Pairs of operators coinciding on the orthocomplement of the sum of kernels

Marko Djikić
University of Niš, Serbia

RTOTA – Memphis USA, May 4th 2018
The setting and outline

- Our setting: arbitrary complex Hilbert spaces \mathcal{H} and \mathcal{K}, and two bounded operators between them: $A, B : \mathcal{H} \to \mathcal{K}$ having a special property:

$$A$$ and $$B$$ coincide on

$$(\text{Ker}(A) + \text{Ker}(B))\perp = \text{Ker}(A)\perp \cap \text{Ker}(B)\perp = \text{cl}(\text{Im}(A^*)) \cap \text{cl}(\text{Im}(B^*)).$$

- Particularly interesting are the pairs when the same holds for A^* and B^*.

A and B coincide on

$$(\text{Ker}(A) + \text{Ker}(B))\perp = \text{Ker}(A)\perp \cap \text{Ker}(B)\perp = \text{cl}(\text{Im}(A^*)) \cap \text{cl}(\text{Im}(B^*)).$$
The setting and outline

- Our setting: arbitrary complex Hilbert spaces \mathcal{H} and \mathcal{K}, and two bounded operators between them: $A, B : \mathcal{H} \to \mathcal{K}$ having a special property:

 - A and B coincide on $(\text{Ker}(A) + \text{Ker}(B))^\perp = \text{Ker}(A)^\perp \cap \text{Ker}(B)^\perp = \overline{\text{cl}(\text{Im}(A^*))} \cap \overline{\text{cl}(\text{Im}(B^*))}$.

- Particularly interesting are the pairs when the same holds for A^* and B^*.

Outline

- A few examples.
- Results regarding the geometry of ranges of such pairs.
- Results on invertibility of the sum $A + B$.
- A quick application.
The setting and outline

- Our setting: arbitrary complex Hilbert spaces \(\mathcal{H} \) and \(\mathcal{K} \), and two bounded operators between them: \(A, B : \mathcal{H} \rightarrow \mathcal{K} \) having a special property:

\[
A \text{ and } B \text{ coincide on } \quad (\ker(A) + \ker(B))^\perp = \ker(A)^\perp \cap \ker(B)^\perp = \text{cl}(\text{Im}(A^*)) \cap \text{cl}(\text{Im}(B^*)).
\]

- Particularly interesting are the pairs when the same holds for \(A^* \) and \(B^* \).

Outline

- A few examples.
- Results regarding the geometry of ranges of such pairs.
- Results on invertibility of the sum \(A + B \).
- A quick application.

Many results here are from a joint work with Alejandra Maestripieri.
Examples

Reminder

\[A = B \text{ on } (\ker(A) + \ker(B))^\perp = \ker(A)^\perp \cap \ker(B)^\perp = \text{cl}(\text{Im}(A^*)) \cap \text{cl}(\text{Im}(B^*)). \]
Examples

Reminder

\[A = B \text{ on } (\text{Ker}(A) + \text{Ker}(B))^\perp = \text{Ker}(A)^\perp \cap \text{Ker}(B)^\perp = \text{c} \ell(\text{Im}(A^*)) \cap \text{c} \ell(\text{Im}(B^*)). \]

- Pairs of orthogonal projections \(P_M, P_N \).
- More generally: pairs \(PQ \) and \(QP \).
- Pairs for which \(\text{Ker}(A)^\perp \cap \text{Ker}(B)^\perp = \{0\} \) and/or \(\text{Ker}(A^*)^\perp \cap \text{Ker}(B^*)^\perp = \{0\} \) (studied on many occasions in different forms).
- Parallel sum of operators.
Examples

Reminder

\[A = B \text{ on } (\ker(A) + \ker(B))^\perp = \ker(A)^\perp \cap \ker(B)^\perp = c\ell(\im(A^*)) \cap c\ell(\im(B^*)). \]

- Pairs of orthogonal projections \(P_M, P_N \).
- More generally: pairs \(PQ \) and \(QP\).
- Pairs for which \(\ker(A)^\perp \cap \ker(B)^\perp = \{0\} \) and/or \(\ker(A^*)^\perp \cap \ker(B^*)^\perp = \{0\} \) (studied on many occasions in different forms).
- Parallel sum of operators.

