Algebraic reflexivity of spaces of analytic functions

Priyadarshi Dey

University of Memphis

pdey@memphis.edu

May 4, 2018
Outline

1. Introduction
2. Definitions and Notations
3. Some results
4. Question: Is S^p algebraic reflexive?
5. Proof of S^p is algebraically reflexive
Introduction

Problem: Kaplansky’s question: When is a function locally given by a polynomial is a polynomial?

In this talk we will answer a similar question related to isometry of some space.

People who have mostly work on this Kadison, Larson, TSSRK Rao, Jamison, Fernanda Botelho, Molnar and more..
• \mathbb{C} denotes the set of all complex numbers.
Definitions and Notations

- \(\mathbb{C} \) denotes the set of all complex numbers.
- \(\mathbb{D} \) denotes the open unit disk in \(\mathbb{C} \).
Definitions and Notations

- \(\mathbb{C} \) denotes the set of all complex numbers.
- \(\mathbb{D} \) denotes the open unit disk in \(\mathbb{C} \).
- \(\mathbb{T} = \{ z \in \mathbb{C} : |z| = 1 \} \).
Definition (Isometry)

Given two normed space X and Y, we say a linear map $T : X \rightarrow Y$ an isometry if

$$\|Tx\| = \|x\| \text{ for every } x \in X$$

Definition (Locally Surjective Isometry)

A linear map T from a Banach space X into itself is called Locally Surjective Isometry if for each $a \in X$ there is a surjective isometry $T_a : X \rightarrow Y$ such that $T(a) = T_a(a)$

Definition (Algebraic Reflexivity)

A Banach space X is called Algebraic Reflexive if any locally surjective isometry on X is surjective.
Definitions

Definition (Isometry)
Given two normed space X and Y, we say a linear map $T: X \mapsto Y$ an isometry if

$$\|Tx\| = \|x\| \text{ for every } x \in X$$

Definition (Locally Surjective Isometry)
A linear map T from a Banach space X into itself is called Locally Surjective Isometry if for each $a \in X$ there is a surjective isometry $T_a: X \rightarrow Y$ such that $T(a) = T_a(a)$
Definitions

Definition (Isometry)

Given two normed space X and Y, we say a linear map $T : X \mapsto Y$ an isometry if

$$\|Tx\| = \|x\| \text{ for every } x \in X$$

Definition (Locally Surjective Isometry)

A linear map T from a Banach space X into itself is called Locally Surjective Isometry if for each $a \in X$ there is a surjective isometry $T_a : X \rightarrow Y$ such that $T(a) = T_a(a)$

Definition (Algebraic Reflexivity)

A Banach space X is called Algebraic Reflexive if any locally surjective isometry on X is surjective.
A holomorphic function $h: \mathbb{C} \to \mathbb{C}$ is called an inner function if $|z| \leq 1$ on the unit disk and $\lim_{r \to 1^-} h(re^{i\theta})$ exists for almost all θ and its modulus is 1 a.e.
Definitions and Notations

Definition (Inner function)

A holomorphic function \(h: \mathbb{C} \mapsto \mathbb{C} \) is called an inner function if \(|z| \leq 1 \) on the unit disk and \(\lim_{r \to 1^-} h(re^{i\theta}) \) exists for almost all \(\theta \) and its modulus is 1 a.e.

Definition (Conformal map)

Let \(U \) and \(V \) be subsets of \(\mathbb{D} \). A function \(f: U \mapsto V \) is called conformal at a point \(u_0 \in U \) if it preserves angles between directed curves through \(u_0 \), as well as preserving orientation.
Theorem (Conformal maps on \mathbb{D})

Let ϕ be a conformal map from \mathbb{D} into \mathbb{D}. Then, $\exists \theta \in \mathbb{R}$ such that

$$\phi(z) = e^{i\theta} \frac{z - \alpha}{1 - \overline{\alpha}z} \quad (\alpha \in \mathbb{D})$$
The space S^p

Definition (The Hardy Space, H^p)

