \) be the order statistics for a random sample from a continuous
distribution with cumulative distribution function \(F(x) \) and density \(f(x) \). Define \(Y_i = F(X_i) \) and \(U_i, i = 1, \ldots, n, \) by

\[
U_i = \frac{Y_i}{Y_{i+1}}, i = 1, \ldots, n-1,
\]

and

\[
U_n = Y_n.
\]

(a) Show that if \(X \) has c.d.f. \(F(x) \), \(Y = F(X) \sim U(0,1) \).

(b) Find the joint p.d.f. of \(Y_i, i = 1, \ldots, n \).

(c) Find the joint p.d.f. of \(U_i, i = 1, \ldots, n \).

(d) Show that \(U_1, U_2^2, \ldots, U_n^n \) are i.i.d uniform \((0,1)\) random variables.
5. Let \(X_1, \ldots, X_n \) be a sample of size \(n \) from \(U(0, \theta) \) where \(\theta \) is unknown parameter. Let \(\hat{\theta}_{\text{mme}} \) = moment estimator of \(\theta \); \(\hat{\theta}_{\text{mle}} \) = maximum likelihood estimator of \(\theta \).

(a) Derive \(\hat{\theta}_{\text{mme}} \) and \(\hat{\theta}_{\text{mle}} \).

(b) Find the asymptotic distributions of \(\hat{\theta}_{\text{mme}} \) and \(\hat{\theta}_{\text{mle}} \).

(c) Compare \(\hat{\theta}_{\text{mme}} \) and \(\hat{\theta}_{\text{mle}} \) as an estimator of \(\theta \).
6. Let X_1, \ldots, X_m be a random sample from

$$f(x; \theta) = \begin{cases} \frac{1}{\theta} x^{-(1-\theta)/\theta}, & 0 < x < 1, \quad \theta > 0 \\ 0, & \text{otherwise} \end{cases}.$$

(a) Find the uniformly most powerful (UMP) test of size α for testing $H_0 : \theta \leq 1$ vs. $H_1 : \theta > 1$.

(b) Explain how to find the power function of the UMP test.
7. Let X_1, \ldots, X_m and Y_1, \ldots, Y_n be independent samples from Exponential(λ) and Exponential(μ) populations respectively.

(a) Construct a likelihood ratio test of

$$H_0 : \lambda = \mu \quad \text{versus} \quad H_1 : \lambda \neq \mu.$$

(b) Give the critical values of this test in terms of percentiles of one of the standard distributions.

(c) Is the likelihood ratio test, uniformly most powerful? Why or Why not?
8. Let X_1, X_2, \ldots, X_n be independent Normal(μ, σ^2) random variables.

(a) Prove that \bar{X} and $S^2 = \sum_{i=1}^{n} (X_i - \bar{X})^2$ are independent.

(b) Prove that S^2 / σ^2 has a chi-squared distribution.

(c) Let $g(x)$ be a continuous function of x. Find C such that $C(g(\bar{X}) - g(\mu))^2 / S^2$ has an F distribution. What are the degrees of freedom?
9. Let X_1, \ldots, X_n be a random sample from a population with density $f(x|\theta)$, and let
$\xi(\theta)$ represent a prior density on $\theta, \theta \in \Omega$.

(a) Using loss function

$$L(\tau(\theta) - a) = w(\theta)(\tau(\theta) - a)^2,$$

where $\tau(\theta), w(\theta)$ are functions of θ, with $w(\theta) > 0$, prove that the Bayes estimator
of $\tau(\theta)$ is given by

$$d_B(x) = \frac{E[w(\theta)\tau(\theta)|X = x]}{E[w(\theta)|X = x]}.$$

(b) If $L(\tau(\theta) - a) = \sqrt{\theta}(\tau(\theta) - a)^2$, $f(x|\theta) = \theta e^{-\theta x}$, and $\xi(\theta)$ is chosen to be a conjugate
prior, find the Bayes estimator of $\tau(\theta) = e^{-\theta}$.
10. Let \(\{(X_{i,1}, \ldots, X_{i,n}), i = 1, 2\} \) be independent random samples from normal distributions with means \(\mu_i \) and variance \(\sigma^2 \) respectively. Let \(\bar{X}_i = \frac{1}{n} \sum_{j=1}^{n} X_{i,j}, i = 1, 2 \) and \(S_i^2 = \sum_{j=1}^{n} (X_{i,j} - \bar{X}_i)^2, i = 1, 2 \). Put \(Y_i = \frac{\bar{X}_i}{\hat{\sigma}_i}, i = 1, 2 \), where \(\hat{\sigma}^2 = \frac{S_1^2 + S_2^2}{2n - 2} \).

(a) Obtain the joint pdf (probability density function) of \(\{Y_1, Y_2\} \) under the assumption \(\mu_i = 0, i = 1, 2 \).

(b) What is the pdf of \(Y_1 - Y_2 \) under the assumption \(\mu_1 = \mu_2 \)?
11. Let X_1, \ldots, X_n be a random sample from the normal distribution with mean μ_1 and variance σ^2. Let Y_1, \ldots, Y_m be a random sample from the normal distribution with mean μ_2 and variance $4\sigma^2$. Consider the hypotheses $H_0 : \mu_1 - \mu_2 = 4$ versus $H_1 : \mu_1 - \mu_2 \neq 4$.

(a) Derive the level-α Likelihood Ratio test for testing H_0 versus H_1.

(b) What is the sampling distribution of your testing statistic under H_0?
12. Consider the following regression model:

\[Y_j = \theta_1 + \theta_2(x_j - \bar{x}) + \epsilon_j, j = 1, \ldots, n \]

where \(\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \).

Assume that the \(\epsilon_j \)'s are independently distributed as normal random variables with means 0 and variance \(\sigma^2 \) and that the \(x_i \)'s are non-stochastic.

(a) Assuming a non-informative prior for \(\{\theta_i, i = 1, 2, \sigma^2\} \) as \(P(\theta_i, i = 1, 2, \sigma^2) \propto (\sigma^2)^{-1} \), derive the posterior distribution of \(\{\theta_i, i = 1, 2\} \).

(b) Derive the posterior distribution of \(\theta_2 \) and a 100(1 - \(\alpha \)) % HPD (Highest Posterior Density) interval for \(\theta_2 \). How is this HPD interval comparing with the 100(1 - \(\alpha \)) % confidence interval for \(\theta_2 \)?