Linkedness, Orderedness and Connectivity in Graphs

Gábor Mészáros

CEU Budapest, Hungary

March 19, 2013
A graph $G = (V, E)$ is connected if for every $x, y \in V$ there is a path from x to y.
A graph $G = (V, E)$ is connected if for every $x, y \in V$ there is a path from x to y.

A graph $G = (V, E)$ is k-connected if for every $x_1, \ldots, x_{k-1} \in V$ the graph $G - x_1 - \cdots - x_{k-1}$ is connected.
Definition

A graph $G = (V, E)$ is connected if for every $x, y \in V$ there is a path from x to y.

Definition

A graph $G = (V, E)$ is k-connected if for every $x_1, \ldots, x_{k-1} \in V$ the graph $G - x_1 - \cdots - x_{k-1}$ is connected.

Note

Similar concepts: edge-connectivity, connectivity and edge-connectivity for directed graphs.
Connectivity of Graphs

Note

k-connected \neq k-edge-connected!
Connectivity of Graphs

Note

k-connected $\neq k$-edge-connected!
Menger’s Theorem

$G = (V, E)$ finite, undirected, $x, y \in V$, $\overline{xy} \notin E \Rightarrow$ minimum vertex cut for x and $y = \text{the maximum number of pairwise vertex-independent paths from } x \text{ to } y.$
Connectivity of Graphs

Menger’s Theorem

\[G = (V, E) \text{ finite, undirected, } x, y \in V, \ xy \notin E \Rightarrow \text{minimum vertex cut for} \ x \ \text{and} \ y = \text{the maximum number of pairwise vertex-independent paths from} \ x \ \text{to} \ y. \]

Note

Menger’s Theorem "Mutatis Mutandis" applies for directed graphs and for edge-connectivity as well.
Theorem

\[G = (V, E) \text{ is } k\text{-connected} \Rightarrow \text{for } x, y \in V \text{ there exist } P_1, \ldots, P_k \text{ pairwise disjoint } x - y \text{ paths.} \]
Connectivity of Graphs

Theorem

\[G = (V, E) \text{ is } k\text{-connected} \Rightarrow \text{ for } x, y \in V \text{ there exist } P_1, \ldots, P_k \text{ pairwise disjoint } x - y \text{ paths.} \]

Proof:

Direct consequence of Menger’s Theorem.
Connectivity of Graphs

Theorem

\[G = (V, E) \text{ is } k\text{-connected} \Rightarrow \text{for } x, y \in V \text{ there exist } P_1, \ldots, P_k \text{ pairwise disjoint } x - y \text{ paths.} \]

Proof:

Direct consequence of Menger’s Theorem.

Note

This property is in fact equivalent to \(k \)-connectivity.
Theorem

$G = (V, E)$ is k-connected \Rightarrow for $x, y_1, \ldots, y_k \in V$ there exist P_1, \ldots, P_k pairwise disjoint $x - y_i$ paths.
Theorem

\[G = (V, E) \text{ is } k\text{-connected} \implies \text{for } x, y_1, \ldots, y_k \in V \text{ there exist } P_1, \ldots, P_k \]

pairwise disjoint \(x - y_i\) paths.

Theorem

\[G = (V, E) \text{ is } k\text{-connected} \implies \text{for } x_1, \ldots, x_k \in V \text{ and } y_1, \ldots, y_k \in V \text{ there exist } P_1, \ldots, P_k \text{ pairwise disjoint } x_i - y_{\pi(i)} \text{ paths for some } \pi \in S_k. \]
Theorem

\(G = (V, E) \) is \(k \)-connected \(\Rightarrow \) for \(x, y_1, \ldots, y_k \in V \) there exist \(P_1, \ldots, P_k \) pairwise disjoint \(x - y_i \) paths.

Theorem

\(G = (V, E) \) is \(k \)-connected \(\Rightarrow \) for \(x_1, \ldots, x_k \in V \) and \(y_1, \ldots, y_k \in V \) there exist \(P_1, \ldots, P_k \) pairwise disjoint \(x_i - y_{\pi(i)} \) paths for some \(\pi \in S_k \).

Lemma

\(G = (V, E) \) is \(k \)-connected, \(H = (V', E') \) where \(V' = V \cup \{z\} \),
\(E' = E \cup \{zx_i \mid x_i \in V, i = 1, \ldots, k\} \) \(\Rightarrow \) \(H \) is \(k \)-connected.
Theorem

Let $G = (V, E)$ be a graph. If G is k-connected, then for any $x, y_1, \ldots, y_{k-1}, z \in V$, there exists a path P from x to z containing y_i for $i = 1, \ldots, k-1$ (in some order).