- We can say that our results extend results for these classes of operators, but this wasn’t our goal.
Range additivity and closed ranges

- Obviously: $\text{Im}(A + B) \subseteq \text{Im}(A) + \text{Im}(B)$.

Operators $A, B : \mathcal{H} \to \mathcal{K}$ are **range additive** if: $\text{Im}(A + B) = \text{Im}(A) + \text{Im}(B)$.

- Algebra + geometry.
Obviously: \(\text{Im}(A + B) \subseteq \text{Im}(A) + \text{Im}(B) \).

Operators \(A, B : \mathcal{H} \rightarrow \mathcal{K} \) are **range additive** if: \(\text{Im}(A + B) = \text{Im}(A) + \text{Im}(B) \).

Algebra + geometry.

Positive operators \(A \) and \(B \) are always **almost** range additive: since \(\ker(A + B) = \ker(A) \cap \ker(B) \), we get: \(\text{cl}(\text{Im}(A + B)) = \text{cl}(\text{Im}(A) + \text{Im}(B)) \).
Range additivity and closed ranges

- Obviously: \(\text{Im}(A + B) \subseteq \text{Im}(A) + \text{Im}(B) \).

Operators \(A, B : \mathcal{H} \rightarrow \mathcal{K} \) are **range additive** if: \(\text{Im}(A + B) = \text{Im}(A) + \text{Im}(B) \).

- Algebra + geometry.

- Positive operators \(A \) and \(B \) are always **almost** range additive: since \(\text{Ker}(A + B) = \text{Ker}(A) \cap \text{Ker}(B) \), we get: \(\text{cl}(\text{Im}(A + B)) = \text{cl}(\text{Im}(A) + \text{Im}(B)) \).

 In fact: \(\text{Im}(A + B) \) is closed iff \(\text{Im}(A) + \text{Im}(B) \) is closed. (Arias et al. 2013)
Range additivity and closed ranges

- Obviously: \(\text{Im}(A + B) \subseteq \text{Im}(A) + \text{Im}(B) \).

Operators \(A, B : \mathcal{H} \to \mathcal{K} \) are **range additive** if: \(\text{Im}(A + B) = \text{Im}(A) + \text{Im}(B) \).

- Algebra + geometry.

- Positive operators \(A \) and \(B \) are always **almost** range additive: since \(\text{Ker}(A + B) = \text{Ker}(A) \cap \text{Ker}(B) \), we get: \(\text{cl}(\text{Im}(A + B)) = \text{cl}(\text{Im}(A) + \text{Im}(B)) \).

 In fact: \(\text{Im}(A + B) \) is closed iff \(\text{Im}(A) + \text{Im}(B) \) is closed. (Arias et al. 2013)

- Two orthogonal projections \(P_M \) and \(P_N \) are range additive iff \(M + N \) is closed. (Folklore; Anderson and Schreiber 1971)
Range additivity and closed ranges

- Obviously: $\text{Im}(A + B) \subseteq \text{Im}(A) + \text{Im}(B)$.

Operators $A, B : \mathcal{H} \to \mathcal{K}$ are **range additive** if: $\text{Im}(A + B) = \text{Im}(A) + \text{Im}(B)$.

- Algebra + geometry.

- Positive operators A and B are always **almost** range additive: since $\text{Ker}(A + B) = \text{Ker}(A) \cap \text{Ker}(B)$, we get: $\text{cl}(\text{Im}(A + B)) = \text{cl}(\text{Im}(A) + \text{Im}(B))$.

 In fact: $\text{Im}(A + B)$ is closed iff $\text{Im}(A) + \text{Im}(B)$ is closed. (Arias et al. 2013)

- Two orthogonal projections P_M and P_N are range additive iff $M + N$ is closed. (Folklore; Anderson and Schreiber 1971)

- If $\text{Ker}(A) + \text{Ker}(B) = \mathcal{H}$, then A and B are range additive. If moreover $\text{Im}(A) \cap \text{Im}(B) = \{0\}$, the opposite implication is also true. (Maestripieri 2014; Arias et al. 2015)
Our results on range additivity and closed ranges

Theorem

If $A = B$ on $(\ker(A) + \ker(B))^\perp$, then:

1. A and B are almost range additive: $c_\ell(\im(A + B)) = c_\ell(\im(A) + \im(B))$.

2. If $\im(A + B)$ is closed, then so is $\im(A) + \im(B)$, and so $\im(A + B) = \im(A) + \im(B)$.

However, if $\im(A) + \im(B)$ is closed, $\im(A + B)$ does not need to be.

