Compression & compact perturbation of operators
A numerical range approach

Chi-Kwong Li
(Ferguson Professor) College of William and Mary, Virginia,
(Affiliate member) Institute for Quantum Computing, Waterloo
Let $B(H)$ be the algebra of bounded linear operators acting on the Hilbert space H equipped with the inner product $\langle x, y \rangle$.

Basic problems

1. Find a unitary $U \in B(H)$ such that $U^*A_jU = (T_j^* \cdots T_1^*)$, $j = 1, \ldots, m$, for some desirable T_1, \ldots, T_m.

2. Find those "good" compression T_1, \ldots, T_m such that for any low rank, finite rank, or compact operators K_1, \ldots, K_m, there is an isometry X (depending on K_j's) satisfying $T_j = X^*(A_j + K_j)X$, $j = 1, \ldots, m$.

Chi-Kwong Li, College of William & Mary

Compression and compact perturbation of operators
Let $B(H)$ be the algebra of bounded linear operators acting on the Hilbert space H equipped with the inner product $\langle x, y \rangle$.

If H has dimension n, we identify $B(H)$ with M_n, the algebra of $n \times n$ matrices with inner product $\langle x, y \rangle = y^* x$.
Let $B(H)$ be the algebra of bounded linear operators acting on the Hilbert space H equipped with the inner product $\langle x, y \rangle$.

If H has dimension n, we identify $B(H)$ with M_n, the algebra of $n \times n$ matrices with inner product $\langle x, y \rangle = y^*x$.

In Lecture 1, we care about “good” matrices producing arbitrary compression.
Let $B(H)$ be the algebra of bounded linear operators acting on the Hilbert space H equipped with the inner product $\langle x, y \rangle$.

If H has dimension n, we identify $B(H)$ with M_n, the algebra of $n \times n$ matrices with inner product $\langle x, y \rangle = y^*x$.

In Lecture 1, we care about “good” matrices producing arbitrary compression. Here, we care about “good” compression.
Let $B(H)$ be the algebra of bounded linear operators acting on the Hilbert space H equipped with the inner product $\langle x, y \rangle$.

If H has dimension n, we identify $B(H)$ with M_n, the algebra of $n \times n$ matrices with inner product $\langle x, y \rangle = y^*x$.

In Lecture 1, we care about “good” matrices producing arbitrary compression. Here, we care about “good” compression.

Basic problems

Let $A_1, \ldots, A_m \in B(H)$.

Chi-Kwong Li, College of William & Mary

Compression and compact perturbation of operators
Let $B(H)$ be the algebra of bounded linear operators acting on the Hilbert space H equipped with the inner product $\langle x, y \rangle$.

If H has dimension n, we identify $B(H)$ with M_n, the algebra of $n \times n$ matrices with inner product $\langle x, y \rangle = y^* x$.

In Lecture 1, we care about “good” matrices producing arbitrary compression. Here, we care about “good” compression.

Basic problems

Let $A_1, \ldots, A_m \in B(H)$.

1. Find a unitary $U \in B(H)$ such that $U^* A_j U = \begin{pmatrix} T_j & \ast \\ \ast & \ast \end{pmatrix}$, $j = 1, \ldots, m$, for some desirable T_1, \ldots, T_m.
Introduction

Let $B(H)$ be the algebra of bounded linear operators acting on the Hilbert space H equipped with the inner product $\langle x, y \rangle$.

If H has dimension n, we identify $B(H)$ with M_n, the algebra of $n \times n$ matrices with inner product $\langle x, y \rangle = y^*x$.

In Lecture 1, we care about “good” matrices producing arbitrary compression. Here, we care about “good” compression.

Basic problems

Let $A_1, \ldots, A_m \in B(H)$.

1. Find a unitary $U \in B(H)$ such that $U^*A_jU = \begin{pmatrix} T_j & \ast \\ \ast & \ast \end{pmatrix}$, $j = 1, \ldots, m$, for some desirable T_1, \ldots, T_m.

That is, there is an isometry X such that $X^*A_jX = T_j$, $j = 1, \ldots, m$.
Let $B(H)$ be the algebra of bounded linear operators acting on the Hilbert space H equipped with the inner product $\langle x, y \rangle$.

If H has dimension n, we identify $B(H)$ with M_n, the algebra of $n \times n$ matrices with inner product $\langle x, y \rangle = y^* x$.

In Lecture 1, we care about “good” matrices producing arbitrary compression. Here, we care about “good” compression.

Basic problems

Let $A_1, \ldots, A_m \in B(H)$.

1. Find a unitary $U \in B(H)$ such that $U^* A_j U = \begin{pmatrix} T_j & * \\ * & * \end{pmatrix}$, $j = 1, \ldots, m$, for some desirable T_1, \ldots, T_m.
 That is, there is an isometry X such that $X^* A_j X = T_j$, $j = 1, \ldots, m$.

2. Find those “good” compression T_1, \ldots, T_m such that
Introduction

- Let $B(H)$ be the algebra of bounded linear operators acting on the Hilbert space H equipped with the inner product $\langle x, y \rangle$.
- If H has dimension n, we identify $B(H)$ with M_n, the algebra of $n \times n$ matrices with inner product $\langle x, y \rangle = y^*x$.
- In Lecture 1, we care about “good” matrices producing arbitrary compression. Here, we care about “good” compression.

Basic problems

Let $A_1, \ldots, A_m \in B(H)$.

1. Find a unitary $U \in B(H)$ such that $U^* A_j U = \begin{pmatrix} T_j & * \\ * & * \end{pmatrix}$, $j = 1, \ldots, m$, for some desirable T_1, \ldots, T_m.
 That is, there is an isometry X such that $X^* A_j X = T_j$, $j = 1, \ldots, m$.

2. Find those “good” compression T_1, \ldots, T_m such that for any low rank, finite rank, or compact operators K_1, \ldots, K_m, there is an isometry X (depending on K_j’s) satisfying
 $$T_j = X^* (A_j + K_j) X, \quad j = 1, \ldots, m.$$
The numerical range setting provides a natural platform for our study.
The numerical range setting provides a natural platform for our study.

One may use algebraic, analytic, and geometric methods in the analysis.
The numerical range setting provides a natural platform for our study.

One may use algebraic, analytic, and geometric methods in the analysis.

