On isometries on some Banach spaces

— something old, something new,

something borrowed, something blue,

Part I

Dijana Ilišević

University of Zagreb, Croatia

Recent Trends in Operator Theory and Applications
Memphis, TN, USA, May 3–5, 2018

Recent work of D.I. has been fully supported by the Croatian Science Foundation under the project IP-2016-06-1046.
Something old, something new,
something borrowed, something blue

is referred to the collection of items that
helps to guarantee fertility and prosperity.
Isometries are maps between metric spaces which preserve distance between elements.

Definition

Let \((\mathcal{X}, |\cdot|)\) and \((\mathcal{Y}, \|\cdot\|)\) be two normed spaces over the same field. A linear map \(\varphi: \mathcal{X} \to \mathcal{Y}\) is called a *linear isometry* if

\[
\|\varphi(x)\| = |x|, \quad x \in \mathcal{X}.
\]

We shall be interested in *surjective* linear isometries on Banach spaces.

One of the main problems is to give explicit description of isometries on a particular space.
Isometries are maps between metric spaces which preserve distance between elements.

Definition

Let $(\mathcal{X}, |\cdot|)$ and $(\mathcal{Y}, \|\cdot\|)$ be two normed spaces over the same field. A linear map $\varphi: \mathcal{X} \to \mathcal{Y}$ is called a **linear isometry** if

$$\|\varphi(x)\| = |x|, \quad x \in \mathcal{X}.$$

We shall be interested in *surjective* linear isometries on Banach spaces.

One of the main problems is to give explicit description of isometries on a particular space.
Richard J. Fleming, James E. Jamison,

This talk is dedicated to the memory of Professor James Jamison.
Trivial isometries are isometries of the form λI for some $\lambda \in \mathbb{T}$, where $\mathbb{T} = \{ \lambda \in \mathbb{F} : |\lambda| = 1 \}$.

The spectrum of a surjective linear isometry is contained in \mathbb{T}.

For any Banach space \mathcal{X} (real or complex) there is a norm $\| \cdot \|$ on \mathcal{X}, equivalent to the original one, such that $(\mathcal{X}, \| \cdot \|)$ has only trivial isometries (K. Jarosz, 1988).
Trivial isometries are isometries of the form λI for some $\lambda \in \mathbb{T}$, where $\mathbb{T} = \{ \lambda \in \mathbb{F} : |\lambda| = 1 \}$.

The spectrum of a surjective linear isometry is contained in \mathbb{T}.

For any Banach space \mathcal{X} (real or complex) there is a norm $\| \cdot \|$ on \mathcal{X}, equivalent to the original one, such that $(\mathcal{X}, \| \cdot \|)$ has only trivial isometries (K. Jarosz, 1988).
Trivial isometries are isometries of the form λI for some $\lambda \in \mathbb{T}$, where $\mathbb{T} = \{ \lambda \in \mathbb{F} : |\lambda| = 1 \}$.

The spectrum of a surjective linear isometry is contained in \mathbb{T}.

For any Banach space \mathcal{X} (real or complex) there is a norm $\| \cdot \|$ on \mathcal{X}, equivalent to the original one, such that $(\mathcal{X}, \| \cdot \|)$ has only trivial isometries (K. Jarosz, 1988).
Let \mathcal{V} be a finite dimensional vector space over $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$, equipped with the norm $\| \cdot \|$ induced by the inner product

$$\langle x, y \rangle = \text{tr} (xy^*) = y^*x$$

(Frobenius norm).

Then U is a linear isometry on $(\mathcal{V}, \| \cdot \|)$ if and only if the following holds.

- If $\mathbb{F} = \mathbb{C}$: U is a unitary operator on \mathcal{V}, that is,

 $$U^* U = UU^* = I.$$

- If $\mathbb{F} = \mathbb{R}$: U is an orthogonal operator on \mathcal{V}, that is,

 $$U^t U = UU^t = I.$$
Theorem (I. Schur, 1925)

Linear isometries of $M_n(\mathbb{C})$ equipped with the spectral norm (operator norm) have one of the following forms:

$$X \mapsto UXV \quad \text{or} \quad X \mapsto UX^tV,$$

where $U, V \in M_n(\mathbb{C})$ are unitaries.
Unitarily invariant norms on $M_n(\mathbb{F})$

[C.K. Li, N.K. Tsing, 1990]

Let G be the group of all linear operators of the form $X \mapsto UXV$ for some fixed unitary (orthogonal) $U, V \in M_n(\mathbb{F})$.

A norm $\| \cdot \|$ on $M_n(\mathbb{F})$ is called a **unitarily invariant norm** if $\|g(X)\| = \|X\|$ for all $g \in G, X \in M_n(\mathbb{F})$.

If $\| \cdot \|$ is a unitarily invariant norm (which is not a multiple of the Frobenius norm) on $M_n(\mathbb{F}) \neq M_4(\mathbb{R})$ then its isometry group is $\langle G, \tau \rangle$, where $\tau: M_n(\mathbb{F}) \rightarrow M_n(\mathbb{F})$ is the transposition operator.
In the case of $M_4(\mathbb{R})$ the isometry group is $\langle G, \tau \rangle$ or $\langle G, \tau, \alpha \rangle$, with $\alpha: M_4(\mathbb{R}) \to M_4(\mathbb{R})$ defined by

$$\alpha(X) = (X + B_1XC_1 + B_2XC_2 + B_3XC_3)/2,$$

where

$$B_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \otimes \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad C_1 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \otimes \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix},$$

$$B_2 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \otimes \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad C_2 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \otimes \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$$

$$B_3 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \otimes \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad C_3 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \otimes \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}. $$
Introduction
Isometries on some important Banach spaces
Hermitian projections
Generalized bicircular projections
Generalized n-circular projections

Unitary congruence invariant norms on $S_n(\mathbb{C})$

[C.K. Li, N.K. Tsing, 1990-1991]

Let G be the group of all linear operators of the form $X \mapsto U^t X U$ for some fixed unitary (orthogonal) $U \in M_n(\mathbb{F})$.

A norm $\| \cdot \|$ on $V \in \{ S_n(\mathbb{C}), K_n(\mathbb{F}) \}$ is called a unitary congruence invariant norm if $\| g(X) \| = \| X \|$ for all $g \in G$, $X \in V$.