Theorem

If $A = B$ on $(\ker(A) + \ker(B))^\perp$, and $A^* = B^*$ on $(\ker(A^*) + \ker(B^*))^\perp$, then:

$\im(A + B)$ is closed iff both sums $\im(A) + \im(B)$ and $\im(A^*) + \im(B^*)$ are closed.

In that case, $\im(A)$ and $\im(B)$ are closed, and $\im(A + B) = \im(A) + \im(B)$.
Our results on range additivity and closed ranges

Theorem

If \(A = B \) on \((\text{Ker}(A) + \text{Ker}(B))\)\(^\perp\), then:

1. **A and B are almost range additive**: \(c\ell(\text{Im}(A + B)) = c\ell(\text{Im}(A) + \text{Im}(B)) \).

2. If \(\text{Im}(A + B) \) is closed, then so is \(\text{Im}(A) + \text{Im}(B) \), and so \(\text{Im}(A + B) = \text{Im}(A) + \text{Im}(B) \).

However, if \(\text{Im}(A) + \text{Im}(B) \) is closed, \(\text{Im}(A + B) \) does not need to be.
Our results on range additivity and closed ranges

Theorem

If $A = B$ on $(\ker(A) + \ker(B))^\perp$, then:

1. A and B are almost range additive: $\text{cl}(\text{Im}(A + B)) = \text{cl}(\text{Im}(A) + \text{Im}(B))$.

2. If $\text{Im}(A + B)$ is closed, then so is $\text{Im}(A) + \text{Im}(B)$, and so $\text{Im}(A + B) = \text{Im}(A) + \text{Im}(B)$.

If $\text{Im}(PQ + QP)$ is closed, then so is $\text{Im}(PQ)$.

Marko Dikić

A and B coincide on $(\ker(A) + \ker(B))^\perp$
Our results on range additivity and closed ranges

Theorem

If \(A = B \) on \((\text{Ker}(A) + \text{Ker}(B))\)\(^\perp\), then:

1. *A and B are almost range additive:* \(\text{cl}(\text{Im}(A + B)) = \text{cl}(\text{Im}(A) + \text{Im}(B)) \).
2. *If \(\text{Im}(A + B) \) is closed, then so is \(\text{Im}(A) + \text{Im}(B) \), and so \(\text{Im}(A + B) = \text{Im}(A) + \text{Im}(B) \).*

However, *if \(\text{Im}(A) + \text{Im}(B) \) is closed, \(\text{Im}(A + B) \) does not need to be.*
Our results on range additivity and closed ranges

Theorem

If \(A = B \) on \((\ker(A) + \ker(B))\perp\), then:

1. \textit{A and B are almost range additive:} \(c_\ell(\text{Im}(A + B)) = c_\ell(\text{Im}(A) + \text{Im}(B)) \).

2. \textit{If Im}(A + B) \text{ is closed, then so is} \text{Im}(A) + \text{Im}(B), \text{ and so } \text{Im}(A + B) = \text{Im}(A) + \text{Im}(B).

\textit{However, if Im}(A) + \text{Im}(B) \text{ is closed, Im}(A + B) \text{ does not need to be.}

Theorem

If \(A = B \) on \((\ker(A) + \ker(B))\perp\), and \(A^* = B^* \) on \((\ker(A^*) + \ker(B^*))\perp\), then:
Our results on range additivity and closed ranges

Theorem

If $A = B$ on $(\text{Ker}(A) + \text{Ker}(B))^\perp$, then:

1. *A and B are almost range additive*: $c\ell(\text{Im}(A + B)) = c\ell(\text{Im}(A) + \text{Im}(B))$.
2. *If $\text{Im}(A + B)$ is closed, then so is $\text{Im}(A) + \text{Im}(B)$, and so $\text{Im}(A + B) = \text{Im}(A) + \text{Im}(B)$.*

However, if $\text{Im}(A) + \text{Im}(B)$ is closed, $\text{Im}(A + B)$ does not need to be.