The numerical range of $A \in B(H)$ is the set

$$W(A) = \{ \langle Ax, x \rangle : x \in H, \langle x, x \rangle = 1 \}.$$
The numerical range setting provides a natural platform for our study. One may use algebraic, analytic, and geometric methods in the analysis. The numerical range of $A \in B(H)$ is the set
\[W(A) = \{ \langle Ax, x \rangle : x \in H, \langle x, x \rangle = 1 \} \]
The joint numerical range of $A = (A_1, \ldots, A_m) \in B(H)^m$ is defined by
\[W(A) = \{ (\langle A_1 x, x \rangle, \ldots, \langle A_m x, x \rangle) : x \in H, \langle x, x \rangle = 1 \} \subseteq \mathbb{R}^m \]
The numerical range setting provides a natural platform for our study. One may use algebraic, analytic, and geometric methods in the analysis. The numerical range of $A \in B(H)$ is the set

$$W(A) = \{ \langle Ax, x \rangle : x \in H, \langle x, x \rangle = 1 \}.$$

The joint numerical range of $A = (A_1, \ldots, A_m) \in B(H)^m$ by

$$W(A) = \left\{ (\langle A_1 x, x \rangle, \ldots, \langle A_m x, x \rangle) : x \in H, \langle x, x \rangle = 1 \right\} \subseteq \mathbb{R}^m.$$

Let $A = A_1 + iA_2 \in B(H)$, where $A_1 = A_1^*$ and $A_2 = A_2^*$. Then

$$W(A) \equiv W(A_1, A_2) = \{ (\langle A_1 x, x \rangle, \langle A_2 x, x \rangle) : x \in H, \langle x, x \rangle = 1 \} \subseteq \mathbb{R}^2.$$
Mathematically, quantum states are density matrices in M_n, i.e., positive semidefinite matrices with trace one.
- Mathematically, quantum states are density matrices in M_n, i.e., positive semidefinite matrices with trace one.
- A rank one orthogonal projection is pure state.
Mathematically, quantum states are density matrices in M_n, i.e., positive semidefinite matrices with trace one.

A rank one orthogonal projection is pure state.

The joint numerical ranges $W(A_1, \ldots, A_k)$ are all possible measurements of pure states using the measurement operators (observable) A_1, \ldots, A_k.

(Au-Yeung and Poon, 1979) If $n \geq 3$ and $A = (A_1, A_2, A_3) \in M_n$ is a triple of Hermitian matrices, then $W(A)$ is convex. If $m \geq 4$, then $W(A_1, \ldots, A_m)$ may not be convex even if $\dim H = \infty$.

Mathematically, quantum states are density matrices in M_n, i.e., positive semidefinite matrices with trace one.

A rank one orthogonal projection is pure state.

The joint numerical ranges $W(A_1, \ldots, A_k)$ are all possible measurements of pure states using the measurement operators (observable) A_1, \ldots, A_k.

While the classical numerical range $W(A_1 + iA_2) = W(A_1, A_2)$ is always convex, the set $W(A_1, A_2, A_3)$ may not be convex.
Mathematically, quantum states are density matrices in M_n, i.e., positive semidefinite matrices with trace one.

A rank one orthogonal projection is pure state.

The joint numerical ranges $W(A_1, \ldots, A_k)$ are all possible measurements of pure states using the measurement operators (observable) A_1, \ldots, A_k.

While the classical numerical range $W(A_1 + iA_2) = W(A_1, A_2)$ is always convex, the set $W(A_1, A_2, A_3)$ may not be convex. For example, if

$$A_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad A_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad A_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$$
Mathematically, **quantum states** are density matrices in M_n, i.e., positive semidefinite matrices with trace one.

A rank one orthogonal projection is **pure state**.

The joint numerical ranges $W(A_1, \ldots, A_k)$ are all possible measurements of pure states using the measurement operators (observable) A_1, \ldots, A_k.

While the classical numerical range $W(A_1 + iA_2) = W(A_1, A_2)$ is always convex, the set $W(A_1, A_2, A_3)$ may not be convex. For example, if

$$A_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad A_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad A_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$$

then $W(A_1, A_2, A_3) = \{ (\mu_1, \mu_2, \mu_3) : \mu_1^2 + \mu_2^2 + \mu_3^2 = 1 \}$.
Mathematically, quantum states are density matrices in M_n, i.e., positive semidefinite matrices with trace one.

A rank one orthogonal projection is pure state.

The joint numerical ranges $W(A_1, \ldots, A_k)$ are all possible measurements of pure states using the measurement operators (observable) A_1, \ldots, A_k.

While the classical numerical range $W(A_1 + iA_2) = W(A_1, A_2)$ is always convex, the set $W(A_1, A_2, A_3)$ may not be convex. For example, if

$$A_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad A_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad A_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$$

then $W(A_1, A_2, A_3) = \{(\mu_1, \mu_2, \mu_3) : \mu_1^2 + \mu_2^2 + \mu_3^2 = 1\}$.

(Au-Yeung and Poon, 1979) If $n \geq 3$ and $A = (A_1, A_2, A_3) \in M_n$ is a triple of Hermitian matrices, then $W(A)$ is convex.
Mathematically, quantum states are density matrices in M_n, i.e., positive semidefinite matrices with trace one.

A rank one orthogonal projection is pure state.

The joint numerical ranges $W(A_1, \ldots, A_k)$ are all possible measurements of pure states using the measurement operators (observable) A_1, \ldots, A_k.

While the classical numerical range $W(A_1 + iA_2) = W(A_1, A_2)$ is always convex, the set $W(A_1, A_2, A_3)$ may not be convex. For example, if

$$A_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad A_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad A_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$$

then $W(A_1, A_2, A_3) = \{(\mu_1, \mu_2, \mu_3) : \mu_1^2 + \mu_2^2 + \mu_3^2 = 1\}$.

(Au-Yeung and Poon, 1979) If $n \geq 3$ and $A = (A_1, A_2, A_3) \in M_n$ is a triple of Hermitian matrices, then $W(A)$ is convex.

If $m \geq 4$, then $W(A_1, \ldots, A_m)$ may not be convex even if $\dim H = \infty$.
In quantum information science, quantum channels/operations are trace preserving completely positive linear maps $\Phi : M_n \rightarrow M_m$ admitting the operator sum representation

$$\Phi(X) = F_1XF_1^* + \cdots + F_rXF_r^*$$

for some F_1, \ldots, F_r satisfying $\sum_{j=1}^{r} F_j^*F_j = I_n$.
In quantum information science, quantum channels/operations are trace preserving completely positive linear maps $\Phi : M_n \to M_m$ admitting the operator sum representation

$$\Phi(X) = F_1XF_1^* + \cdots + F_rXF_r^*$$

for some F_1, \ldots, F_r satisfying $\sum_{j=1}^{r} F_j^*F_j = I_n$.

Suppose span $\{F_i^*F_j : 1 \leq i, j \leq r\}$ has a basis $\{I, A_1, \ldots, A_m\}$.