If $\| \cdot \|$ is a unitary congruence invariant norm on $S_n(\mathbb{C})$, which is not a multiple of the Frobenius norm, then its isometry group is G.
If $\|\cdot\|$ is a unitary congruence invariant norm on $K_n(\mathbb{C})$, which is not a multiple of the Frobenius norm, then its isometry group is G if $n \neq 4$, and $\langle G, \gamma \rangle$ if $n = 4$, where $\gamma(X)$ is obtained from X by interchanging its $(1,4)$ and $(2,3)$ entries, and interchanging its $(4,1)$ and $(3,2)$ entries accordingly.

If $\|\cdot\|$ is a unitary congruence invariant norm on $K_n(\mathbb{R})$, which is not a multiple of the Frobenius norm, then its isometry group is $\langle G, \tau \rangle$ if $n \neq 4$, and $\langle G, \tau, \gamma \rangle$ if $n = 4$.

Dijana Ilišević
On isometries on some Banach spaces
Let $C_0(\Omega)$ be the algebra of all continuous complex-valued functions on a locally compact Hausdorff space Ω, vanishing at infinity.

Theorem (Banach–Stone)

Let $T : C_0(\Omega_1) \to C_0(\Omega_2)$ be a surjective linear isometry. Then there exist a homeomorphism $\varphi : \Omega_2 \to \Omega_1$ and a continuous unimodular function $u : \Omega_2 \to \mathbb{C}$ such that

$$T(f)(\omega) = u(\omega)f(\varphi(\omega)), \quad f \in C_0(\Omega_1), \ \omega \in \Omega_2.$$

The first (Banach’s) version of this theorem (1932): for real-valued functions on compact metric spaces. Stone (1937): for real-valued functions on compact Hausdorff spaces.
Let $C_0(\Omega)$ be the algebra of all continuous complex-valued functions on a locally compact Hausdorff space Ω, vanishing at infinity.

Theorem (Banach–Stone)

Let $T : C_0(\Omega_1) \to C_0(\Omega_2)$ be a surjective linear isometry. Then there exist a homeomorphism $\varphi : \Omega_2 \to \Omega_1$ and a continuous unimodular function $u : \Omega_2 \to \mathbb{C}$ such that

$$T(f)(\omega) = u(\omega)f(\varphi(\omega)), \quad f \in C_0(\Omega_1), \ \omega \in \Omega_2.$$

The first (Banach’s) version of this theorem (1932): for real-valued functions on compact metric spaces.

A C*-algebra is a complex Banach *-algebra \((\mathcal{A}, \| \cdot \|)\) such that \(\| a^* a \| = \| a \|^2\) for all \(a \in \mathcal{A}\).

Example

- \(\mathbb{C}\) = complex numbers,
- \(\mathcal{B}(\mathcal{H})\) = all bounded linear operators on a complex Hilbert space \(\mathcal{H}\),
- \(\mathcal{K}(\mathcal{H})\) = all compact operators on a complex Hilbert space \(\mathcal{H}\),
- \(\mathcal{C}(\Omega)\) = all continuous complex-valued functions on a compact Hausdorff space \(\Omega\),
- \(\mathcal{C}_0(\Omega)\) = all continuous complex-valued functions on a locally compact Hausdorff space \(\Omega\), vanishing at infinity.
Introduction
Isometries on some important Banach spaces
Hermitian projections
Generalized bicircular projections
Generalized n-circular projections

Isometries of C^*-algebras

Theorem (R. Kadison, 1951)

Let \mathcal{A} and \mathcal{B} be unital C^*-algebras and $T: \mathcal{A} \to \mathcal{B}$ a surjective linear isometry. Then $T = UJ$, where $J: \mathcal{A} \to \mathcal{B}$ is a Jordan \ast-isomorphism (that is, a linear map satisfying $J(a^2) = J(a)^2$ and $J(a^\ast) = J(a)^\ast$ for every $a \in \mathcal{A}$) and a unitary element $U \in \mathcal{B}$.

Theorem (A. Paterson, A. Sinclair, 1972)

Let \mathcal{A} and \mathcal{B} be C^*-algebras and $T: \mathcal{A} \to \mathcal{B}$ a surjective linear isometry. Then $T = UJ$, where $J: \mathcal{A} \to \mathcal{B}$ is a Jordan \ast-isomorphism, and U on \mathcal{B} is unitary such that there exists V on \mathcal{B} satisfying $aU(b) = V(a)b$ for all $a, b \in \mathcal{B}$.
Theorem (R. Kadison, 1951)

Let \mathcal{A} and \mathcal{B} be unital C*-algebras and $T: \mathcal{A} \to \mathcal{B}$ a surjective linear isometry. Then $T = UJ$, where $J: \mathcal{A} \to \mathcal{B}$ is a Jordan \ast-isomorphism (that is, a linear map satisfying $J(a^2) = J(a)^2$ and $J(a^\ast) = J(a)^\ast$ for every $a \in \mathcal{A}$) and a unitary element $U \in \mathcal{B}$.

Theorem (A. Paterson, A. Sinclair, 1972)

Let \mathcal{A} and \mathcal{B} be C*-algebras and $T: \mathcal{A} \to \mathcal{B}$ a surjective linear isometry. Then $T = UJ$, where $J: \mathcal{A} \to \mathcal{B}$ is a Jordan \ast-isomorphism, and U on \mathcal{B} is unitary such that there exists V on \mathcal{B} satisfying $aU(b) = V(a)b$ for all $a, b \in \mathcal{B}$.
Isometries of $B(\mathcal{H})$

Let $B(\mathcal{H})$ be the algebra of all bounded linear operators on a complex Hilbert space \mathcal{H}. Throughout we fix an orthonormal basis $\{e_\lambda : \lambda \in \Lambda\}$ of \mathcal{H}.

Let $T \in B(\mathcal{H})$. If $S \in B(\mathcal{H})$ is such that $\langle Te_\lambda, e_\mu \rangle = \langle Se_\mu, e_\lambda \rangle$ for all $\lambda, \mu \in \Lambda$, then S is called the transpose of T associated to the basis $\{e_\lambda : \lambda \in \Lambda\}$ and it is denoted by T^t.