For $p \geq 2$,

$$H^p := \left\{ f : \mathbb{D} \xrightarrow{\text{analytic}} \mathbb{D} : \sup_{0 \leq r < 1} \left(\frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^p \, d\theta \right)^{\frac{1}{p}} < \infty \right\}$$
The space S^p

Definition (The Hardy Space, H^p)

For $p \geq 2$,

$$H^p := \{ f : \mathbb{D} \xrightarrow{\text{analytic}} \mathbb{D} : \sup_{0 < r < 1} \left(\frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^p \, d\theta \right)^{\frac{1}{p}} < \infty \}$$

Definition (The space S^p)

For $p \geq 2$,

$$S^p := \{ f : \mathbb{D} \rightarrow \mathbb{D} \text{ analytic} : f' \in H^p \}$$
The space S^p

Definition (The Hardy Space, H^p)

For $p \geq 2$,

$$H^p := \{ f : \mathbb{D} \xrightarrow{\text{analytic}} \mathbb{D} : \sup_{0 \leq r < 1} \left(\frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^p \, d\theta \right)^{\frac{1}{p}} < \infty \}$$

Definition (The space S^p)

For $p \geq 2$,

$$S^p := \{ f : \mathbb{D} \to \mathbb{D} \text{ analytic} : f' \in H^p \}$$

The norm we consider on S^p is given by

$$\|f\| = |f(0)| + \|f'||_p$$
Isometries of H^p

Theorem (F. Forelli, Can. J. Math. 16 (1964), 721-728)

Suppose that $p \neq 2$ and T is a linear isometry from H^p into H^p. Then there is a non constant inner function ϕ and a function $F \in H^p$ such that

$$Tf = F \cdot f(\phi)$$
The isometries of S^p with $\|f\| = |f(0)| + \|f'\|_p$

Theorem (Into isometries of S^p, W.P. Novinger & D.M. Oberlin)

Let T be a linear isometry of S^p into S^p. Then there is a linear isometry τ of H^p into H^p and a unimodular complex number λ such that

$$Tf(z) = \lambda[f(0) + \int_0^z \tau f'(\zeta)d\zeta]$$
The isometries of S^p with $\|f\| = |f(0)| + \|f'\|_p$

Theorem (Into isometries of S^p, W.P. Novinger & D.M. Oberlin)

Let T be a linear isometry of S^p into S^p. Then there is a linear isometry τ of H^p into H^p and a unimodular complex number λ such that

$$Tf(z) = \lambda [f(0) + \int_0^z \tau f'(\zeta)d\zeta]$$

Corollary

Let T be a linear isometry of S^p into S^p and $p \neq 2$. Then there is a non-constant inner function ϕ and a function F in H^p such that

$$Tf(z) = \lambda [f(0) + \int_0^z F(\zeta)f'(\phi(\zeta))d\zeta], z \in \mathbb{D}, f \in S^p$$
Onto isometries of S^p

Theorem (Onto isometries of S^p, W.P.Novinger & D.M.Oberlin)

Let T be a linear isometry of S^p onto S^p, $p \neq 2$. Then $\exists \lambda, \mu \in \mathbb{T}$ and a conformal map $\phi: \mathbb{D} \to \mathbb{D}$ such that

$$Tf(z) = \lambda[f(0) + \mu \int_0^z [\phi'(\zeta)]^{\frac{1}{p}} f'(\phi(\zeta)) d\zeta]$$
Onto isometries of S^p

Theorem (Onto isometries of S^p, W.P. Novinger & D.M. Oberlin)

Let T be a linear isometry of S^p onto S^p, $p \neq 2$. Then $\exists \lambda, \mu \in \mathbb{T}$ and a conformal map $\phi: \mathbb{D} \mapsto \mathbb{D}$ such that

$$Tf(z) = \lambda[f(0) + \mu \int_0^z [\phi'(\zeta)]^{\frac{1}{p}} f'(\phi(\zeta)) d\zeta]$$

Conversely, this equation defines an isometry T of S^p onto S^p.
Is S^p algebraic reflexive?
Into isometries on S^p: $Tf(z) = \lambda [f(0) + \int_0^z \tau f'(\zeta) d\zeta]$