Chi-Kwong Li, College of William & Mary

Compression and compact perturbation of operators
In quantum information science, quantum channels/operations are trace preserving completely positive linear maps $\Phi : M_n \to M_m$ admitting the operator sum representation

$$\Phi(X) = F_1XF_1^* + \cdots + F_rXF_r^*$$

for some F_1, \ldots, F_r satisfying $\sum_{j=1}^r F_j^*F_j = I_n$.

Suppose $\text{span} \{F_i^*F_j : 1 \leq i, j \leq r\}$ has a basis $\{I, A_1, \ldots, A_m\}$.

Define the rank p-numerical range of $A = (A_1, \ldots, A_m)$ by

$$\Lambda_p(A) = \{(a_1, \ldots, a_m) : X^*A_jX = a_jI_p \text{ for some } X \in V_p\},$$

where V_p is the set of operator $X : \mathbb{C}^p \to H$ such that $X^*X = I_p$.
In quantum information science, quantum channels/operations are trace preserving completely positive linear maps $\Phi : M_n \to M_m$ admitting the operator sum representation

$$\Phi(X) = F_1 XF_1^* + \cdots + F_r XF_r^*$$

for some F_1, \ldots, F_r satisfying $\sum_{j=1}^r F_j^* F_j = I_n$.

Suppose $\text{span} \{ F_i^* F_j : 1 \leq i, j \leq r \}$ has a basis $\{ I, A_1, \ldots, A_m \}$.

Define the rank p-numerical range of $A = (A_1, \ldots, A_m)$ by

$$\Lambda_p(A) = \{(a_1, \ldots, a_m) : X^* A_j X = a_j I_p \text{ for some } X \in V_p \},$$

where V_p is the set of operator $X : \mathbb{C}^p \to H$ such that $X^* X = I_p$.

Then the channel Φ has a quantum error correction code of dimension p if and only if $\Lambda_p(A_1, \ldots, A_m)$ is non-empty.
In quantum information science, quantum channels/operations are trace preserving completely positive linear maps $\Phi : M_n \to M_m$ admitting the operator sum representation

$$\Phi(X) = F_1XF_1^* + \cdots + F_rXF_r^*$$

for some F_1, \ldots, F_r satisfying $\sum_{j=1}^r F_j^*F_j = I_n$.

Suppose $\text{span}\{F_i^*F_j : 1 \leq i, j \leq r\}$ has a basis $\{I, A_1, \ldots, A_m\}$.

Define the rank p-numerical range of $A = (A_1, \ldots, A_m)$ by

$$\Lambda_p(A) = \{(a_1, \ldots, a_m) : X^*A_jX = a_jI_p \text{ for some } X \in V_p\},$$

where V_p is the set of operator $X : \mathbb{C}^p \to H$ such that $X^*X = I_p$.

Then the channel Φ has a quantum error correction code of dimension p if and only if $\Lambda_p(A_1, \ldots, A_m)$ is non-empty.

There will be a recovery channel Ψ such that

$$\Psi \circ \Phi(X) = X \quad \text{whenever} \quad PXP = X,$$

where P is the orthogonal projection of H onto the “coding” subspace.
The joint higher rank numerical range was introduced in [Choi, Kribs, Zyczkowski, 2006].

Note that \((a_1, \ldots, a_m) \in \Lambda^p(A)\) if and only if there is a unitary
\[U = \begin{bmatrix} X & \tilde{X} \end{bmatrix} \]
such that
\[U^* A U = (a_j I_p)^{\ast \ast \ast}, \quad j = 1, \ldots, m. \]

Suppose \(A_1\) has eigenvalues \(\lambda_1, \ldots, \lambda_n\). Then
\[\Lambda^p(A_1) = [\lambda_{n-p+1}, \lambda_p]. \]

The set \(\Lambda^p(A_1)\) may be empty if \(p > (\dim H + 1)/2\).

If \(\Lambda^p(A)\) is convex, one can derive efficient algorithms to find its elements, and construct quantum error correction codes accordingly.

However, one only has convexity if \(m \leq 2\). [Choi et al., 2006], [Woerdeman, 2009], [Li and Sze, 2009]

The set may not be convex if \(m > 2\).
The joint higher rank numerical range was introduced in [Choi, Kribs, Zyczkowski, 2006].

Note that \((a_1, \ldots, a_m) \in \Lambda_p(A)\) if and only if there is a unitary \(U = [X|\tilde{X}]\) such that

\[
U^* A_j U = \begin{pmatrix} a_j I_p & * \\ * & * \end{pmatrix}, \quad j = 1, \ldots, m.
\]
The joint higher rank numerical range was introduced in [Choi, Kribs, Zyczkowski, 2006].

Note that \((a_1, \ldots, a_m) \in \Lambda_p(A)\) if and only if there is a unitary \(U = [X|\tilde{X}]\) such that

\[
U^* A_j U = \begin{pmatrix} a_j I_p & * \\ * & * \end{pmatrix}, \quad j = 1, \ldots, m.
\]

Suppose \(A_1\) has eigenvalues \(\lambda_1, \ldots, \lambda_n\). Then \(\Lambda_p(A_1) = [\lambda_{n-p+1}, \lambda_p]\).
The joint higher rank numerical range was introduced in [Choi, Kribs, Zyczkowski, 2006].

Note that \((a_1, \ldots, a_m) \in \Lambda_p(A)\) if and only if there is a unitary
\(U = [X|\tilde{X}]\) such that

\[
U^* A_j U = \begin{pmatrix} a_j I_p & * \\
* & * \end{pmatrix}, \quad j = 1, \ldots, m.
\]

Suppose \(A_1\) has eigenvalues \(\lambda_1, \ldots, \lambda_n\). Then \(\Lambda_p(A_1) = [\lambda_{n-p+1}, \lambda_p]\).

The set \(\Lambda_p(A_1)\) may be empty if \(p > (\dim H + 1)/2\).
The joint higher rank numerical range was introduced in [Choi, Kribs, Zyczkowski, 2006].

Note that \((a_1, \ldots, a_m) \in \Lambda_p(A)\) if and only if there is a unitary \(U = [X|\tilde{X}]\) such that

\[
U^* A_j U = \begin{pmatrix} a_j I_p & * \\ * & * \end{pmatrix}, \quad j = 1, \ldots, m.
\]

Suppose \(A_1\) has eigenvalues \(\lambda_1, \ldots, \lambda_n\). Then \(\Lambda_p(A_1) = [\lambda_{n-p+1}, \lambda_p]\).

The set \(\Lambda_p(A_1)\) may be empty if \(p > (\text{dim } H + 1)/2\).