Theorem

If $A = B$ on $(\text{Ker}(A) + \text{Ker}(B))^\perp$, and $A^* = B^*$ on $(\text{Ker}(A^*) + \text{Ker}(B^*))^\perp$, then:

Im($A + B$) is closed iff both sums $\text{Im}(A) + \text{Im}(B)$ and $\text{Im}(A^) + \text{Im}(B^*)$ are closed.*
Our results on range additivity and closed ranges

Theorem

If $A = B$ on $(\text{Ker}(A) + \text{Ker}(B))^\perp$, then:

1. A and B are almost range additive: $\text{cl}(\text{Im}(A + B)) = \text{cl}(\text{Im}(A) + \text{Im}(B))$.
2. If $\text{Im}(A + B)$ is closed, then so is $\text{Im}(A) + \text{Im}(B)$, and so $\text{Im}(A + B) = \text{Im}(A) + \text{Im}(B)$.

However, if $\text{Im}(A) + \text{Im}(B)$ is closed, $\text{Im}(A + B)$ does not need to be.

Theorem

If $A = B$ on $(\text{Ker}(A) + \text{Ker}(B))^\perp$, and $A^* = B^*$ on $(\text{Ker}(A^*) + \text{Ker}(B^*))^\perp$, then:

$\text{Im}(A + B)$ is closed iff both sums $\text{Im}(A) + \text{Im}(B)$ and $\text{Im}(A^*) + \text{Im}(B^*)$ are closed.

In that case, $\text{Im}(A)$ and $\text{Im}(B)$ are closed, and $\text{Im}(A + B) = \text{Im}(A) + \text{Im}(B)$.
Our results on range additivity and closed ranges

Theorem

If \(A = B \) on \((\text{Ker}(A) + \text{Ker}(B))\)\(\perp\), then:

1. \(A \) and \(B \) are almost range additive: \(\text{cl}(\text{Im}(A + B)) = \text{cl}(\text{Im}(A) + \text{Im}(B)) \).

2. If \(\text{Im}(A + B) \) is closed, then so is \(\text{Im}(A) + \text{Im}(B) \), and so \(\text{Im}(A + B) = \text{Im}(A) + \text{Im}(B) \).

However, if \(\text{Im}(A) + \text{Im}(B) \) is closed, \(\text{Im}(A + B) \) does not need to be.

Theorem

If \(A = B \) on \((\text{Ker}(A) + \text{Ker}(B))\)\(\perp\), and \(A^* = B^* \) on \((\text{Ker}(A^*) + \text{Ker}(B^*))\)\(\perp\), then:

\(\text{Im}(A + B) \) is closed iff both sums \(\text{Im}(A) + \text{Im}(B) \) and \(\text{Im}(A^*) + \text{Im}(B^*) \) are closed.

In that case, \(\text{Im}(A) \) and \(\text{Im}(B) \) are closed, and \(\text{Im}(A + B) = \text{Im}(A) + \text{Im}(B) \).

If \(\text{Im}(PQ + QPQPQPQPQPQP) \) is closed then so is \(\text{Im}(PQ) \).
Theorem

If $A = B$ on $(\text{Ker}(A) + \text{Ker}(B))^\perp$, and $A^* = B^*$ on $(\text{Ker}(A^*) + \text{Ker}(B^*))^\perp$, then:

$$\text{Im} (A + B) = \text{Im} (A) + \text{Im} (B)$$

iff

$$\text{Ker}(A) \perp \text{Ker}(B)$$

is closed.

$$\text{Im} (PQ + QP) = \text{Im} (PQ) + \text{Im} (QP)$$

iff

$$\text{Im} (PQ) + \text{Im} (QP)$$

is closed. Hence, if

$$\text{Im} (PQ) + \text{Im} (QP)$$

is closed, then

$$\text{Im} (PQ)$$

is also closed, etc.
Theorem

If $A = B$ on $(\text{Ker}(A) + \text{Ker}(B))^\perp$, and $A^* = B^*$ on $(\text{Ker}(A^*) + \text{Ker}(B^*))^\perp$, then:

$\text{Im}(A + B) = \text{Im}(A) + \text{Im}(B)$ if and only if $\text{Ker}(A)^\perp + \text{Ker}(B)^\perp$ is closed.
Theorem