Onto isometries: $Tf(z) = \lambda [f(0) + \mu \int_0^z [\phi'(\zeta)]^{\frac{1}{p}} f'(\phi(\zeta)) d\zeta]$

Theorem (F. Botelho, J. Jamison)

For each $p \neq 2$, S^p is Algebraic reflexive.
Into isometries on S^p: $Tf(z) = \lambda [f(0) + \int_0^z \tau f'(\zeta) d\zeta]$

Onto isometries: $Tf(z) = \lambda [f(0) + \mu \int_0^z [\phi'(\zeta)]^{1/p} f'(\phi(\zeta)) d\zeta]$

Theorem (F. Botelho, J. Jamison)

For each $p \neq 2$, S^p is Algebraic reflexive.

Proof.

We have to prove any locally surjective isometry is surjective on S^p.
Into isometries on S^p: $Tf(z) = \lambda [f(0) + \int_0^z \tau f'(\zeta) d\zeta]$

Onto isometries: $Tf(z) = \lambda [f(0) + \mu \int_0^z [\phi'(\zeta)]^{\frac{1}{p}} f'(\phi(\zeta)) d\zeta]$

Theorem (F. Botelho, J. Jamison)

For each $p \neq 2$, S^p is Algebraic reflexive.

Proof.

We have to prove any locally surjective isometry is surjective on S^p. Let T be a locally surjective isometry. Then by a previous theorem,

$$Tf(z) = \lambda [f(0) + \int_0^z F(\zeta) f'(\phi(\zeta)) d\zeta] \quad f \in S^p$$
Into isometries on S^p: $Tf(z) = \lambda [f(0) + \int_0^z \tau f'(\zeta) d\zeta]$

Onto isometries: $Tf(z) = \lambda [f(0) + \mu \int_0^z [\phi'(\zeta)]^{\frac{1}{p}} f'(\phi(\zeta)) d\zeta]$

Theorem (F. Botelho, J. Jamison)

For each $p \neq 2$, S^p is Algebraic reflexive.

Proof.

We have to prove any locally surjective isometry is surjective on S^p. Let T be a locally surjective isometry. Then by a previous theorem,

$$Tf(z) = \lambda [f(0) + \int_0^z F(\zeta)f'(\phi(\zeta))d\zeta] \quad f \in S^p$$

$$= \lambda_f [f(0) + \mu_f \int_0^z [\phi_f'(\zeta)]^{\frac{1}{p}} f'(\phi_f(\zeta))d\zeta] \quad (1)$$
\[\lambda[f(0) + \int_0^z F(\zeta)f'(\phi(\zeta))d\zeta] = \]
\[\lambda_f[f(0) + \mu_f \int_0^z \left(\phi'_{f(\zeta)} \right)^{1/p} f'(\phi_{f(\zeta)})d\zeta] \]

Proof.

To prove, \(\lambda_f = \lambda \).
Proof.

To prove, $\lambda_f = \lambda$.

Taking the derivative of (1), we get:

$$
\lambda \cdot F(z)f'(\phi(z)) = \lambda_f \mu_f [\phi_f'(z)]^{\frac{1}{p}} f'(\phi_f(z)) \ , \ \forall f
$$
\[
\lambda [f(0) + \int_0^z F(\zeta)f'(\phi(\zeta))d\zeta] = \\
\lambda f[0] + \mu f \int_0^Z [\phi_f'(\zeta)]^{1/p} f'(\phi_f(\zeta))d\zeta
\]

Proof.

To prove, \(\lambda_f = \lambda \).

Taking the derivative of (1), we get:

\[
\lambda \cdot F(z)f'(\phi(z)) = \lambda_f \mu_f [\phi_f'(z)]^{1/p} f'(\phi_f(z)) , \forall f
\]

Now, from (1),

\[
\lambda f(0) + \int_0^Z \lambda F(\zeta)f'(\phi(\zeta))d\zeta = \lambda f(0) + \int_0^Z \lambda_f \mu_f [\phi_f'(\zeta)]^{1/p} f'(\phi_f(\zeta))d\zeta
\]
\[\lambda \left[f(0) + \int_0^z F(\zeta)f'(\phi(\zeta))d\zeta \right] = \\
\lambda_f \left[f(0) + \mu_f \int_0^z \left[\phi_f'(\zeta) \right] \frac{1}{p} f'\left(\phi_f(\zeta) \right) d\zeta \right] \]

Proof.