If \(\Lambda_p(A)\) is convex, one can derive efficient algorithm to find its elements, and construct quantum error correction codes accordingly.
The joint higher rank numerical range was introduced in [Choi, Kribs, Zyczkowski, 2006].

Note that \((a_1, \ldots, a_m) \in \Lambda_p(A)\) if and only if there is a unitary \(U = [X|\tilde{X}]\) such that

\[
U^* A_j U = \begin{pmatrix} a_j I_p & * \\ * & * \end{pmatrix}, \quad j = 1, \ldots, m.
\]

Suppose \(A_1\) has eigenvalues \(\lambda_1, \ldots, \lambda_n\). Then \(\Lambda_p(A_1) = [\lambda_{n-p+1}, \lambda_p]\).

The set \(\Lambda_p(A_1)\) may be empty if \(p > (\dim H + 1)/2\).

If \(\Lambda_p(A)\) is convex, one can derive efficient algorithm to find its elements, and construct quantum error correction codes accordingly.

However, one only has convexity if \(m \leq 2\).

[Choi et al., 2006], [Woerdeman, 2009], [Li and Sze, 2009]
The joint higher rank numerical range was introduced in [Choi, Kribs, Zyczkowski, 2006].

Note that \((a_1, \ldots, a_m) \in \Lambda_p(A)\) if and only if there is a unitary \(U = [X|\tilde{X}]\) such that

\[
U^* A_j U = \begin{pmatrix} a_j I_p & \ast \\ \ast & \ast \end{pmatrix}, \quad j = 1, \ldots, m.
\]

Suppose \(A_1\) has eigenvalues \(\lambda_1, \ldots, \lambda_n\). Then \(\Lambda_p(A_1) = [\lambda_{n-p+1}, \lambda_p]\).

The set \(\Lambda_p(A_1)\) may be empty if \(p > (\dim H + 1)/2\).

If \(\Lambda_p(A)\) is convex, one can derive efficient algorithm to find its elements, and construct quantum error correction codes accordingly.

However, one only has convexity if \(m \leq 2\).

[Choi et al., 2006], [Woerdeman, 2009], [Li and Sze, 2009]

The set may not be convex if \(m > 2\).
Define the joint q-matricial range of $A = (A_1, \ldots, A_m)$ by

$$W(q : A) = \{(X^* A_1 X, \ldots, X^* A_m X) : X \in V_q\}.$$
Define the joint q-matricial range of $A = (A_1, \ldots, A_m)$ by

$$W(q : A) = \{(X^* A_1 X, \ldots, X^* A_m X) : X \in V_q\}.$$

Note: $(B_1, \ldots, B_m) \in W(q : A)$ if and only if there is a unitary $U = [X|\tilde{X}]$ such that

$$U^* A_j U = \begin{pmatrix} B_j & * \\ * & * \end{pmatrix}, \quad j = 1, \ldots, m.$$
Define the joint \(q \)-matricial range of \(A = (A_1, \ldots, A_m) \) by

\[
W(q : A) = \{(X^* A_1 X, \ldots, X^* A_m X) : X \in V_q \}.
\]

Note: \((B_1, \ldots, B_m) \in W(q : A)\) if and only if there is a unitary \(U = [X|\tilde{X}] \) such that

\[
U^* A_j U = \begin{pmatrix} B_j & * \\ * & * \end{pmatrix}, \quad j = 1, \ldots, m.
\]

Theorem [Li and Tsing, 1991]

Let \(A \in M_n \) be Hermitian matrix with eigenvalues \(a_1 \geq \cdots \geq a_n \). Then the set \(W(q : A) \) consists of Hermitian matrices \(B \in M_q \) with eigenvalues

\[
b_1 \geq \cdots \geq b_q \quad \text{satisfying} \quad a_j \geq b_j \geq a_{n-q+j} \quad \text{for} \quad j = 1, \ldots, q.
\]
Define the joint q-matricial range of $A = (A_1, \ldots, A_m)$ by

$$W(q : A) = \{(X^* A_1 X, \ldots, X^* A_m X) : X \in V_q\}.$$

Note: $(B_1, \ldots, B_m) \in W(q : A)$ if and only if there is a unitary $U = [X|\tilde{X}]$ such that

$$U^* A_j U = \begin{pmatrix} B_j & \ast \\ \ast & \ast \end{pmatrix}, \quad j = 1, \ldots, m.$$

Theorem [Li and Tsing, 1991]

Let $A \in M_n$ be Hermitian matrix with eigenvalues $a_1 \geq \cdots \geq a_n$. Then the set $W(q : A)$ consists of Hermitian matrices $B \in M_q$ with eigenvalues

$$b_1 \geq \cdots \geq b_q \quad \text{satisfying} \quad a_j \geq b_j \geq a_{n-q+j} \quad \text{for} \quad j = 1, \ldots, q.$$

Consequently, the set $W(q : A)$ is convex if and only if

$$a_1 = \cdots = a_q \quad \text{and} \quad a_{n-q+1} = \cdots = a_n.$$
The joint q-matricial range

Define the joint q-matricial range of $A = (A_1, \ldots, A_m)$ by

$$W(q : A) = \{(X^* A_1 X, \ldots, X^* A_m X) : X \in V_q\}.$$

Note: $(B_1, \ldots, B_m) \in W(q : A)$ if and only if there is a unitary $U = [X | \tilde{X}]$ such that

$$U^* A_j U = \begin{pmatrix} B_j & \ast \\ \ast & \ast \end{pmatrix}, \quad j = 1, \ldots, m.$$

Theorem [Li and Tsing, 1991]

Let $A \in M_n$ be Hermitian matrix with eigenvalues $a_1 \geq \cdots \geq a_n$. Then the set $W(q : A)$ consists of Hermitian matrices $B \in M_q$ with eigenvalues

$$b_1 \geq \cdots \geq b_q \quad \text{satisfying} \quad a_j \geq b_j \geq a_{n-q+j} \quad \text{for} \quad j = 1, \ldots, q.$$

Consequently, the set $W(q : A)$ is convex if and only if

$$a_1 = \cdots = a_q \quad \text{and} \quad a_{n-q+1} = \cdots = a_n.$$

- In general, the structure of $W(q : A)$ is hard to determine.
Define the joint q-matricial range of $A = (A_1, \ldots, A_m)$ by

$$W(q : A) = \{(X^* A_1 X, \ldots, X^* A_m X) : X \in V_q\}.$$

Note: $(B_1, \ldots, B_m) \in W(q : A)$ if and only if there is a unitary $U = [X|\tilde{X}]$ such that

$$U^* A_j U = \begin{pmatrix} B_j & * \\ * & * \end{pmatrix}, \quad j = 1, \ldots, m.$$

Theorem [Li and Tsing, 1991]

Let $A \in M_n$ be Hermitian matrix with eigenvalues $a_1 \geq \cdots \geq a_n$. Then the set $W(q : A)$ consists of Hermitian matrices $B \in M_q$ with eigenvalues $b_1 \geq \cdots \geq b_q$ satisfying $a_j \geq b_j \geq a_{n-q+j}$ for $j = 1, \ldots, q$.