If \(A = B \) on \((\text{Ker}(A) + \text{Ker}(B)) \perp \), and \(A^* = B^* \) on \((\text{Ker}(A^*) + \text{Ker}(B^*)) \perp \), then:

\[\text{Im}(A + B) = \text{Im}(A) + \text{Im}(B) \quad \text{iff} \quad \text{Ker}(A) \perp + \text{Ker}(B) \perp \text{ is closed.} \]

\[\text{Im}(PQ + QP) = \text{Im}(PQ) + \text{Im}(QP) \quad \text{iff} \quad \text{Im}(PQ) + \text{Im}(QP) \text{ is closed.} \]

Hence, if \(\text{Im}(PQ) + \text{Im}(QP) \) is closed, then \(\text{Im}(PQ) \) is also closed, etc.
Inverting the sum \((A + B)^{-1}\)

Inverting the sum \((A + B)^{-1}\)

(Werner 1987) If \(A\) and \(B\) are square matrices such that \(\text{rank}(A + B) = \text{rank}(A) + \text{rank}(B)\) then

\[(A + B)^g = A^g + B^g \quad \text{and} \quad (A + B)^{-1} = A^g + B^g.\]
Inverting the sum \((A + B)^{-1}\)

- (Werner 1987) If \(A\) and \(B\) are square matrices such that \(\text{rank}(A + B) = \text{rank}(A) + \text{rank}(B)\) then
 \[(A + B)^g = A^g + B^g\] and \((A + B)^{-1} = A^g + B^g\).

- (Du, Deng, Mbekhta, Müller 2007) If \(P\) and \(Q\) are projections on a Banach space, invertibility (and many other properties) is invariant for linear combinations \(\alpha P + \beta Q\), as long as \(\alpha, \beta \neq 0\) and \(\alpha + \beta \neq 0\) (nice pair).
Inverting the sum \((A + B)^{-1}\)

- (Werner 1987) If \(A\) and \(B\) are square matrices such that
 \[\text{rank}(A + B) = \text{rank}(A) + \text{rank}(B) \]
 then
 \[(A + B)^g = A^g + B^g \]
 and
 \[(A + B)^{-1} = A^g + B^g. \]

- (Du, Deng, Mbekhta, Müller 2007) If \(P\) and \(Q\) are projections on a Banach space, invertibility (and many other properties) is invariant for linear combinations \(\alpha P + \beta Q\), as long as \(\alpha, \beta \neq 0\) and \(\alpha + \beta \neq 0\) (nice pair).

- (Arias, Corach, Gonzales 2013) If \(A\) and \(B\) are positive, then \(A + B\) is invertible iff \(\text{Im}(A) + \text{Im}(B) = \mathcal{H}\).
Inverting the sum \((A + B)^{-1}\)

- (Werner 1987) If \(A\) and \(B\) are square matrices such that
 \[
 \text{rank}(A + B) = \text{rank}(A) + \text{rank}(B)
 \]
 then
 \[
 (A + B)^g = A^g + B^g \quad \text{and} \quad (A + B)^{-1} = A^g + B^g.
 \]

- (Du, Deng, Mbekhta, Müller 2007) If \(P\) and \(Q\) are projections on a Banach space, invertibility (and many other properties) is invariant for linear combinations \(\alpha P + \beta Q\), as long as \(\alpha, \beta \neq 0\) and \(\alpha + \beta \neq 0\) (nice pair).

- (Arias, Corach, Gonzales 2013) If \(A\) and \(B\) are positive, then \(A + B\) is invertible iff
 \[
 \text{Im}(A) + \text{Im}(B) = \mathcal{H}.
 \]

- (Arias, Corach, Maestripieri 2015) If
 \[
 \text{Ker}(A)^\perp \cap \text{Ker}(B)^\perp = \{0\}, \quad \text{Ker}(A^*)^\perp \cap \text{Ker}(B^*)^\perp = \{0\}
 \]
 and if \(A\) and \(B\) are closed range operators which are also range additive, then:
 \[
 (A + B)^\dagger = PA^\dagger Q + (I - P)B^\dagger (I - Q).
 \]
Invertibility and closed ranges

Theorem

If \(A = B \) on \((\text{Ker}(A) + \text{Ker}(B))^\perp \), and \(A^* = B^* \) on \((\text{Ker}(A^*) + \text{Ker}(B^*))^\perp \), then:

\[A + B \text{ is invertible iff } \text{Im}(A) + \text{Im}(B) = K \text{ and } \text{Im}(A^*) + \text{Im}(B^*) = H. \]