Theorem

Let $G = (V, E)$ be a graph. If G is k-connected, then for any $x_1, \ldots, x_k \in V$, there exists a cycle C containing x_i for $i = 1, \ldots, k$ (in some order).
Quick Summary

We do not have control of the matching order or cyclic order of the given nodes.
Quick Summary

Downside

We do not have control of the matching order cyclic order of the given nodes.
Connectivity is insufficient (?) to gain control
Connectivity is insufficient (?) to gain control

Question

How can we keep control?
Definition

\(G = (V, E) \) is \(k \)-linked if for \(x_1, \ldots, x_k \in V \) and \(y_1, \ldots, y_k \in V \) there exist \(P_1, \ldots, P_k \) pairwise disjoint \(x_i - y_i \) paths.
Definition

$G = (V, E)$ is k-linked if for $x_1, \ldots, x_k \in V$ and $y_1, \ldots, y_k \in V$ there exist P_1, \ldots, P_k pairwise disjoint $x_i - y_i$ paths.

Definition

$G = (V, E)$ is k-routed if for $x_1, \ldots, x_k \in V$ there exist a path P containing all x_i’s in the given order.
Definition

\(G = (V, E) \) is \(k \)-linked if for \(x_1, \ldots, x_k \in V \) and \(y_1, \ldots, y_k \in V \) there exist \(P_1, \ldots, P_k \) pairwise disjoint \(x_i - y_i \) paths.

Definition

\(G = (V, E) \) is \(k \)-routed if for \(x_1, \ldots, x_k \in V \) there exist a path \(P \) containing all \(x_i \)'s in the given order.

Definition

\(G = (V, E) \) is \(k \)-ordered if for \(x_1, \ldots, x_k \in V \) there exist a cycle \(C \) containing all \(x_i \)'s in the given cyclic order.
Example

The Cube \((K_2 \times K_2 \times K_2)\) is

- not 2-linked,
- 3-routed but not 4 routed,
- 3-ordered but not 4-ordered.
Proposition

- \(G = (V, E) \) \(k \)-linked \(\Rightarrow \) \(k \)-connected,
- \(G = (V, E) \) \(k \)-routed \(\Rightarrow \) \(k - 1 \)-connected,
- \(G = (V, E) \) \(k \)-ordered \(\Rightarrow \) \(k - 1 \)-connected.

Question

Does that work the other way around?
Linkage and Connectivity

Theorem

[Bollobas, Thomason, 1997] G is $22k$ connected \Rightarrow G is k-linked.
Theorem
[Bollobas, Thomason, 1997] G is $22k$ connected $\Rightarrow G$ is k-linked.

Theorem
[Thomas, Wollan, 2005] G is $10k$ connected $\Rightarrow G$ is k-linked.
Summary

For $k \geq 3$,

- $2k$-connected $\not\iff$ k-linked \Rightarrow $2k - 1$ - connected,
- k - connected $\not\iff$ k-ordered \Rightarrow $k - 1$ - connected,
- $k + 1$ - ordered $\not\iff$ k-linked \Rightarrow k - ordered,
- $k/2 + 1$ - linked $\not\iff$ k-ordered \Rightarrow $k/2$ - linked,
- k - linked $\not\iff$ $3k - 3$-connected, $10k$ connected \Rightarrow k - linked,
- k - ordered $\not\iff$ $2k - 4$-connected, $10k$ connected \Rightarrow k - ordered,
Routedness

Proposition

- G is k-ordered $\Rightarrow G$ is k-routed,
- G is $k + 1$-routed $\Rightarrow G$ is k-ordered.

Note

G is k-routed $\nRightarrow G$ is k-ordered.

Question

For which graphs does k-routedness imply k-orderedness?
Theorem

[Thomas, Wollan, 2005] \(G \) is \(2k \) connected, \(e(G) > 5 \cdot n \cdot k \) \(\Rightarrow \) \(G \) is \(k \)-linked.
[Ng, Schultz] If $d(x) + d(y) \geq n + 2k - 6$ then G is k-ordered Hamiltonian.
Theorem

[Ng, Schultz] If \(d(x) + d(y) \geq n + 2k - 6 \) then \(G \) is \(k \)-ordered Hamiltonian.

Recall:

Ore’s Theorem: \(d(x) + d(y) \geq n \) then \(G \) is Hamiltonian.
Theorem

[Godhad, 2002]

1. G is 4-ordered planar graph \Rightarrow G is locally 3-connected maximal planar graph.

2. G is 4-connected maximal planar graph \Rightarrow G is 4-ordered.

Theorem

[K. Meszaros, 2003] G is 3-connected, 3-regular, 4-ordered $\Rightarrow g(G) \geq 5.$
Conjecture

G is 6-connected \Rightarrow G is 4-ordered.
Conjecture

G is 6-connected \Rightarrow G is 4-ordered.

Conjecture

The n-dimensional hypercube (K_2^n) is n-ordered for $n \geq 3$.
THANK YOU FOR YOUR ATTENTION!