On the maximum degree of path-pairable graphs

Gábor Mészáros

The University of Memphis

5th Annual Mississippi Discrete Math Workshop
Oxford, MS
Path-Pairable Graphs

Definition
For k fixed, an undirected graph G is k-path-pairable if, every ordered set of $2k$ pairwise disjoint vertices $S = (s_1, \ldots, s_k)$ and $T = (t_1, \ldots, t_k)$ there exist edge-disjoint paths P_1, \ldots, P_k such that each P_i is an $s_i; t_i$-path.

Definition
A graph G on $2k$ vertices is path-pairable if it is k-path-pairable.
Asymptotic Behavior, Scalability

Observations

- Unlike many related parameters (linkedness, weak-linkedness), path-pairability does not require high edge density.
- On the other hand, path-pairable graphs all seem to have reasonable high maximum degree.
The Maximum Degree Problem

Theorem (Faudree, Gyárfás, Lehel, 1991)
There exist k-path-pairable graphs with maximum degree $\Delta = 3$ for arbitrary high values of k.

Theorem (Faudree, Gyárfás, Lehel, 1992)
If G is a path-pairable graph on n vertices with maximum degree Δ, then $n \leq 2\Delta^\Delta$.

Proof
- Let $d = \log_\Delta \frac{n}{2}$.
- We can choose a pairing of the vertices of distance d or more (why?).
- We need $\frac{n}{2} \cdot \log_\Delta \frac{n}{2}$ edges to build the paths but only have $\frac{n}{2} \cdot \Delta$.
\[\frac{\log n}{\log \log n} < \Delta_{min} < \ldots \]
The Maximum Degree Problem - Constructions

\[\frac{\log n}{\log \log n} < \Delta_{min} < \ldots \]

Advances

- Csaba, Faudree, Gyárfás, Lehel, Schelp (1991): \(\Delta_{min} \leq 3 \cdot \sqrt{n} \)
- Lehel, Kubicza, Kubicky (1999): \(\Delta_{min} \leq 2 \cdot \sqrt{n} \)
- M. (2013): \(\Delta_{min} \leq 2\sqrt{2} \cdot \sqrt{n} \)
- M. (2014): \(\Delta_{min} \leq \sqrt{n} \)
- Győri, Mezei, M. (2016): \(\Delta_{min} \leq 5.2 \cdot \log n \)
Conjecture (Csaba, Faudree, Gyárfás, Lehel, Schelp, 1991)
Hypercubes of odd dimension are path-pairable.

Conjecture (Lehel, Kubicza, Kubicky, 1999)
Sufficiently large three dimensional complete grid graphs are path-pairable.
Terminal-Pairability in Graphs

Definition

Given a simple undirected graph G and an undirected multigraph D with $V(D) = V(G)$ we say that G can realize the edges $e_1, \ldots, e_{|E(D)|}$ of D if there exist edge disjoint paths $P_1, \ldots, P_{|E(D)|}$ in G joining the endpoints of $e_1, \ldots, e_{|E(D)|}$, respectively.

Definition

A graph G is terminal-pairable with respect to a family \mathcal{F} of demand graphs on $V(G)$ if every demand graph in \mathcal{F} can be realized by G.
Problem (Csaba, Faudree, Gyárfás, Lehel, Schelp, 1991))

Let $G = K_n$ and let $\mathcal{F}_t = \{D : \Delta(D) \leq t\}$. What is the maximum of t for which G is terminal-pairable w.r.t. \mathcal{F}_t?
Problem (Csaba, Faudree, Gyárfás, Lehel, Schelp, 1991))

Let \(G = K_n \) and let \(\mathcal{F}_t = \{ D : \Delta(D) \leq t \} \). What is the maximum of \(t \) for which \(G \) is terminal-pairable w.r.t. \(\mathcal{F}_t \)?

Theorem (Csaba, Faudree, Gyárfás, Lehel, Schelp, 1991)

\(K_n \) is terminal-pairable w.r.t. \(\mathcal{F}_t \) for \(t \leq n^8 \).

\(K_n \) is not terminal-pairable w.r.t. \(\mathcal{F}_t \) for \(t > n^2 \).

Theorem (Győri, Mezei, M., 2016)

\(K_n \) is terminal-pairable w.r.t. \(\mathcal{F}_t \) for \(t \leq n^3 - c \).

Theorem (Girão, M., 2016)

\(K_n \) is not terminal-pairable w.r.t. \(\mathcal{F}_t \) for \(t > \frac{13}{27} n + c \).
Problem (Csaba, Faudree, Gyárfás, Lehel, Schelp, 1991))

Let $G = K_n$ and let $\mathcal{F}_t = \{ D : \Delta(D) \leq t \}$. What is the maximum of t for which G is terminal-pairable w.r.t. \mathcal{F}_t?