To prove, \(\lambda_f = \lambda \).

Taking the derivative of (1), we get:

\[
\lambda \cdot F(z)f'(\phi(z)) = \lambda_f \mu_f \left[\phi_f'(z) \right] \frac{1}{p} f'\left(\phi_f(z) \right) , \quad \forall f
\]

Now, from (1),

\[
\lambda f(0) + \int_0^z \lambda F(\zeta)f'(\phi(\zeta))d\zeta = \lambda_f f(0) + \int_0^z \lambda_f \mu_f \left[\phi_f'(\zeta) \right] \frac{1}{p} f'\left(\phi_f(\zeta) \right) d\zeta
\]

Then, \(\lambda_f = \lambda, \ \forall f \)
Proof.

Now, substituting $\lambda_f = \lambda$ in (1), we get,
Proof.

Now, substituting $\lambda_f = \lambda$ in (1), we get,

$$\lambda [f(0) + \int_0^Z F(\zeta) f'(\phi(\zeta)) \, d\zeta] = \lambda_f [f(0) + \mu_f \int_0^Z [\phi_f'(\zeta)]^{\frac{1}{p}} f'(\phi_f(\zeta)) \, d\zeta]$$
\[
\lambda \left[f(0) + \int_0^z F(\zeta) f'(\phi(\zeta)) d\zeta \right] = \\
\lambda_f \left[f(0) + \mu_f \int_0^z \left[\phi_f'(\zeta) \right] \frac{1}{p} f'(\phi_f(\zeta)) d\zeta \right]
\]

Proof.

Now, substituting \(\lambda_f = \lambda \) in (1), we get,

\[
\lambda \left[f(0) + \int_0^z F(\zeta) f'(\phi(\zeta)) d\zeta \right] = \lambda \left[f(0) + \mu_f \int_0^z \left[\phi_f'(\zeta) \right] \frac{1}{p} f'(\phi_f(\zeta)) d\zeta \right]
\]

\[\Rightarrow \int_0^z F(\zeta) f'(\phi(\zeta)) d\zeta = \mu_f \int_0^z \left[\phi_f'(\zeta) \right] \frac{1}{p} f'(\phi_f(\zeta)) d\zeta\]
\[
\lambda \left[f(0) + \int_0^z F(\zeta)f'(\phi(\zeta))d\zeta \right] = \\
\lambda_f \left[f(0) + \mu_f \int_0^z \left[\phi_f'(\zeta) \right]^{\frac{1}{p}} f'(\phi_f(\zeta))d\zeta \right]
\]

Proof.

Now, substituting \(\lambda_f = \lambda \) in (1), we get,

\[
\lambda \left[f(0) + \int_0^z F(\zeta)f'(\phi(\zeta))d\zeta \right] = \lambda \left[f(0) + \mu_f \int_0^z \left[\phi_f'(\zeta) \right]^{\frac{1}{p}} f'(\phi_f(\zeta))d\zeta \right]
\]

\[\implies \int_0^z F(\zeta)f'(\phi(\zeta))d\zeta = \mu_f \int_0^z \left[\phi_f'(\zeta) \right]^{\frac{1}{p}} f'(\phi_f(\zeta))d\zeta\]

This implies \(F(z)f'(\phi(z)) = \mu_f \left[\phi_f'(z) \right]^{\frac{1}{p}} f'(\phi_f(z))\).
\[\lambda[f(0) + \int_0^z F(\zeta) f'(\phi(\zeta)) d\zeta] = \lambda_f[f(0) + \mu_f \int_0^z [\phi_f'(\zeta)]^{\frac{1}{p}} f'(\phi_f(\zeta)) d\zeta] \]

Proof.