Consequently, the set $W(q : A)$ is convex if and only if

$$a_1 = \cdots = a_q \quad \text{and} \quad a_{n-q+1} = \cdots = a_n.$$

- In general, the structure of $W(q : A)$ is hard to determine.
- For example, even for a normal matrix $A \in M_n$, it is not easy to characterize those (normal) matrices in $W(q : A)$.

To construct a “better” quantum error correction, researchers consider the (p, q)-matricial range of $A = (A_1, \ldots, A_m)$ to be the set $\Lambda_{p,q}(A)$ of m-tuple of Hermitian matrices (B_1, \ldots, B_m) such that

$$X^* A_j X = I_p \otimes B_j = B_j \oplus \cdots \oplus B_j \ (p \text{ times}), \quad j = 1, \ldots, m,$$

for some $X \in V_{pq}$.

To construct a “better” quantum error correction, researchers consider the \((p, q)\)-matricial range of \(A = (A_1, \ldots, A_m)\) to be the set \(\Lambda_{p,q}(A)\) of \(m\)-tuple of Hermitian matrices \((B_1, \ldots, B_m)\) such that

\[
X^* A_j X = I_p \otimes B_j = B_j \oplus \cdots \oplus B_j \text{ (}\ p \text{ times)}, \quad j = 1, \ldots, m,
\]

for some \(X \in V_{pq}\).

Equivalently, there is a unitary \(U = [X|\tilde{X}]\) such that

\[
U^* A_j U = \begin{pmatrix}
B_j & \ast \\
\ast & \ast \\
\ast & \ast & \ast \\
\ast & \ast & \ast & \ast
\end{pmatrix}.
\]
The \((p, q)\)-matricial range

To construct a “better” quantum error correction, researchers consider the \((p, q)\)-matricial range of \(A = (A_1, \ldots, A_m)\) to be the set \(\Lambda_{p, q}(A)\) of \(m\)-tuple of Hermitian matrices \((B_1, \ldots, B_m)\) such that

\[
X^* A_j X = I_p \otimes B_j = B_j \oplus \cdots \oplus B_j \ (p \text{ times}), \quad j = 1, \ldots, m,
\]

for some \(X \in V_{pq}\).

Equivalently, there is a unitary \(U = [X|\tilde{X}]\) such that

\[
U^* A_j U = \begin{pmatrix}
B_j & * \\
& \ddots & * \\
& & \ddots & * \\
& & & B_j & *
\end{pmatrix}.
\]

Evidently, this definition covers the joint numerical range, the joint rank \(p\)-numerical range, the \(q\)-matricial range as special cases.
While there is no general convexity result for $\Lambda_{p,q}(A)$, we may obtain some star-shapedness results.
While there is no general convexity result for $\Lambda_{p,q}(A)$, we may obtain some star-shapedness results.

Recall that a set $S \subseteq \mathbb{R}^N$ is **star-shaped** if there is a star center $v_0 \in S$ such that the line segment joining v_0 to any other point $v \in S$ lie in S.

Theorem [Lau, Li, Poon, Sze, 2018]

Let $A = (A_1, \ldots, A_m) \in \mathcal{B}(\mathcal{H})^m$, p and q be positive integers.

(a) If $\dim \mathcal{H} \geq (pq - 1)(m + 1)^2$, then $\Lambda_{pq}(A)$ and $\Lambda_{p,q}(A)$ are non-empty.

(b) If $\dim \mathcal{H} \geq (N - 1)(m + 1)^2$ for $N = pq(m + 2)$, then every element in $\text{conv}\{ (a_{1Iq}, \ldots, a_{mIq}) : (a_1, \ldots, a_m) \in \Lambda_N(A) \} \subseteq \Lambda_{p,q}(A)$ is a star center of $\Lambda_{p,q}(A)$.

(c) For any r with $1 \leq qr < p \leq \dim \mathcal{H}$, if $K = (K_1, \ldots, K_m)$ with $K_1, \ldots, K_m \in \mathcal{B}(\mathcal{H})$ such that $\text{rank}(K_2^1 + \cdots + K_{2m}) \leq r$, then $\Lambda_{p,q}(A) \subseteq \Lambda_{p-qr,q}(A + K)$.

Chi-Kwong Li, College of William & Mary
While there is no general convexity result for $\Lambda_{p,q}(A)$, we may obtain some star-shapedness results.

Recall that a set $S \subseteq \mathbb{R}^N$ is star-shaped if there is a star center $v_0 \in S$ such that the line segment joining v_0 to any other point $v \in S$ lie in S.

Theorem [Lau, Li, Poon, Sze, 2018]

Let $A = (A_1, \ldots, A_m) \in B(H)^m$, p, q be positive integers.
Nonemptyness, Star-shapedness, low rank perturbations

- While there is no general convexity result for $\Lambda_{p,q}(A)$, we may obtain some star-shapedness results.
- Recall that a set $S \subseteq \mathbb{R}^N$ is star-shaped if there is a star center $v_0 \in S$ such that the line segment joining v_0 to any other point $v \in S$ lie in S.

Theorem [Lau, Li, Poon, Sze, 2018]

Let $A = (A_1, \ldots, A_m) \in B(H)^m$, p, q be positive integers.

(a) If $\dim H \geq (pq - 1)(m + 1)^2$, then $\Lambda_{pq}(A)$ and $\Lambda_{p,q}(A)$ are non-empty.
While there is no general convexity result for $\Lambda_{p,q}(A)$, we may obtain some star-shapedness results.

Recall that a set $S \subseteq \mathbb{R}^N$ is star-shaped if there is a star center $v_0 \in S$ such that the line segment joining v_0 to any other point $v \in S$ lie in S.

Theorem [Lau, Li, Poon, Sze, 2018]

Let $A = (A_1, \ldots, A_m) \in B(H)^m$, p, q be positive integers.

(a) If $\dim H \geq (pq - 1)(m + 1)^2$, then $\Lambda_{pq}(A)$ and $\Lambda_{p,q}(A)$ are non-empty.