Theorem

Let $T : B(\mathcal{H}) \to B(\mathcal{H})$ be a surjective linear isometry. Then there exist unitary $U, V \in B(\mathcal{H})$ such that T has one of the following forms:

$$X \mapsto UXV \quad \text{or} \quad X \mapsto UX^tV.$$
A **JB***-**triple** is a complex Banach space \mathcal{A} together with a continuous triple product $\{xyz\} : \mathcal{A} \times \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ such that

(i) $\{xyz\}$ is linear in x and z and conjugate linear in y;
(ii) $\{xyz\} = \{zyx\}$;
(iii) for any $x \in \mathcal{A}$, the operator $\delta(x) : \mathcal{A} \to \mathcal{A}$ defined by $\delta(x)y = \{xxy\}$ is hermitian with nonnegative spectrum;
(iv) $\delta(x)\{abc\} = \{\delta(x)a, b, c\} − \{a, \delta(x)b, c\} + \{a, b, \delta(x)c\}$;
(v) for every $x \in \mathcal{A}$, $\|\{xxx\}\| = \|x\|^3$.

Example

- complex Hilbert spaces: $\{xyz\} = \frac{1}{2}(\langle x, y \rangle z + \langle z, y \rangle x)$
- C*-algebras, $S(\mathcal{H}), A(\mathcal{H})$: $\{xyz\} = \frac{1}{2}(xy^*z + zy^*x)$, where $S(\mathcal{H}) = \{T \in B(\mathcal{H}) : T^t = T\}$ symmetric operators, $A(\mathcal{H}) = \{T \in B(\mathcal{H}) : T^t = −T\}$ antisymmetric operators.
Introduction
Isometries on some important Banach spaces
Hermitian projections
Generalized bicircular projections
Generalized n-circular projections

Isometries on JB*-triples

Theorem (W. Kaup, 1983)

Let \mathcal{A} be a JB*-triple. Then every surjective linear isometry $T: \mathcal{A} \to \mathcal{A}$ satisfies

$$T(\{xyz\}) = \{T(x)T(y)T(z)\}, \quad x, y, z \in \mathcal{A}.$$

In particular, if \mathcal{A} is a C*-algebra then

$$T(xy^*x) = T(x)T(y)^*T(x), \quad x, y \in \mathcal{A}.$$
Theorem (W. Kaup, 1983)

Let A be a JB*-triple. Then every surjective linear isometry $T : A \to A$ satisfies

$$T(\{xyz\}) = \{ T(x) T(y) T(z) \}, \quad x, y, z \in A.$$

In particular, if A is a C^*-algebra then

$$T(xy^*x) = T(x) T(y)^* T(x), \quad x, y \in A.$$
Introduction

Isometries on some important Banach spaces

Hermitian projections

Generalized bicircular projections

Generalized n-circular projections

Isometries on $S(H)$ and $A(H)$

Every surjective linear isometry $T : A \rightarrow A$, where A is $S(H)$ or $A(H)$, satisfies

$$T(XY^*X) = T(X)T(Y)^*T(X)$$

for all $X, Y \in A$.

The following theorem gives an explicit formula for T.

Theorem (A. Fošner and D. I., 2011)

Let A be $S(H)$ or $A(H)$ and let $T : A \rightarrow A$ be a surjective linear isometry. Then there exists a unitary $U \in B(H)$ such that T has the form $X \mapsto UXU^t$.

Dijana Ilišević

On isometries on some Banach spaces
Isometries on $S(\mathcal{H})$ and $A(\mathcal{H})$

Every surjective linear isometry $T : \mathcal{A} \rightarrow \mathcal{A}$, where \mathcal{A} is $S(\mathcal{H})$ or $A(\mathcal{H})$, satisfies

$$T(XY^*X) = T(X)T(Y)^*T(X)$$

for all $X, Y \in \mathcal{A}$.

The following theorem gives an explicit formula for T.

Theorem (A. Fošner and D. I., 2011)

Let \mathcal{A} be $S(\mathcal{H})$ or $A(\mathcal{H})$ and let $T : \mathcal{A} \rightarrow \mathcal{A}$ be a surjective linear isometry. Then there exists a unitary $U \in B(\mathcal{H})$ such that T has the form $X \mapsto UXU^t$.
A minimal norm ideal \((\mathcal{I}, \nu)\) consists of a two-sided proper ideal \(\mathcal{I}\) in \(B(\mathcal{H})\) together with a norm \(\nu\) on \(\mathcal{I}\) satisfying the following:

- the set of all finite rank operators on \(\mathcal{H}\) is dense in \(\mathcal{I}\),
- \(\nu(X) = \|X\|\) for every rank one operator \(X\),
- \(\nu(UXV) = \nu(X)\) for every \(X \in \mathcal{I}\) and all unitary \(U, V \in B(\mathcal{H})\).

Theorem (A. Sourour, 1981)

If \(\mathcal{I}\) is different from the Hilbert-Schmidt class then every surjective linear isometry on \(\mathcal{I}\) has the form \(X \mapsto UXV\) or \(X \mapsto UX^tV\) for some unitary \(U, V \in B(\mathcal{H})\).
Introduction

Isometries on some important Banach spaces

Hermitian projections

Generalized bicircular projections

Generalized n-circular projections

Hermitian operators

Definition

Let \mathcal{X} be a complex Banach space. A bounded linear operator $T: \mathcal{X} \rightarrow \mathcal{X}$ is said to be hermitian if $e^{i\varphi T}$ is an isometry for all $\varphi \in \mathbb{R}$.

Example

$C^1[0,1]$, the space of continuously differentiable complex-valued functions on $[0,1]$ with $\|f\| = \|f\|_{\infty} + \|f'\|_{\infty}$, admits only trivial hermitian operators, that is, real multiples of I (E. Berkson, A. Sourour, 1974).

Example

Hermitian operators on a C*-algebra A have the form $x \mapsto ax + xb$ for some self-adjoint $a, b \in M(A)$.
Definition

Let \mathcal{X} be a complex Banach space. A bounded linear operator $T : \mathcal{X} \rightarrow \mathcal{X}$ is said to be **hermitian** if $e^{i\varphi}T$ is an isometry for all $\varphi \in \mathbb{R}$.

Example

$C^1[0, 1]$, the space of continuously differentiable complex-valued functions on $[0, 1]$ with $\|f\| = \|f\|_\infty + \|f'\|_\infty$, admits only trivial hermitian operators, that is, real multiples of I (E. Berkson, A. Sourour, 1974).

Example

Hermitian operators on a C^*-algebra A have the form $x \mapsto ax + xb$ for some self-adjoint $a, b \in M(A)$.
By a **projection** on a complex Banach space we mean a linear operator P such that $P^2 = P$.

Theorem (J. Jamison, 2007)

A projection P on a complex Banach space is a hermitian projection if and only if $P + \lambda(I - P)$ is an isometry for all $\lambda \in \mathbb{T}$, where $\mathbb{T} = \{ \lambda \in \mathbb{C} : |\lambda| = 1 \}$.