Theorem (Csaba, Faudree, Gyárfás, Lehel, Schelp, 1991)

- K_n is terminal-pairable w.r.t. \mathcal{F}_t for $t \leq \frac{n}{8}$.
Problem (Csaba, Faudree, Gyárfás, Lehel, Schelp, 1991))

Let $G = K_n$ and let $F_t = \{D : \Delta(D) \leq t\}$. What is the maximum of t for which G is terminal-pairable w.r.t. F_t?

Theorem (Csaba, Faudree, Gyárfás, Lehel, Schelp, 1991)

- K_n is terminal-pairable w.r.t. F_t for $t \leq \frac{n}{8}$.
- K_n is not terminal-pairable w.r.t. F_t for $t > \frac{n}{2}$.

Theorem (Győri, Mezei, M., 2016)

K_n is terminal-pairable w.r.t. F_t for $t \leq \frac{n}{3} - c$.

Theorem (Girão, M., 2016)

K_n is not terminal-pairable w.r.t. F_t for $t > \frac{13}{27}n + c$.

Gábor Mészáros

On the maximum degree of path-pairable graphs
Let $G = K_n$ and let $\mathcal{F}_t = \{D : \Delta(D) \leq t\}$. What is the maximum of t for which G is terminal-pairable w.r.t. \mathcal{F}_t?

Theorem (Csaba, Faudree, Gyárfás, Lehel, Schelp, 1991)

- K_n is terminal-pairable w.r.t. \mathcal{F}_t for $t \leq \frac{n}{8}$.
- K_n is not terminal-pairable w.r.t. \mathcal{F}_t for $t > \frac{n}{2}$.

Theorem (Győri, Mezei, M., 2016)

K_n is terminal-pairable w.r.t. \mathcal{F}_t for $t \leq \frac{n}{3} - c$.
Terminal-Pairability in Graphs

Problem (Csaba, Faudree, Gyárfás, Lehel, Schelp, 1991))

Let $G = K_n$ and let $\mathcal{F}_t = \{D : \Delta(D) \leq t\}$. What is the maximum of t for which G is terminal-pairable w.r.t. \mathcal{F}_t?

Theorem (Csaba, Faudree, Gyárfás, Lehel, Schelp, 1991)

- K_n is terminal-pairable w.r.t. \mathcal{F}_t for $t \leq \frac{n}{8}$.
- K_n is not terminal-pairable w.r.t. \mathcal{F}_t for $t > \frac{n}{2}$.

Theorem (Győri, Mezei, M., 2016)

K_n is terminal-pairable w.r.t. \mathcal{F}_t for $t \leq \frac{n}{3} - c$.

Theorem (Girão, M., 2016)

K_n is not terminal-pairable w.r.t. \mathcal{F}_t for $t > \frac{13}{27}n + c$.
Theorem (Győri, Mezei, M.)

Let $G = K_n^t$ and let $D = (V(D), E(D))$ be a demand graph with $V(D) = V(K_n^t)$ and $\Delta(D) \leq \lfloor \frac{t}{6} \rfloor - 2$ even. Then every demand edge of D can be assigned a path in G joining the same endpoints such that the system of paths is edge-disjoint.

Corollary

If $t \geq 24$, K_n^t is path-pairable.

Corollary

$\Delta_{\text{min}} \leq 2 \cdot \log n$.

Gábor Mészáros

On the maximum degree of path-pairable graphs
Theorem (Győri, Mezei, M.)

Let $G = K_n^t$ and let $D = (V(D), E(D))$ be a demand graph with $V(D) = V(K_n^t)$ and $\Delta(D) \leq \lfloor \frac{t}{6} \rfloor - 2$ even. Then every demand edge of D can be assigned a path in G joining the same endpoints such that the system of paths is edge-disjoint.

Corollary

If $t \geq 24$, K_n^t is path-pairable.
Theorem (Győri, Mezei, M.)

Let $G = K_t^n$ and let $D = (V(D), E(D))$ be a demand graph with $V(D) = V(K_t^n)$ and $\Delta(D) \leq \lfloor \frac{t}{6} \rfloor - 2$ even. Then every demand edge of D can be assigned a path in G joining the same endpoints such that the system of paths is edge-disjoint.

Corollary

If $t \geq 24$, K_t^n is path-pairable.

Corollary

$\Delta_{min} \leq 5.2 \cdot \log n.$
Open Problems

- $\frac{\log n}{\log \log n} < \Delta < c \cdot \log n$
- Q_n is path-pairable.
- Sharp bound on the terminal-pairability of complete graphs.
- Path-pairable planar graphs.
- Δ-forcing in k-path-pairable graphs.