(b) If $\dim H \geq (N - 1)(m + 1)^2$ for $N = pq(m + 2)$, then every element in

$$\text{conv} \{(a_1 I_q, \ldots, a_m I_q) : (a_1, \ldots, a_m) \in \Lambda_N(A)\} \subseteq \Lambda_{p,q}(A)$$

is a star center of $\Lambda_{p,q}(A)$.
While there is no general convexity result for $\Lambda_{p,q}(A)$, we may obtain some star-shapedness results.

Recall that a set $S \subseteq \mathbb{R}^N$ is star-shaped if there is a star center $v_0 \in S$ such that the line segment joining v_0 to any other point $v \in S$ lie in S.

Theorem [Lau, Li, Poon, Sze, 2018]

Let $A = (A_1, \ldots, A_m) \in B(H)^m$, p, q be positive integers.

(a) If $\dim H \geq (pq - 1)(m + 1)^2$, then $\Lambda_{pq}(A)$ and $\Lambda_{p,q}(A)$ are non-empty.

(b) If $\dim H \geq (N - 1)(m + 1)^2$ for $N = pq(m + 2)$, then every element in

$$\text{conv} \{(a_1 I_q, \ldots, a_m I_q) : (a_1, \ldots, a_m) \in \Lambda_N(A)\} \subseteq \Lambda_{p,q}(A)$$

is a star center of $\Lambda_{p,q}(A)$.

(c) For any r with $1 \leq qr < p \leq \dim H$, if $K = (K_1, \ldots, K_m)$ with

$K_1, \ldots, K_m \in B(H)$ such that $\text{rank} \left(K_1^2 + \cdots + K_m^2\right) \leq r$, then

$$\Lambda_{p,q}(A) \subseteq \Lambda_{p-qr,q}(A + K).$$
When $p = 1$, the main theorem reduces to the following.
When $p = 1$, the main theorem reduces to the following.

Theorem [LLPS, 2018]

Let $\mathbf{A} = (A_1, \ldots, A_m)$ be an m-tuple of self-adjoint operators in $B(H)^m$. The set

$$W(q : A_1, \ldots, A_m) = \{(X^* A_1 X, \ldots X^* A_m X) : X \in V_q\}$$

is star-shaped if

$$\dim H \geq (N - 1)(m + 1)^2 \quad \text{with} \quad N = q(m + 2).$$
When $p = 1$, the main theorem reduces to the following.

Theorem [LLPS, 2018]

Let $\mathbf{A} = (A_1, \ldots, A_m)$ be an m-tuple of self-adjoint operators in $B(H)^m$. The set

$$W(q : A_1, \ldots, A_m) = \{(X^* A_1 X, \ldots X^* A_m X) : X \in V_q\}$$

is star-shaped if

$$\dim H \geq (N - 1)(m + 1)^2 \quad \text{with} \quad N = q(m + 2).$$

In particular, the set $\Lambda_N(\mathbf{A})$ is non-empty, and
When \(p = 1 \), the main theorem reduces to the following.

Theorem [LLPS, 2018]

Let \(\mathbf{A} = (A_1, \ldots, A_m) \) be an \(m \)-tuple of self-adjoint operators in \(B(H)^m \).

The set

\[
W(q : A_1, \ldots, A_m) = \{(X^* A_1 X, \ldots X^* A_m X) : X \in V_q\}
\]

is star-shaped if

\[
\dim H \geq (N - 1)(m + 1)^2 \quad \text{with} \quad N = q(m + 2).
\]

In particular, the set \(\Lambda_N(\mathbf{A}) \) is non-empty, and

\[
(a_1 I_1, \ldots, a_m I_q) \quad \text{is a star center whenever} \quad (a_1, \ldots, a_m) \in \text{conv} \ \Lambda_N(\mathbf{A}).
\]
More results when \(\dim H \) is infinite

Suppose \(\dim H = \infty \). We consider

\[
\Lambda_\infty(A) = \bigcap_{r \in \mathbb{N}} \Lambda_r(A) \subseteq \mathbb{R}^m \quad \text{and} \quad \Lambda_\infty,q(A) = \bigcap_{r \in \mathbb{N}} \lambda_{r,q}(A) \subseteq M^m_q.
\]
Suppose \(\dim H = \infty \). We consider

\[
\Lambda_\infty(A) = \bigcap_{r \in \mathbb{N}} \Lambda_r(A) \subseteq \mathbb{R}^m \quad \text{and} \quad \Lambda_\infty, q(A) = \bigcap_{r \in \mathbb{N}} \lambda_{r, q}(A) \subseteq M_q^m.
\]

So, \((a_1, \ldots, a_m) \in \Lambda_\infty(A)\) if there is \(X \in V_\infty\) such that

\[
X^* A_j X = a_j I_\infty, \ j = 1, \ldots, m;
\]
More results when \(\dim H \) is infinite

Suppose \(\dim H = \infty \). We consider

\[
\Lambda_\infty(A) = \bigcap_{r \in \mathbb{N}} \Lambda_r(A) \subseteq \mathbb{R}^m \quad \text{and} \quad \Lambda_{\infty,q}(A) = \bigcap_{r \in \mathbb{N}} \lambda_{r,q}(A) \subseteq M_q^m.
\]

So, \((a_1, \ldots, a_m) \in \Lambda_\infty(A)\) if there is \(X \in V_\infty\) such that

\[
X^* A_j X = a_j l_\infty, \quad j = 1, \ldots, m;
\]

\((B_1, \ldots, B_m) \in \Lambda_{\infty,q}(A)\) if there is \(X \in V_\infty\) such that

\[
X^* A_j X = a_j l_\infty \times B_j, \quad j = 1, \ldots, m.
\]
More results when dim H is infinite

Suppose $\dim H = \infty$. We consider

$$\Lambda_\infty(A) = \bigcap_{r \in \mathbb{N}} \Lambda_r(A) \subseteq \mathbb{R}^m \quad \text{and} \quad \Lambda_{\infty,q}(A) = \bigcap_{r \in \mathbb{N}} \lambda_{r,q}(A) \subseteq M_{q}^{m}.$$

So, $(a_1, \ldots, a_m) \in \Lambda_\infty(A)$ if there is $X \in V_\infty$ such that

$$X^* A_j X = a_j I_\infty, \ j = 1, \ldots, m;$$

$(B_1, \ldots, B_m) \in \Lambda_{\infty,q}(A)$ if there is $X \in V_\infty$ such that

$$X^* A_j X = a_j I_\infty \times B_j, \ j = 1, \ldots, m.$$

Theorem [LLPS,2018]

Let $A = (A_1, \ldots, A_m) \in B(H)$, where $\dim H = \infty$. The set $\Lambda_{\infty,q}(A)$ is convex.
More results when $\dim H$ is infinite