Example

$C^1[0, 1]$ admits only trivial hermitian projections (0 and I).

Example

Every orthogonal projection on a complex Hilbert space is hermitian.
By a projection on a complex Banach space we mean a linear operator P such that $P^2 = P$.

Theorem (J. Jamison, 2007)

A projection P on a complex Banach space is a hermitian projection if and only if $P + \lambda(I - P)$ is an isometry for all $\lambda \in \mathbb{T}$, where $\mathbb{T} = \{\lambda \in \mathbb{C} : |\lambda| = 1\}$.

Example

$C^1[0, 1]$ admits only trivial hermitian projections (0 and I).

Example

Every orthogonal projection on a complex Hilbert space is hermitian.
Theorem (L.L. Stachó and B. Zalar, 2004)

(i) Let $P : B(\mathcal{H}) \to B(\mathcal{H})$ be a hermitian projection. Then P has the form $X \mapsto QX$ or $X \mapsto XQ$ for some $Q \in B(\mathcal{H})$ such that $Q = Q^* = Q^2$.

(ii) Let $P : S(\mathcal{H}) \to S(\mathcal{H})$ be a hermitian projection. Then either $P = 0$ or $P = I$.

(iii) Let $P : A(\mathcal{H}) \to A(\mathcal{H})$ be a hermitian projection. Then P or $I - P$ has the form $X \mapsto QX + XQ^t$ with $Q = x \otimes x$ for some unit vector $x \in \mathcal{H}$.
Hermitian projections on C*-algebras

Theorem (M. Fošner and D. I., 2005)

Let \mathcal{A} be a C*-algebra and let $P: \mathcal{A} \to \mathcal{A}$ be a hermitian projection. Then there exist a \ast-ideal \mathcal{I} of \mathcal{A} and $p = p^* = p^2 \in M(\mathcal{I}^\perp \oplus \mathcal{I}^\perp\perp)$ such that $P(x) = px$ for all $x \in \mathcal{I}^\perp$ and $P(x) = xp$ for all $x \in \mathcal{I}^\perp\perp$.

Corollary

Let Ω be a locally compact Hausdorff space. Then $P: C_0(\Omega) \to C_0(\Omega)$ is a hermitian projection if and only if $Pf = 1_Yf$, where 1_Yf is the indicator function on a proper component Y of Ω.

In particular, if Ω is connected then $C_0(\Omega)$ admits only trivial hermitian projections.
Corollary

Let A be $K(H)$ or $B(H)$ and let $P: A \to A$ be a hermitian projection. Then there exists $p = p^* = p^2 \in B(H)$ such that P has the form $x \mapsto px$ or $x \mapsto xp$.

Theorem (J. Jamison, 2007)

Let I be a minimal norm ideal in $B(H)$, different from the Hilbert-Schmidt class, and let $P: I \to I$ be a hermitian projection. Then P has the form $X \mapsto QX$ or $X \mapsto XQ$ for some $Q = Q^* = Q^2 \in B(H)$.
Corollary

Let \mathcal{A} be $K(\mathcal{H})$ or $B(\mathcal{H})$ and let $P : \mathcal{A} \to \mathcal{A}$ be a hermitian projection. Then there exists $p = p^* = p^2 \in B(\mathcal{H})$ such that P has the form $x \mapsto px$ or $x \mapsto xp$.

Theorem (J. Jamison, 2007)

Let \mathcal{I} be a minimal norm ideal in $B(\mathcal{H})$, different from the Hilbert-Schmidt class, and let $P : \mathcal{I} \to \mathcal{I}$ be a hermitian projection. Then P has the form $X \mapsto QX$ or $X \mapsto XQ$ for some $Q = Q^* = Q^2 \in B(\mathcal{H})$.
A generalization of hermitian projections

Recall that a projection P on \mathcal{X} is a hermitian projection if and only if the map

$$P + \lambda(I - P)$$

is an isometry for all $\lambda \in \mathbb{T}$.

These projections are also known as **bicircular projections**.

We can also study projections P such that

$$P + \lambda(I - P)$$

is an isometry for some $\lambda \in \mathbb{T} \setminus \{1\}$.

These projections are also known as **generalized bicircular projections (GBPs)**.
Generalized bicircular projections on $S_n(\mathbb{C})$

Let \mathcal{A} be $S_n(\mathbb{C})$ or $K_n(\mathbb{C})$. A norm $\| \cdot \|$ on \mathcal{A} is said to be a unitary congruence invariant norm if

$$\|UXU^t\| = \|X\|$$

for all unitary $U \in M_n(\mathbb{C})$ and all $X \in \mathcal{A}$.

Theorem (M. Fošner, D. I. and C.K. Li, 2007)

Let $\| \cdot \|$ be a unitary congruence invariant norm on $S_n(\mathbb{C})$, which is not a multiple of the Frobenius norm. Suppose $P: S_n(\mathbb{C}) \to S_n(\mathbb{C})$ is a nontrivial projection and $\lambda \in \mathbb{T} \setminus \{1\}$. Then $P + \lambda(I - P)$ is an isometry of $(S_n(\mathbb{C}), \| \cdot \|)$ if and only if $\lambda = -1$ and there exists $Q = Q^* = Q^2 \in M_n(\mathbb{C})$ such that P or $I - P$ has the form $X \mapsto QXQ^t + (I - Q)X(I - Q^t)$.
Generalized bicircular projections on $S_n(\mathbb{C})$

Let \mathcal{A} be $S_n(\mathbb{C})$ or $K_n(\mathbb{C})$. A norm $\| \cdot \|$ on \mathcal{A} is said to be a unitary congruence invariant norm if

$$\| UXU^t \| = \| X \|$$

for all unitary $U \in M_n(\mathbb{C})$ and all $X \in \mathcal{A}$.