(reminder) \(A + B \) has a closed range iff \(\text{Im}(A) + \text{Im}(B) \) and \(\text{Im}(A^*) + \text{Im}(B^*) \) are closed.
Invertibility and closed ranges

Theorem

If $A = B$ on $(\ker(A) + \ker(B))^\perp$, and $A^* = B^*$ on $(\ker(A^*) + \ker(B^*))^\perp$, then:

$A + B$ is invertible iff $\text{Im}(A) + \text{Im}(B) = \mathcal{K}$ and $\text{Im}(A^*) + \text{Im}(B^*) = \mathcal{H}$.

Marko Dikić
Invertibility and closed ranges

Theorem

If \(A = B \) on \((\text{Ker}(A) + \text{Ker}(B))\perp \), and \(A^* = B^* \) on \((\text{Ker}(A^*) + \text{Ker}(B^*))\perp \), then:

\[
A + B \text{ is invertible iff } \text{Im}(A) + \text{Im}(B) = \mathcal{K} \text{ and } \text{Im}(A^*) + \text{Im}(B^*) = \mathcal{H}.
\]

(reminder) \(A + B \) has a closed range iff \(\text{Im}(A) + \text{Im}(B) \) and \(\text{Im}(A^) + \text{Im}(B^*) \) are closed.*
Invertibility and closed ranges

Theorem

If $A = B$ on $(\text{Ker}(A) + \text{Ker}(B))^\perp$, and $A^* = B^*$ on $(\text{Ker}(A^*) + \text{Ker}(B^*))^\perp$, then:

$A + B$ is invertible iff $\text{Im}(A) + \text{Im}(B) = \mathcal{K}$ and $\text{Im}(A^*) + \text{Im}(B^*) = \mathcal{H}$.

(reminder) $A + B$ has a closed range iff $\text{Im}(A) + \text{Im}(B)$ and $\text{Im}(A^*) + \text{Im}(B^*)$ are closed.

Theorem

If $A = B$ on $(\text{Ker}(A) + \text{Ker}(B))^\perp$, and $A^* = B^*$ on $(\text{Ker}(A^*) + \text{Ker}(B^*))^\perp$, and α, β is a nice pair, then:

$A + B$ is invertible iff $\alpha A + \beta B$ is invertible;
Invertibility and closed ranges

Theorem

If \(A = B \) on \((\ker(A) + \ker(B))\perp\), and \(A^* = B^* \) on \((\ker(A^*) + \ker(B^*))\perp\), then:

\(A + B \) is invertible iff \(\text{Im}(A) + \text{Im}(B) = \mathcal{K} \) and \(\text{Im}(A^*) + \text{Im}(B^*) = \mathcal{H} \).

(reminder) \(A + B \) has a closed range iff \(\text{Im}(A) + \text{Im}(B) \) and \(\text{Im}(A^*) + \text{Im}(B^*) \) are closed.

Theorem

If \(A = B \) on \((\ker(A) + \ker(B))\perp\), and \(A^* = B^* \) on \((\ker(A^*) + \ker(B^*))\perp\), and \(\alpha, \beta \) is a nice pair, then:

\(A + B \) is invertible iff \(\alpha A + \beta B \) is invertible;

\(A + B \) has a closed range iff \(\alpha A + \beta B \) has a closed range.
Theorem

If $A = B$ on $(\text{Ker}(A) + \text{Ker}(B))^\perp$, and $A^* = B^*$ on $(\text{Ker}(A^*) + \text{Ker}(B^*))^\perp$:
Formulas

Theorem

If $A = B$ on $(\text{Ker}(A) + \text{Ker}(B))^\perp$, and $A^* = B^*$ on $(\text{Ker}(A^*) + \text{Ker}(B^*))^\perp$:

If $A + B$ is invertible, then:

\[
(A + B)^{-1} = A_{\text{Ker}(B), \text{Im}(B)}^{(2)} + B_{\text{Ker}(A), \text{Im}(A)}^{(2)} + \frac{1}{2} A^\dagger P(\text{Ker}(A^*) + \text{Ker}(B^*))^\perp;
\]
Formulas