Now, substituting \(\lambda_f = \lambda \) in (1), we get,

\[\lambda[f(0) + \int_0^z F(\zeta)f'(\phi(\zeta)) d\zeta] = \lambda[f(0) + \mu_f \int_0^z [\phi_f'(\zeta)]^{\frac{1}{p}} f'(\phi_f(\zeta))] d\zeta \]

\[\implies \int_0^z F(\zeta)f'(\phi(\zeta)) d\zeta = \mu_f \int_0^z [\phi_f'(\zeta)]^{\frac{1}{p}} f'(\phi_f(\zeta)) d\zeta \]

by derivative

\[\implies F(z)f'(\phi(z)) = \mu_f [\phi_f'(z)]^{\frac{1}{p}} f'(\phi_f(z)) \]

\[\implies F(z)f'(\phi(z)) = \mu_f f'(\phi_f(z)) \left[e^{i\theta_f} \frac{1 - |\alpha_f|^2}{(1 - \bar{\alpha_f} z)^2} \right]^{\frac{1}{p}} \]
$F(z)f'\left(\phi(z)\right) = \mu_f f'\left(\phi_f(z)\right) \left[e^{i\theta_f} \frac{1-|\alpha_f|^2}{(1-\alpha_f z)^2} \right]^{\frac{1}{p}}$

Proof.

Choose, $f(z) = z$ and denote:

$$\mu_f(z) = z = \mu_1$$

$$\alpha_f(z) = z = \alpha_1$$
Proof.

Choose, \(f(z) = z \) and denote:

\[
\mu_f(z) = z = \mu_1
\]
\[
\alpha_f(z) = z = \alpha_1
\]

So,

\[
F(z) = \mu_1 \left[e^{i\theta_1} \frac{1 - |\alpha_1|^2}{(1 - \alpha_1 \bar{z})^2} \right]^{\frac{1}{p}}
\]

\[(2) \]
\[F(z) f'(\phi(z)) = \mu_f f'(\phi_f(z)) \left[e^{i\theta_f} \frac{1-|\alpha_f|^2}{(1-\alpha_f z)^2} \right]^{\frac{1}{p}} \]

Proof.

Choose, \(f(z) = z \) and denote:

\[
\mu_f(z) = z = \mu_1 \\
\alpha_f(z) = z = \alpha_1
\]

So,

\[
F(z) = \mu_1 \left[e^{i\theta_1} \frac{1-|\alpha_1|^2}{(1-\alpha_1 z)^2} \right]^{\frac{1}{p}} \tag{2}
\]

Choose, \(f(z) = \frac{z^2}{2} \) and denote:

\[
\mu_f(z) = \frac{z^2}{2} = \mu_2 \\
\alpha_f(z) = \frac{z^2}{2} = \alpha_2
\]
$$F(z)f'(\phi(z)) = \mu_f f'(\phi_f(z)) \left[e^{i\theta_f} \frac{1 - |\alpha_f|^2}{(1 - \bar{\alpha}_f z)^2} \right]^{\frac{1}{p}}$$

Proof.

So,

$$F(z)\phi(z) = \mu_2 \phi_2(z) \left[e^{i\theta_2} \frac{1 - |\alpha_2|^2}{(1 - \bar{\alpha}_2 z)^2} \right]^{\frac{1}{p}} \tag{3}$$

Taking the ratio of (3) and (2) we get,
\[F(z)f'(\phi(z)) = \mu_f f'(\phi_f(z)) \left[e^{i\theta_f} \frac{1 - |\alpha_f|^2}{(1 - \overline{\alpha_f}z)^2} \right]^{\frac{1}{p}} \]

Proof.

So,

\[F(z)\phi(z) = \mu_2 \phi_2(z) \left[e^{i\theta_2} \frac{1 - |\alpha_2|^2}{(1 - \overline{\alpha_2}z)^2} \right]^{\frac{1}{p}} \tag{3} \]

Taking the ratio of (3) and (2) we get,

\[\phi(z) = \frac{\mu_2}{\mu_1} \phi_2(z) \left[e^{i(\theta_2 - \theta_1)} \left(\frac{1 - |\alpha_2|^2}{1 - |\alpha_1|^2} \right) \left(\frac{1 - \alpha_1 z}{1 - \overline{\alpha_2}z} \right)^2 \right]^{\frac{1}{p}} \]
\[F(z) f'(\phi(z)) = \mu_f f'(\phi_f(z)) \left[e^{i\theta_f} \frac{1-|\alpha_f|^2}{(1-\bar{\alpha}_f z)^2} \right]^{\frac{1}{p}} \]

Proof.