Suppose $\dim H = \infty$. We consider

$$\Lambda_{\infty}(A) = \bigcap_{r \in \mathbb{N}} \Lambda_r(A) \subseteq \mathbb{R}^m \quad \text{and} \quad \Lambda_{\infty,q}(A) = \bigcap_{r \in \mathbb{N}} \lambda_{r,q}(A) \subseteq M_q^m.$$

So, $(a_1, \ldots, a_m) \in \Lambda_{\infty}(A)$ if there is $X \in V_{\infty}$ such that

$$X^* A_j X = a_j I_{\infty}, \quad j = 1, \ldots, m;$$

$(B_1, \ldots, B_m) \in \Lambda_{\infty,q}(A)$ if there is $X \in V_{\infty}$ such that

$$X^* A_j X = a_j I_{\infty} \times B_j, \quad j = 1, \ldots, m.$$

Theorem [LLPS,2018]

Let $A = (A_1, \ldots, A_m) \in B(H)$, where $\dim H = \infty$. The set $\Lambda_{\infty,q}(A)$ is convex.

However, the set may $\Lambda_{\infty,q}(A)$ be empty!
More results when dim H is infinite

Suppose $\dim H = \infty$. We consider

$$\Lambda_\infty(A) = \bigcap_{r \in \mathbb{N}} \Lambda_r(A) \subseteq \mathbb{R}^m \quad \text{and} \quad \Lambda_\infty,q(A) = \bigcap_{r \in \mathbb{N}} \lambda_r,q(A) \subseteq M_q^m.$$

So, $(a_1, \ldots, a_m) \in \Lambda_\infty(A)$ if there is $X \in V_\infty$ such that

$$X^* A_j X = a_j 1_\infty, \quad j = 1, \ldots, m;$$

$(B_1, \ldots, B_m) \in \Lambda_\infty,q(A)$ if there is $X \in V_\infty$ such that

$$X^* A_j X = a_j 1_\infty \times B_j, \quad j = 1, \ldots, m.$$

Theorem [LLPS,2018]

Let $A = (A_1, \ldots, A_m) \in B(H)$, where $\dim H = \infty$. The set $\Lambda_\infty,q(A)$ is convex.

However, the set may $\Lambda_\infty,q(A)$ be empty!

Example If $A = \text{diag}(1, 1/2, 1/3, \ldots)$, then for any positive integer q, $\Lambda_\infty,q(A) = \emptyset$.
Let $K(H)$ is the set of compact operators in $B(H)$. Define the essential (p, q)-matricial range by

$$\Lambda_{p,q}^{\text{ess}}(A) = \cap \{ \text{cl} (\Lambda_{p,q}(A+K)) : K \in K(H)^m \}.$$

When $p = 1$, we get the essential q-matricial range

$$W_{\text{ess}}(q : A) = \cap \{ \text{cl} (W(q : A+K)) : K \in K(H)^m \}.$$
Essential matricial range

Let $K(H)$ is the set of compact operators in $B(H)$. Define the essential (p, q)-matricial range by

$$\Lambda_{p, q}^{\text{ess}}(A) = \cap \{ \text{cl} (\Lambda_{p, q}(A + K)) : K \in K(H)^m \}.$$

When $p = 1$, we get the essential q-matricial range

$$W_{\text{ess}}(q : A) = \cap \{ \text{cl} (W(q : A + K)) : K \in K(H)^m \}.$$

So, $B = (B_1, \ldots, B_m) \in \Lambda_{p, q}^{\text{ess}}(A)$ if for any $K \in K(H)^m$,

$$(B_1, \ldots, B_m) \in \text{cl} (\Lambda_{p, q}(A + K));$$
Essential matricial range

Let $K(H)$ is the set of compact operators in $B(H)$. Define the essential (p, q)-matricial range by

$$\Lambda^{ess}_{p,q}(A) = \cap \{ \text{cl} (\Lambda_{p,q}(A + K)) : K \in K(H)^m \}.$$

When $p = 1$, we get the essential q-matricial range

$$W_{ess}(q : A) = \cap \{ \text{cl} (W(q : A + K)) : K \in K(H)^m \}.$$

So, $B = (B_1, \ldots, B_m) \in \Lambda^{ess}_{p,q}(A)$ if for any $K \in K(H)^m$,

$$(B_1, \ldots, B_m) \in \text{cl} (\Lambda_{p,q}(A + K));$$

and $B = (B_1, \ldots, B_m) \in W_{ess}(q : A)$ if for any $K \in K(H)^m$,

$$(B_1, \ldots, B_m) \in \text{cl} (W_{ess}(q : A + K)).$$
Let $K(H)$ is the set of compact operators in $B(H)$. Define the essential (p, q)-matricial range by

$$\Lambda^{\text{ess}}_{p,q}(A) = \cap \{ \text{cl} (\Lambda_{p,q}(A + K)) : K \in K(H)^m \}.$$

When $p = 1$, we get the essential q-matricial range

$$W_{\text{ess}}(q : A) = \cap \{ \text{cl} (W(q : A + K)) : K \in K(H)^m \}.$$

So, $B = (B_1, \ldots, B_m) \in \Lambda^{\text{ess}}_{p,q}(A)$ if for any $K \in K(H)^m$,

$$(B_1, \ldots, B_m) \in \text{cl} (\Lambda_{p,q}(A + K));$$

and $B = (B_1, \ldots, B_m) \in W_{\text{ess}}(q : A)$ if for any $K \in K(H)^m$,

$$(B_1, \ldots, B_m) \in \text{cl} (W_{\text{ess}}(q : A + K)).$$

Theorem [LLPS,2018]

Let $A = (A_1, \ldots, A_m) \in B(H)^m$, where $\dim H = \infty$. Then

$$\Lambda^{\text{ess}}_{p,q}(A) = W_{\text{ess}}(q : A)$$

is compact, convex, and non-empty.
Further research

- Find the smallest $\dim H$ that ensures $\Lambda_p(A) \neq \emptyset$ for all $A \in B(H)^m$.