Theorem (M. Fošner, D. I. and C.K. Li, 2007)

Let $\| \cdot \|$ be a unitary congruence invariant norm on $S_n(\mathbb{C})$, which is not a multiple of the Frobenius norm. Suppose $P : S_n(\mathbb{C}) \to S_n(\mathbb{C})$ is a nontrivial projection and $\lambda \in \mathbb{T} \setminus \{1\}$. Then $P + \lambda(I - P)$ is an isometry of $(S_n(\mathbb{C}), \| \cdot \|)$ if and only if $\lambda = -1$ and there exists $Q = Q^* = Q^2 \in M_n(\mathbb{C})$ such that P or $I - P$ has the form $X \mapsto QXQ^t + (I - Q)X(I - Q^t)$.
Theorem (M. Fošner, D. I. and C.K. Li, 2007)

Let $\| \cdot \|$ be a unitary congruence invariant norm on $K_n(\mathbb{C})$, which is not a multiple of the Frobenius norm. Suppose $P : K_n(\mathbb{C}) \rightarrow K_n(\mathbb{C})$ is a nontrivial projection and $\lambda \in \mathbb{T} \setminus \{1\}$. Then $P + \lambda(I - P)$ is an isometry of $(K_n(\mathbb{C}), \| \cdot \|)$ if and only if one of the following holds.

(i) There exists $Q = vv^*$ for a unit vector $v \in \mathbb{C}^n$ such that P or $I - P$ has the form $X \mapsto QX + XQ^t$.

(ii) $\lambda = -1$, $\mathcal{K} = G$ and there exists $Q = Q^* = Q^2 \in M_n(\mathbb{C})$ such that P or $I - P$ has the form $X \mapsto QXQ^t + (I - Q)X(I - Q^t)$.

(iii) $(\lambda, n) = (-1, 4)$, $\psi \in \mathcal{K}$, and there is a unitary $U \in M_4(\mathbb{C})$, satisfying $\psi(U^tXU) = \overline{U}\psi(X)U^*$ for all $X \in K_4(\mathbb{C})$, such that P or $I - P$ has the form $X \mapsto (X + \psi(U^tXU))/2 = (X + \overline{U}\psi(X)U^*)/2$.

Dijana Ilišević
Theorem (F. Botelho and J. Jamison, 2008)

Let I be a minimal norm ideal in $B(\mathcal{H})$, different from the Hilbert-Schmidt class, and let $P : A \rightarrow A$ be a projection. Then $P + \lambda(I - P)$ is an isometry for some $\lambda \in \mathbb{T} \setminus \{1\}$ if and only if one of the following holds:

(i) P has the form $X \mapsto QX$ or $X \mapsto XQ$ for some $Q = Q^* = Q^2 \in B(\mathcal{H})$,

(ii) $\lambda = -1$ and P has one of the following forms:

- $X \mapsto \frac{1}{2}(X + UXV)$ for some unitary $U, V \in B(\mathcal{H})$ such that $U^2 = \mu I, V^2 = \overline{\mu} I$ for some $\mu \in \mathbb{C}, |\mu| = 1$,

- $X \mapsto \frac{1}{2}(X + UX^t V)$ for some unitary $U, V \in B(\mathcal{H})$ such that $V = \pm(U^t)^*$.
Theorem (P.-K. Lin, 2008)

Let \mathcal{X} be a complex Banach space and let $P: \mathcal{X} \to \mathcal{X}$ be a projection. Then $P + \lambda(I - P)$ is an isometry for some $\lambda \in \mathbb{T} \setminus \{1\}$ if and only if one of the following holds:

(i) P is hermitian,

(ii) $\lambda = e^{\frac{2\pi i}{n}}$ for some integer $n \geq 2$.

Furthermore, if n is any integer such that $n \geq 2$, then for $\lambda = e^{\frac{2\pi i}{n}}$ there is a complex Banach space \mathcal{X} and a nontrivial projection P on \mathcal{X} such that $P + \lambda(I - P)$ is an isometry.
Theorem (D. I., 2010)

Let \mathcal{A} be a JB*-triple and let $P: \mathcal{A} \to \mathcal{A}$ be a projection. Then $P + \lambda(I - P)$ is an isometry for some $\lambda \in \mathbb{T} \setminus \{1\}$ if and only if one of the following holds:

(i) P is hermitian,

(ii) $\lambda = -1$ and $P = \frac{1}{2}(I + T)$ for some linear isometry $T: \mathcal{A} \to \mathcal{A}$ satisfying $T^2 = I$.
Corollary

Let $\mathcal{A} = B(\mathcal{H})$ or $\mathcal{A} = K(\mathcal{H})$, and let $P: \mathcal{A} \to \mathcal{A}$ be a nonhermitian projection. Then $P + \lambda(I - P)$ is an isometry for some $\lambda \in \mathbb{T} \setminus \{1\}$ if and only if $\lambda = -1$ and P has one of the following forms:

- $X \mapsto \frac{1}{2}(X + UXV)$ for unitary $U, V \in B(\mathcal{H})$ such that $U^2 = \mu I, V^2 = \bar{\mu} I$ for some $\mu \in \mathbb{C}, |\mu| = 1$,

- $X \mapsto \frac{1}{2}(X + UX^t V)$ for unitary $U, V \in B(\mathcal{H})$ such that $V = \pm (U^t)^*$.
Theorem (F. Botelho, 2008)

Let Ω be a connected compact Hausdorff space and let $P : C(\Omega) \to C(\Omega)$ be a nontrivial projection. Then $P + \lambda(I - P)$ is an isometry for some $\lambda \in \mathbb{T} \setminus \{1\}$ if and only if $\lambda = -1$ and there exist a homeomorphism $\varphi : \Omega \to \Omega$ satisfying $\varphi^2 = I$ and a continuous unimodular function $u : \Omega \to \mathbb{C}$ satisfying $u(\varphi(\omega)) = \overline{u(\omega)}$ for every $\omega \in \Omega$, such that

$$P(f)(\omega) = \frac{1}{2} \left(f(\omega) + u(\omega)f(\varphi(\omega)) \right), \quad f \in C_0(\Omega), \, \omega \in \Omega.$$
Theorem (D. I., 2010)

Let Ω be a locally compact Hausdorff space and let $P : C_0(\Omega) \to C_0(\Omega)$ be a projection. Then $P + \lambda(I - P)$ is an isometry for some $\lambda \in \mathbb{T} \setminus \{1\}$ if and only if one of the following holds.

(i) P is hermitian,

(ii) $\lambda = -1$ and there exist a homeomorphism $\varphi : \Omega \to \Omega$ satisfying $\varphi^2 = I$ and a continuous unimodular function $u : \Omega \to \mathbb{C}$ satisfying $u(\varphi(\omega)) = \overline{u(\omega)}$ for every $\omega \in \Omega$, such that

$$P(f)(\omega) = \frac{1}{2} \left(f(\omega) + u(\omega)f(\varphi(\omega)) \right), \quad f \in C_0(\Omega), \ \omega \in \Omega.$$
Corollary (A. Fošner and D. I., 2011)

Let $P : S(\mathcal{H}) \to S(\mathcal{H})$ be a nontrivial projection and $\lambda \in \mathbb{T} \setminus \{1\}$. Then $P + \lambda(I - P)$ is an isometry if and only if $\lambda = -1$ and there exists $Q = Q^* = Q^2 \in B(\mathcal{H})$ such that P or $I - P$ has the form $X \mapsto QXQ^t + (I - Q)X(I - Q^t)$.