So,

\[F(z)\phi(z) = \mu_2 \phi_2(z) \left[e^{i\theta_2} \frac{1-|\alpha_2|^2}{(1-\bar{\alpha}_2 z)^2} \right]^{\frac{1}{p}} \tag{3} \]

Taking the ratio of (3) and (2) we get,

\[
\phi(z) = \frac{\mu_2}{\mu_1} \phi_2(z) \left[e^{i(\theta_2-\theta_1)} \left(\frac{1-|\alpha_2|^2}{1-|\alpha_1|^2} \right) \left(\frac{1-\alpha_1 z}{1-\bar{\alpha}_2 z} \right)^2 \right]^{\frac{1}{p}} \\
= \beta \left[\left(\frac{1-|\alpha_2|^2}{1-|\alpha_1|^2} \right) \left(\frac{1-\alpha_1 z}{1-\bar{\alpha}_2 z} \right)^2 \right]^{\frac{1}{p}} \phi_2(z) \text{ where } \beta = \frac{\mu_2}{\mu_1} [e^{i(\theta_2-\theta_1)}]^{\frac{1}{p}} \tag{4} \]
\[\phi(z) = \beta \left[\left(\frac{1-|\alpha_2|^2}{1-|\alpha_1|^2} \right) \left(\frac{1-\alpha_1^* z}{1-\bar{\alpha}_2 z} \right)^2 \right]^{\frac{1}{p}} \phi_2(z) \]

Proof.

Now, for \(|z| = 1|, \)

\[|\phi(z)| = |\beta| \left[|\frac{1-|\alpha_2|^2}{1-|\alpha_1|^2}| \cdot |\frac{1-\alpha_1^* z}{1-\bar{\alpha}_2 z}|^2 \right]^{\frac{1}{p}} |\phi_2(z)| \]
\[\phi(z) = \beta \left[\left(\frac{1 - |\alpha_2|^2}{1 - |\alpha_1|^2} \right) \left(\frac{1 - \bar{\alpha}_1 z}{1 - \bar{\alpha}_2 z} \right)^2 \right]^{\frac{1}{p}} \phi_2(z) \]

Proof.

Now, for \(|z| = 1\),

\[
|\phi(z)| = |\beta| \left[\left| \frac{1 - |\alpha_2|^2}{1 - |\alpha_1|^2} \right| \left| \frac{1 - \bar{\alpha}_1 z}{1 - \bar{\alpha}_2 z} \right|^2 \right]^{\frac{1}{p}} |\phi_2(z)|
\]

\[\Rightarrow 1 = \left[\left| \frac{1 - |\alpha_2|^2}{1 - |\alpha_1|^2} \left(\frac{1 - \bar{\alpha}_1 z}{1 - \bar{\alpha}_2 z} \right) \right|^2 \right]^{\frac{1}{p}} \]
\[\phi(z) = \beta \left[\left(\frac{1 - |\alpha_2|^2}{1 - |\alpha_1|^2} \right) \left(\frac{1 - \alpha_1^* z}{1 - \alpha_2^* z} \right)^2 \right]^{\frac{1}{p}} \phi_2(z) \]

Proof.

Now, for \(|z| = 1\),

\[
|\phi(z)| = |\beta| \left| \frac{1 - |\alpha_2|^2}{1 - |\alpha_1|^2} \right| |\frac{1 - \alpha_1^* z}{1 - \alpha_2^* z}|^2 |\phi_2(z)|
\]

\[
\implies 1 = \left| \sqrt{\frac{1 - |\alpha_2|^2}{1 - |\alpha_1|^2}} \left(\frac{1 - \alpha_1^* z}{1 - \alpha_2^* z} \right) \right|^2 \left[\right]^{\frac{1}{p}}
\]

\[
\implies 1 = \left| \sqrt{\frac{1 - |\alpha_2|^2}{1 - |\alpha_1|^2}} \left(\frac{1 - \alpha_1^* z}{1 - \alpha_2^* z} \right) \right|
\]
Proof.