Chi-Kwong Li, College of William & Mary

Compression and compact perturbation of operators
Further research

- Find the smallest dim H that ensures $\Lambda_p(A) \neq \emptyset$ for all $A \in B(H)^m$.
- Find the smallest dim H that ensures $\Lambda_{p,q}(A) \neq \emptyset$ for all $A \in B(H)^m$.
Further research

- Find the smallest $\dim H$ that ensures $\Lambda_p(A) \neq \emptyset$ for all $A \in B(H)^m$.
- Find the smallest $\dim H$ that ensures $\Lambda_{p,q}(A) \neq \emptyset$ for all $A \in B(H)^m$.
- Study the convexity of $\Lambda_{p,q}(A_1, \ldots, A_m)$ for A_1, \ldots, A_m with special structure (arising in applications).
Further research

- Find the smallest dimension H that ensures $\Lambda_p(A) \neq \emptyset$ for all $A \in B(H)^m$.
- Find the smallest dimension H that ensures $\Lambda_{p,q}(A) \neq \emptyset$ for all $A \in B(H)^m$.
- Study the convexity of $\Lambda_{p,q}(A_1, \ldots, A_m)$ for A_1, \ldots, A_m with special structure (arising in applications).
- Consider the subset of $\Lambda_{p,q}^D(A_1, \ldots, A_m)$ consisting of m-tuple of diagonal matrices in $\Lambda_{p,q}(A)$.
Further research

- Find the smallest $\text{dim } H$ that ensures $\Lambda_p(A) \neq \emptyset$ for all $A \in B(H)^m$.
- Find the smallest $\text{dim } H$ that ensures $\Lambda_{p,q}(A) \neq \emptyset$ for all $A \in B(H)^m$.
- Study the convexity of $\Lambda_{p,q}(A_1, \ldots, A_m)$ for A_1, \ldots, A_m with special structure (arising in applications).
- Consider the subset $\Lambda_{p,q}^D(A_1, \ldots, A_m)$ consisting of m-tuple of diagonal matrices in $\Lambda_{p,q}(A)$. That is,

$$X^* A_j X = I_p \otimes D_j, \quad D_j \in M_q \text{ is a diagonal matrix.}$$
Further research

- Find the smallest $\dim H$ that ensures $\Lambda_p(A) \neq \emptyset$ for all $A \in B(H)^m$.
- Find the smallest $\dim H$ that ensures $\Lambda_{p,q}(A) \neq \emptyset$ for all $A \in B(H)^m$.
- Study the convexity of $\Lambda_{p,q}(A_1, \ldots, A_m)$ for A_1, \ldots, A_m with special structure (arising in applications).
- Consider the subset $\Lambda_{p,q}(A_1, \ldots, A_m)$ consisting of m-tuple of diagonal matrices in $\Lambda_{p,q}(A)$. That is,
 $$X^* A_j X = I_p \otimes D_j, \quad D_j \in M_q \text{ is a diagonal matrix}.$$
- This is useful in constructing a hybrid code that can protect both classical and quantum information in a quantum channel.
Further research

- Find the smallest $\dim H$ that ensures $\Lambda_p(A) \neq \emptyset$ for all $A \in B(H)^m$.
- Find the smallest $\dim H$ that ensures $\Lambda_{p,q}(A) \neq \emptyset$ for all $A \in B(H)^m$.
- Study the convexity of $\Lambda_{p,q}(A_1, \ldots, A_m)$ for A_1, \ldots, A_m with special structure (arising in applications).
- Consider the subset $\Lambda^D_{p,q}(A_1, \ldots, A_m)$ consisting of m-tuple of diagonal matrices in $\Lambda_{p,q}(A)$. That is,

$$X^*A_jX = I_p \otimes D_j, \quad D_j \in M_q \text{ is a diagonal matrix.}$$

- This is useful in constructing a hybrid code that can protect both classical and quantum information in a quantum channel.
- Study the connection to the algebra matricial range

$$V(q : A) = \{(\Phi(A_1), \ldots, \Phi(A_m)) : \Phi \text{ is a unital CP map from } B(H) \text{ to } M_q\}. $$
Further research

- Find the smallest $\dim H$ that ensures $\Lambda_p(A) \neq \emptyset$ for all $A \in B(H)^m$.
- Find the smallest $\dim H$ that ensures $\Lambda_{p,q}(A) \neq \emptyset$ for all $A \in B(H)^m$.
- Study the convexity of $\Lambda_{p,q}(A_1, \ldots, A_m)$ for A_1, \ldots, A_m with special structure (arising in applications).
- Consider the subset $\Lambda^D_{p,q}(A_1, \ldots, A_m)$ consisting of m-tuple of diagonal matrices in $\Lambda_{p,q}(A)$. That is,
 \[X^* A_j X = I_p \otimes D_j, \quad D_j \in M_q \text{ is a diagonal matrix}. \]
- This is useful in constructing a hybrid code that can protect both classical and quantum information in a quantum channel.
- Study the connection to the algebra matricial range
 \[\mathcal{V}(q : A) = \{(\Phi(A_1), \ldots, \Phi(A_m)) : \Phi \text{ is a unital CP map from } B(H) \text{ to } M_q\}. \]
- Determine $K = (K_1, \ldots, K_m) \in K(H)^m$ such that
 \[\text{cl}(W(q : A + K)) = W_{\text{ess}}(q : A). \]
News on Workshop on Numerical Ranges and Numerical Radii

Welcome to the wonderland of numerical range!
The 14th workshop on Numerical Range and Numerical Radii will be held at Munich, June 13-17, 2018.
To celebrate the 100 year anniversary of the Töplitz-Hausdorff Theorem, there will be a 2019 workshop at Kyoto/Osaka area, Japan.
Then the 2020 workshop will be at Coimbra, Portugal.

Thank you for your attention!
Chi-Kwong Li, College of William & Mary
Welcome to the wonderland of and numerical range!
Welcome to the wonderland of and numerical range!

The 14th workshop on Numerical Range and Numerical Radii will be held at Munich, June 13-17, 2018.
News on Workshop on Numerical Ranges and Numerical Radii

- Welcome to the wonderland of and numerical range!
- The 14th workshop on Numerical Range and Numerical Radii will be held at Munich, June 13-17, 2018.
- To celebrate the 100 year anniversary of the Töplitz-Hausdorff Theorem, there will be a 2019 workshop at Kyoto/Osaka area, Japan.
Welcome to the wonderland of numerical range!

The 14th workshop on Numerical Range and Numerical Radii will be held at Munich, June 13-17, 2018.

To celebrate the 100 year anniversary of the Töplitz-Hausdorff Theorem, there will be a 2019 workshop at Kyoto/Osaka area, Japan.

Then the 2020 workshop will be at Coimbra, Portugal.
Welcome to the wonderland of and numerical range!

The 14th workshop on Numerical Range and Numerical Radii will be held at Munich, June 13-17, 2018.

To celebrate the 100 year anniversary of the Töplitz-Hausdorff Theorem, there will be a 2019 workshop at Kyoto/Osaka area, Japan.

Then the 2020 workshop will be at Coimbra, Portugal.

Thank you for your attention!