Corollary (A. Fošner and D. I., 2011)

Let $P : A(\mathcal{H}) \to A(\mathcal{H})$ be a nontrivial projection and $\lambda \in \mathbb{T} \setminus \{1\}$. Then $P + \lambda(I - P)$ is an isometry if and only if one of the following holds:

(i) P or $I - P$ has the form $X \mapsto QX + XQ^t$, where $Q = x \otimes x$ for some norm one $x \in \mathcal{H}$,

(ii) $\lambda = -1$ and there exists $Q = Q^* = Q^2 \in B(\mathcal{H})$ such that P or $I - P$ has the form $X \mapsto QXQ^t + (I - Q)X(I - Q^t)$.

Generalized bicircular projections
and the spectrum of the corresponding isometry

If P is a projection such that

$$T \overset{\text{def}}{=} P + \lambda (I - P)$$

is an isometry for some $\lambda \in \mathbb{T} \setminus \{1\}$, then T is a surjective isometry and $\sigma(T) = \{1, \lambda\}$.

Conversely, if T is a surjective isometry with $\sigma(T) = \{1, \lambda\}$, $\lambda \neq 1$, then $|\lambda| = 1$ and

$$P \overset{\text{def}}{=} \frac{T - \lambda I}{1 - \lambda}$$

is a projection.
If P is a projection such that

$$T \overset{\text{def}}{=} P + \lambda(I - P)$$

is an isometry for some $\lambda \in \mathbb{T} \setminus \{1\}$, then T is a surjective isometry and $\sigma(T) = \{1, \lambda\}$.

Conversely, if T is a surjective isometry with $\sigma(T) = \{1, \lambda\}$, $\lambda \neq 1$, then $|\lambda| = 1$ and

$$P \overset{\text{def}}{=} \frac{T - \lambda I}{1 - \lambda}$$

is a projection.
Every isolated point in the spectrum $\sigma(T)$ of a surjective isometry T on a Banach space is an eigenvalue of T with a complemented eigenspace. In particular, if $\sigma(T) = \{\lambda_0, \lambda_1, \ldots, \lambda_{n-1}\}$ then all λ_i's are eigenvalues, and the associated eigenprojections P_i's satisfy

$$P_0 \oplus P_1 \oplus \cdots \oplus P_{n-1} = I \quad \text{and} \quad T = P_0 + \lambda_1 P_1 + \cdots + \lambda_{n-1} P_{n-1}.$$

Here, we write $P \oplus Q$ to indicate that the Banach space projections P and Q disjoint from each other, i.e., $PQ = QP = 0$.
Definition

Let P_0 be a nonzero projection on a Banach space \mathcal{X}, and $n \geq 2$. We call P_0 a **generalized n-circular projection** if there exists a (surjective) isometry $T : \mathcal{X} \to \mathcal{X}$ with $\sigma(T) = \{1, \lambda_1, \ldots, \lambda_{n-1}\}$ consisting of n distinct (modulus one) eigenvalues such that P_0 is the eigenprojection of T associated to $\lambda_0 = 1$.

In this case, there are nonzero projections P_1, \ldots, P_{n-1} on \mathcal{X} such that

$$P_0 \oplus P_1 \oplus \cdots \oplus P_{n-1} = I \quad \text{and} \quad T = P_0 + \lambda_1 P_1 + \cdots + \lambda_{n-1} P_{n-1}.$$

We also say that P_0 is a generalized n-circular projection associated with $(\lambda_1, \ldots, \lambda_{n-1}, P_1, \ldots, P_{n-1})$.
Generalized n-circular projections on $C_0(\Omega)$

Let Ω be a locally compact Hausdorff space. Let $\varphi: \Omega \to \Omega$ be a homeomorphism with period m, i.e., $\varphi^m = id_{\Omega}$ and $\varphi^k \neq id_{\Omega}$ for $k = 1, 2, \ldots, m - 1$.

Let u be a continuous unimodular scalar function on Ω such that

$$u(\omega) \cdots u(\varphi^{m-1}(\omega)) = 1, \quad \omega \in \Omega.$$

Then the surjective isometry $T: C_0(\Omega) \to C_0(\Omega)$ defined by

$$Tf(\omega) = u(\omega)f(\varphi(\omega))$$

satisfies $T^m = I$.

Therefore, the spectrum $\sigma(T) = \{\lambda_0, \lambda_1, \ldots, \lambda_{n-1}\}$ consists of n distinct mth roots of unity.

Replacing T with $\lambda_0 T$, we can assume that $\lambda_0 = 1$.
Generalized n-circular projections on $C_0(\Omega)$

This gives rise to a spectral decomposition

$$I = P_0 \oplus P_1 \oplus \cdots \oplus P_{n-1}, \quad T = \lambda_0 P_0 + \lambda_1 P_1 + \cdots + \lambda_{n-1} P_{n-1}.$$

Here, the spectral projections are defined by

$$P_i f(w) = \frac{(I + \overline{\lambda_i} T + \cdots + \overline{\lambda_i}^{m-1} T^{m-1})f(\omega)}{m}$$

$$= \frac{1}{m} \left(f(\omega) + \overline{\lambda_i} u(\omega) f(\varphi(\omega)) + \cdots \right.$$

$$+ \overline{\lambda_i}^{m-1} u(\omega) \ldots u(\varphi^{m-2}(\omega)) f(\varphi^{m-1}(\omega)) \left) \right.$$

for all $f \in C_0(\Omega)$, $\omega \in \Omega$, and $i = 0, 1, \ldots, n - 1$.

An mth root λ of unity does not belong to $\sigma(T)$ if and only if

$$I + \overline{\lambda} T + \cdots + \overline{\lambda}^{m-1} T^{m-1} = 0.$$
Introduction

Isometries on some important Banach spaces
Hermitian projections
Generalized bicircular projections
Generalized n-circular projections

Generalized n-circular projections on $C_0(\Omega)$

Theorem (D. I., C.-N. Liu and N.-C. Wong)

Let Ω be a connected locally compact space. Let T be a surjective isometry of $C_0(\Omega)$ with finite spectrum consisting of n points. Then all eigenvalues of T are of finite orders.