Define a function \(\omega : \mathbb{D} \rightarrow \mathbb{D} \) by,

\[
\omega(z) := \sqrt{\frac{1-|\alpha_2|^2}{1-|\alpha_1|^2}} \left(\frac{1-\bar{\alpha}_1 z}{1-\bar{\alpha}_2 z} \right)
\]
Proof.

Define, a function $\omega : \mathbb{D} \to \mathbb{D}$ by,

$$\omega(z) := \sqrt{\frac{1-|\alpha_2|^2}{1-|\alpha_1|^2}} \left(\frac{1-\bar{\alpha}_1 z}{1-\bar{\alpha}_2 z} \right)$$

Note that, ω is \mathbb{T} invariant.
Proof.

Define, a function \(\omega : \mathbb{D} \to \mathbb{D} \) by,

\[
\omega(z) := \sqrt{\frac{1 - |\alpha_2|^2}{1 - |\alpha_1|^2}} \left(\frac{1 - \bar{\alpha}_1 z}{1 - \bar{\alpha}_2 z} \right)
\]

Note that, \(\omega \) is \(\mathbb{T} \) invariant.

Fact: Any holomorphic function on \(\mathbb{D} \) which is continuous on \(\overline{\mathbb{D}} \) and leaves \(\mathbb{T} \) invariant is either constant or has at least one zero in \(\mathbb{D} \).
Proof.

Define, a function \(\omega : \mathbb{D} \rightarrow \mathbb{D} \) by,

\[
\omega(z) := \sqrt{\frac{1-|\alpha_2|^2}{1-|\alpha_1|^2}} \left(\frac{1-\bar{\alpha}_1 z}{1-\bar{\alpha}_2 z} \right)
\]

Note that, \(\omega \) is \(\mathbb{T} \) invariant.

Fact: Any holomorphic function on \(\mathbb{D} \) which is continuous on \(\bar{\mathbb{D}} \) and leaves \(\mathbb{T} \) invariant is either constant or has at least one zero in \(\mathbb{D} \).

Since, the only zero of \(\omega \) is at \(z = \frac{1}{\bar{\alpha}_1} \notin \mathbb{D} \), \(\omega \) is constant.
Proof.

That implies that, $\alpha_1 = \alpha_2$.
Proof.

That implies that, $\alpha_1 = \alpha_2$.

Then from equation (4) we get

$$\phi(z) = \frac{\mu_2}{\mu_1} \phi_2(z)$$ (5)
Proof continues

Proof.

That implies that, $\alpha_1 = \alpha_2$.

Then from equation (4) we get

$$\phi(z) = \frac{\mu_2}{\mu_1} \phi_2(z)$$

(5)

Since ϕ_2 is conformal then ϕ is also conformal.

Therefore T is of the form of a surjective isometry.
Proof continues

Proof.

That implies that, \(\alpha_1 = \alpha_2 \).

Then from equation (4) we get

\[
\phi(z) = \frac{\mu_2}{\mu_1} \phi_2(z)
\]

(5)

Since \(\phi_2 \) is conformal then \(\phi \) is also conformal.

Therefore \(T \) is of the form of a surjective isometry.

Hence \(T \) is a surjective isometry, which proves \(S^p \) is algebraic reflexive.

Thank you!
(*) Denote, \(\phi_2(z) \) be the conformal map corresponding to the choice of \(f(z) = \frac{z^2}{2} \). Then, (4) together with \(\alpha_1 = \alpha_2 \) gives,

\[
\phi(z) = \beta \phi_2(z)
\]

Then, (2) implies,

\[
F(z) = \mu_1 [\phi_1'(z)]^{\frac{1}{p}}
= \gamma' [\phi_2'(z)]^{\frac{1}{p}}
= \mu_1 \cdot (e^{i\theta_1})^{\frac{1}{p}}
= \gamma' \beta \phi'(z)^{\frac{1}{p}}
= \mu \phi'(z), \mu = \gamma' \beta
\]