Theorem

If $A = B$ on $(\text{Ker}(A) + \text{Ker}(B))^\perp$, and $A^* = B^*$ on $(\text{Ker}(A^*) + \text{Ker}(B^*))^\perp$:

1. If $A + B$ is invertible, then:

 $$(A + B)^{-1} = A^{(2)}_{\text{Ker}(B), \text{Im}(B)} + B^{(2)}_{\text{Ker}(A), \text{Im}(A)} + \frac{1}{2} A^\dagger P (\text{Ker}(A^*) + \text{Ker}(B^*))^\perp;$$

2. If $\text{Im}(A + B)$ is closed, then:

 $$(A + B)^G = A^g + B^g + \frac{1}{2} PA^\dagger Q.$$
Theorem

If $A = B$ on $(\text{Ker}(A) + \text{Ker}(B))^\perp$, and $A^* = B^*$ on $(\text{Ker}(A^*) + \text{Ker}(B^*))^\perp$:

1. If $A + B$ is invertible, then:

 $$(A + B)^{-1} = A_{\text{Ker}(B),\text{Im}(B)}^{(2)} + B_{\text{Ker}(A),\text{Im}(A)}^{(2)} + \frac{1}{2} A^\dagger P (\text{Ker}(A^*) + \text{Ker}(B^*))^\perp;$$

2. If $\text{Im}(A + B)$ is closed, then:

 $$(A + B)^G = A^g + B^g + \frac{1}{2} PA^\dagger Q.$$

The formula for the Moore-Penrose inverse $(A + B)^\dagger$ is in fact useful.
One interesting partial order on $\mathcal{B}(\mathcal{H})$

- For two orthogonal projections, $Q \leq P$ is equivalent with: $\text{Im}(P - Q) \perp \text{Im}(Q)$.
One interesting partial order on $B(\mathcal{H})$

- For two orthogonal projections, $Q \leq P$ is equivalent with:
 $\text{Im}(P - Q) \perp \text{Im}(Q)$.

- We say that $A \preceq B$ if $\text{Im}(B - A) \perp \text{Im}(A)$ and $\text{Im}(B^* - A^*) \perp \text{Im}(A^*)$. This order is called the **star partial order**.
One interesting partial order on $B(\mathcal{H})$

- For two orthogonal projections, $Q \leq P$ is equivalent with: $\text{Im}(P - Q) \perp \text{Im}(Q)$.

- We say that $A \preceq B$ if $\text{Im}(B - A) \perp \text{Im}(A)$ and $\text{Im}(B^* - A^*) \perp \text{Im}(A^*)$. This order is called the star partial order.

Theorem (Mitra 1986, Holladay)

For matrices A and B, if $\star \sup(A, B)$ exists, then: $\star \inf(A, B) = 2A(A + B)^\dagger B$.
One interesting partial order on $\mathcal{B}(\mathcal{H})$

- For two orthogonal projections, $Q \leq P$ is equivalent with: $\text{Im}(P - Q) \perp \text{Im}(Q)$.

- We say that $A \preceq^* B$ if $\text{Im}(B - A) \perp \text{Im}(A)$ and $\text{Im}(B^* - A^*) \perp \text{Im}(A^*)$. This order is called the star partial order.

Theorem (Mitra 1986, Holladay)

For matrices A and B, if $\sup^*(A, B)$ exists, then: $\inf^*(A, B) = 2A(A + B)^\dagger B$.

If $\sup^*(A, B)$ exists, then A, B and A^*, B^* are "our pairs".
One interesting partial order on $\mathcal{B}(\mathcal{H})$

- For two orthogonal projections, $Q \leq P$ is equivalent with: $\text{Im}(P - Q) \perp \text{Im}(Q)$.

- We say that $A \preceq B$ if $\text{Im}(B - A) \perp \text{Im}(A)$ and $\text{Im}(B^* - A^*) \perp \text{Im}(A^*)$. This order is called the **star partial order**.

Theorem (Mitra 1986, Holladay)

For matrices A and B, if $\sup^*(A, B)$ exists, then: $\inf^*(A, B) = 2A(A + B)^\dagger B$.

If $\sup^*(A, B)$ exists, then A, B and A^*, B^* are "our pairs".

Theorem

For matrices the formula $\inf^*(A, B) = 2A(A + B)^\dagger B$ characterizes "our pairs".

Similarly, but not completely the same, for operators in general.
Thank you!