Definition

We call the generalized n-circular projection P_0 periodic (resp. primitive) if it is an eigenprojection of a periodic surjective isometry T of period $m \geq n$ (resp. of period $m = n$).
Example

Let n be a positive integer and let $\tau = e^{i \frac{2\pi}{n}}$.
Let \mathbb{T} be the unit circle in the complex plane.
Then $Tf(z) = f(\tau z)$ is a surjective isometry of $C(\mathbb{T})$, and

$$\sigma(T) = \{1, \tau, \ldots, \tau^{n-1}\}.$$
Theorem

Let Ω be a connected compact Hausdorff space and let $P_0 : C_0(\Omega) \to C_0(\Omega)$ be a projection. Then the following holds.

(i) [F. Botelho, 2008] If $T = P_0 + \lambda_1 P_1$, with $P_0 \oplus P_1 = I$, is an isometry for some $\lambda_1 \in \mathbb{T} \setminus \{1\}$ then $\sigma(T) = \{1, -1\}$.

(ii) [A. B. Abubaker and S. Dutta, 2011] If $T = P_0 + \lambda_1 P_1 + \lambda_2 P_2$, with $P_0 \oplus P_1 \oplus P_2 = I$, is an isometry for some distinct $\lambda_1, \lambda_2 \in \mathbb{T} \setminus \{1\}$ then $\sigma(T) = \{1, e^{i\frac{2\pi}{3}}, e^{i\frac{4\pi}{3}}\}$.
Introduction
Isometries on some important Banach spaces
Hermitian projections
Generalized bicircular projections
Generalized \(n \)-circular projections

Generalized 4-circular projections on \(C_0(\Omega) \) – an example

Example

\[
A = \{(x, y, z) \in \mathbb{R}^3 : x, y, z \in [0, 1]\},
\]
\[
B = \{(s, -s, 0) \in \mathbb{R}^3 : s \in [-1, 1]\}, \quad \Omega = A \cup B.
\]
\[
\varphi(x, y, z) = \begin{cases}
(y, z, x), & \text{if } (x, y, z) \in A; \\
(-x, -y, -z), & \text{if } (x, y, z) \in B.
\end{cases}
\]

The isometry \(Tf \overset{\text{def}}{=} f \circ \varphi \) of period 6 has 4 eigenvalues

\[
\lambda_0 = 1, \quad \lambda_1 = -1, \quad \lambda_2 = \beta, \quad \lambda_3 = \beta^2,
\]
where \(\beta = e^{i \frac{2\pi}{3}} \).

Hence \(T = P_0 - P_1 + \beta P_2 + \beta^2 P_3 \).
Let Ω be a connected locally compact Hausdorff space. Let $\varphi : \Omega \to \Omega$ be a homeomorphism and u be a unimodular continuous scalar function defined on Ω. Let P_0 be a generalized n-circular projection on $C_0(\Omega)$ associated to $Tf = u \cdot f \circ \varphi$ with the spectral decomposition

$$I = P_0 \oplus P_1 \oplus \cdots \oplus P_{n-1},$$

$$T = P_0 + \lambda_1 P_1 + \cdots + \lambda_{n-1} P_{n-1}.$$

Assume all eigenvalues $\lambda_0 = 1, \lambda_1, \ldots, \lambda_{n-1}$ of T have a (minimum) finite common period $m \geq n$. In particular, all of them are mth roots of unity, and $T^m = I$. Then the following holds.
Theorem (continuation)

- The homeomorphism φ has (minimum) period m.
- The cardinality $k(\omega)$ of the orbit $\{\omega, \varphi(\omega), \varphi^2(\omega), \ldots\}$ of each point ω under φ is not greater than n.
- m is the least common multiple of $k(\omega)$ for all ω in Ω.
The spectrum $\sigma(T)$ of T can be written as a union of the complete set of $k(\omega)$th roots of the modulus one scalar $\alpha_\omega = u(\omega)u(\varphi(\omega)) \cdots u(\varphi^{k(\omega)-1}(\omega))$. More precisely,

$$\sigma(T) = \bigcup_{\omega \in \Omega} \{\lambda_\omega, \lambda_\omega \eta_\omega, \lambda_\omega \eta_\omega^2, \ldots, \lambda_\omega \eta_\omega^{k(\omega)-1}\},$$

where λ_ω and η_ω are primitive $k(\omega)$th roots of α_ω and unity, respectively. We call the set in the union a complete cycle of $k(\omega)$th roots of unity shifted by λ_ω.
Theorem (continuation)

- If \(u(\omega) = 1 \) on \(\Omega \) then we can choose all \(\lambda_\omega = 1 \), and thus \(\sigma(T) \) consists of all \(k(\omega) \)th roots of unity.
- If \(m \) is a prime integer, then \(n = m \) and \(\sigma(T) \) consists of the complete cycle of \(n \)th roots of unity.
Corollary

Let Ω be a connected locally compact Hausdorff space. Then every generalized bicircular or tricircular projection P_0 on $C_0(\Omega)$ is primitive. In other words, P_0 can only be an eigenprojection of a surjective isometry T on $C_0(\Omega)$ with a spectral decomposition

$$T = P_0 - (I - P_0) \quad \text{for the bicircular case,}$$

$$T = P_0 + \beta P_1 + \beta^2 P_2 \quad \text{for the tricircular case,}$$

where $\beta = e^{i\frac{2\pi}{3}}$.
Corollary

Let \(\Omega \) be a connected locally compact Hausdorff space. Let \(Tf = u \cdot f \circ \varphi \) be a surjective isometry on \(C_0(\Omega) \) with the spectral decomposition

\[
T = P_0 + \lambda_1 P_1 + \lambda_2 P_2 + \lambda_3 P_3.
\]

Then \(\sigma(T) = \{1, \lambda_1, \lambda_2, \lambda_3\} \) can only be one of the following:

\[
\begin{align*}
&\{1, -1, i, -i\}, & \{1, -1, \beta, \beta^2\}, & \{1, -1, -\beta, -\beta^2\}, \\
&\{1, -\beta, \beta, \beta^2\}, & \{1, \beta, \beta^2, -\beta^2\}.
\end{align*}
\]

All above cases can happen. Here \(\beta = e^{i \frac{2\pi}{3}} \).
Corollary

Let Ω be a connected locally compact Hausdorff space. Let $Tf = u \cdot f \circ \varphi$ be a surjective isometry on $C_0(\Omega)$ with the spectral decomposition

$$T = P_0 + \lambda_1 P_1 + \lambda_2 P_2 + \lambda_3 P_3 + \lambda_4 P_4.$$

Then $\sigma(T) = \{1, \lambda_1, \lambda_2, \lambda_3, \lambda_4\}$ can only be one of the following:

- $\{1, \delta, \delta^2, \delta^3, \delta^4\}$,
- $\{1, -1, \beta, -\beta, \beta^2\}$,
- $\{1, -1, \beta, -\beta, -\beta^2\}$,
- $\{1, -1, \beta^2, -\beta^2\}$,
- $\{1, \beta, -\beta, \beta^2, -\beta^2\}$.

All above cases can happen. Here, $\beta = e^{i \frac{2\pi}{3}}$ and $\delta = e^{i \frac{2\pi}{5}}$. If u is a constant function, then only the first case is allowed.
Introduction

Isometries on some important Banach spaces
Hermitian projections
Generalized bicircular projections
Generalized n-circular projections

Generalized 5-circular projections on $C_0(\Omega)$ – an example

Example

\begin{align*}
A_1 &= \{(1, 0, \rho) \in \mathbb{R}^3 : \rho \in [0, \pi]\}, \\
A_2 &= \{(1, \frac{2\pi}{3}, \rho) \in \mathbb{R}^3 : \rho \in [0, \pi]\}, \\
A_3 &= \{(1, \frac{4\pi}{3}, \rho) \in \mathbb{R}^3 : \rho \in [0, \pi]\}, \\
B &= \{(r, 0, 0) \in \mathbb{R}^3 : r \in [1/2, 3/2]\}, \\
C &= \{(r, 0, \pi) \in \mathbb{R}^3 : r \in [1/2, 3/2]\}, \\
\Omega &= A_1 \cup A_2 \cup A_3 \cup B \cup C.
\end{align*}
Example

\[\varphi(r, \theta, \rho) = \begin{cases}
(r, \theta + \frac{2\pi}{3}, \rho), & \text{if } (r, \theta, \rho) \in A_1 \cup A_2 \cup A_3; \\
(2 - r, \theta, \rho), & \text{if } (r, \theta, \rho) \in B \cup C.
\end{cases} \]

\[u(r, \theta, \rho) = \begin{cases}
e^{i\frac{2\rho}{3}}, & \text{if } (r, \theta, \rho) \in A_1 \cup A_2; \\
e^{-i\frac{4\rho}{3}}, & \text{if } (r, \theta, \rho) \in A_3; \\
1, & \text{if } (r, \theta, \rho) \in B; \\
e^{i\frac{2\pi}{3}}, & \text{if } (r, \theta, \rho) \in C.
\end{cases} \]

Then \(Tf \overset{\text{def}}{=} u \cdot f \circ \varphi \) has period 6.
Example

\[
\sigma(T) = \{1, \beta, \beta^2\} \cup \{1, -1\} \cup \{\beta, -\beta\} = \{1, -1, \beta, -\beta, \beta^2\}.
\]
Non-primitive generalized n-circular projections on $C_0(\Omega)$

Theorem (D. I., C.-N. Liu and N.-C. Wong)

There exists a non-primitive generalized n-circular projection on continuous functions on a connected compact Hausdorff space for each $n \geq 4$.
Theorem (D. I., 2017)

Let A be a JB*-triple, and $P_0 : A \to A$ be a generalized n-circular projection, $n \geq 2$, associated with $(\lambda_1, \ldots, \lambda_{n-1}, P_1, \ldots, P_{n-1})$. Let $\lambda_0 = 1$. Then one of the following holds.

(i) There exist $i, j, k \in \{0, 1, \ldots, n-1\}$, $k \neq i$, $k \neq j$, such that $\lambda_i \lambda_j \lambda_k \in \{\lambda_m : m = 0, 1, \ldots, n-1\}$.

(ii) All P_0, P_1, \ldots, P_{n-1} are hermitian.

When $n = 2$: if P is not hermitian then $\lambda^2 \in \{1, \lambda\}$, or $\bar{\lambda} \in \{1, \lambda\}$; hence $\lambda = -1$.

When $n = 3$: if P, Q, R are not hermitian then $\lambda_1 \lambda_2 = 1$, or $\lambda_1^2 = \lambda_2$, or $\lambda_2^2 = \lambda_1$.
Theorem (D. I., 2017)

Let A be a JB*-triple, and $P_0 : A \to A$ be a generalized n-circular projection, $n \geq 2$, associated with $(\lambda_1, \ldots, \lambda_{n-1}, P_1, \ldots, P_{n-1})$. Let $\lambda_0 = 1$. Then one of the following holds.

(i) There exist $i, j, k \in \{0, 1, \ldots, n-1\}$, $k \neq i$, $k \neq j$, such that $\lambda_i \lambda_j \lambda_k \in \{\lambda_m : m = 0, 1, \ldots, n-1\}$.

(ii) All $P_0, P_1, \ldots, P_{n-1}$ are hermitian.

When $n = 2$: if P is not hermitian then $\lambda^2 \in \{1, \lambda\}$, or $\overline{\lambda} \in \{1, \lambda\}$; hence $\lambda = -1$.

When $n = 3$: if P, Q, R are not hermitian then $\lambda_1 \lambda_2 = 1$, or $\lambda_1^2 = \lambda_2$, or $\lambda_2^2 = \lambda_1$.
Theorem (D. I., 2017)

Let A be a JB*-triple, and $P_0 : A \to A$ be a generalized n-circular projection, $n \geq 2$, associated with $(\lambda_1, \ldots, \lambda_{n-1}, P_1, \ldots, P_{n-1})$. Let $\lambda_0 = 1$. Then one of the following holds.

(i) There exist $i, j, k \in \{0, 1, \ldots, n-1\}$, $k \neq i$, $k \neq j$, such that $\lambda_i \lambda_j \lambda_k \in \{\lambda_m : m = 0, 1, \ldots, n-1\}$.

(ii) All $P_0, P_1, \ldots, P_{n-1}$ are hermitian.

When $n = 2$: if P is not hermitian then $\lambda^2 \in \{1, \lambda\}$, or $\overline{\lambda} \in \{1, \lambda\}$; hence $\lambda = -1$.

When $n = 3$: if P, Q, R are not hermitian then $\lambda_1 \lambda_2 = 1$, or $\lambda_2^2 = \lambda_2$, or $\lambda_1^2 = \lambda_1$.