INVITATION TO LINEAR PRESERVER PROBLEMS, PART II

Mostafa Mbekhta

Université Lille 1

R.T.O.T.A. 3-5 May 2018
Memphis
I. Generalized inverse preservers maps

Definition An element $b \in \mathcal{A}$ is called a generalized inverse of $a \in \mathcal{A}$ if b satisfies the following two identities

$$aba = a \quad \text{and} \quad bab = b.$$
I. Generalized inverse preservers maps

Definition An element $b \in \mathcal{A}$ is called a generalized inverse of $a \in \mathcal{A}$ if b satisfies the following two identities

$$aba = a \quad \text{and} \quad bab = b.$$

Let \mathcal{A}^\wedge denote the set of all the elements of \mathcal{A} having a generalized inverse.
I. Generalized inverse preservers maps

Definition An element $b \in A$ is called a generalized inverse of $a \in A$ if b satisfies the following two identities

$$aba = a \quad \text{and} \quad bab = b.$$

Let A^\wedge denote the set of all the elements of A having a generalized inverse.

Theorem [Kaplansky, 1948]

Let A be a Banach algebra:
- If $A = A^\wedge$ then A is finite dimensional.
I. Generalized inverse preservers maps

Definition An element $b \in \mathcal{A}$ is called a *generalized inverse* of $a \in \mathcal{A}$ if b satisfies the following two identities

$$aba = a \quad \text{and} \quad bab = b.$$

Let \mathcal{A}^\wedge denote the set of all the elements of \mathcal{A} having a generalized inverse.

Theorem [Kaplansky, 1948]

Let \mathcal{A} be a Banach algebra:
- If $\mathcal{A} = \mathcal{A}^\wedge$ then \mathcal{A} is finite dimensional.*
I. Generalized inverse preservers maps

Definition An element \(b \in \mathcal{A} \) is called a generalized inverse of \(a \in \mathcal{A} \) if \(b \) satisfies the following two identities

\[
aba = a \quad \text{and} \quad bab = b.
\]

Let \(\mathcal{A}^\wedge \) denote the set of all the elements of \(\mathcal{A} \) having a generalized inverse.

Theorem [Kaplansky, 1948]

Let \(\mathcal{A} \) be a Banach algebra:
- If \(\mathcal{A} = \mathcal{A}^\wedge \) then \(\mathcal{A} \) is finite dimensional.
- Furthermore, if \(\mathcal{A} \) is semi-simple, then
\[
\mathcal{A} = \mathcal{A}^\wedge \iff \dim(\mathcal{A}) < \infty.
\]
I. Generalized inverse preservers maps

Definition An element $b \in A$ is called a *generalized inverse* of $a \in A$ if b satisfies the following two identities

$$aba = a \quad \text{and} \quad bab = b.$$

Let A^\wedge denote the set of all the elements of A having a generalized inverse.

Theorem [Kaplansky, 1948]

Let A be a Banach algebra:
- If $A = A^\wedge$ then A is finite dimensional.
- Furthermore, if A is semi-simple, then
 $$A = A^\wedge \iff \dim(A) < \infty.$$

In particular, for the special case of the complex matrix algebra $A = M_n(\mathbb{C})$, we have $A = A^\wedge$.
Definition We say that $\phi : A \rightarrow B$ preserves generalized invertibility in both directions if $x \in A^\wedge \iff \phi(x) \in B^\wedge$.
Definition We say that $\phi : A \to B$ preserves generalized invertibility in both directions if $x \in A^\wedge \iff \phi(x) \in B^\wedge$.

Remark Many other linear preserver problems, like the problem of characterizing linear maps preserving idempotents or nilpotents or commutativity,... that were first solved for matrix algebras, have been recently extended to the infinite-dimensional case.
Definition We say that $\phi : A \to B$ preserves generalized invertibility in both directions if $x \in A^\perp \iff \phi(x) \in B^\perp$.

Remark Many other linear preserver problems, like the problem of characterizing linear maps preserving idempotents or nilpotents or commutativity,... that were first solved for matrix algebras, have been recently extended to the infinite-dimensional case.

Remark Observe that, every $n \times n$ complex matrix has a generalized inverse, and therefore, every map on a matrix algebra preserves generalized invertibility in both directions. So, we have here an example of a linear preserver problem which makes sense only in the infinite-dimensional case.
Definition We say that $\phi : A \rightarrow B$ preserves generalized invertibility in both directions if $x \in A^\perp \iff \phi(x) \in B^\perp$.

Remark Many other linear preserver problems, like the problem of characterizing linear maps preserving idempotents or nilpotents or commutativity,... that were first solved for matrix algebras, have been recently extended to the infinite-dimensional case.

Remark Observe that, every $n \times n$ complex matrix has a generalized inverse, and therefore, every map on a matrix algebra preserves generalized invertibility in both directions. So, we have here an example of a linear preserver problem which makes sense only in the infinite-dimensional case.

Let H be an infinite-dimensional separable complex Hilbert space and $B(H)$ the algebra of all bounded linear operators on H and $K(H) \subset B(H)$ be the closed ideal of all compact operators.
Definition We say that \(\phi : A \to B \) preserves generalized invertibility in both directions if \(x \in A^\land \iff \phi(x) \in B^\land \).

Remark Many other linear preserver problems, like the problem of characterizing linear maps preserving idempotents or nilpotents or commutativity,... that were first solved for matrix algebras, have been recently extended to the infinite-dimensional case.

Remark Observe that, every \(n \times n \) complex matrix has a generalized inverse, and therefore, every map on a matrix algebra preserves generalized invertibility in both directions. So, we have here an example of a linear preserver problem which makes sense only in the infinite-dimensional case.

Let \(H \) be an infinite-dimensional separable complex Hilbert space and \(B(H) \) the algebra of all bounded linear operators on \(H \) and \(K(H) \subset B(H) \) be the closed ideal of all compact operators. We denote the Calkin algebra \(B(H)/K(H) \) by \(C(H) \). Let \(\pi : B(H) \to C(H) \) be the quotient map.
Generalized inverse

Theorem [M. Mbekhta, L. Rodman and P. Šemrl, 2006]

Let H be an infinite-dimensional separable Hilbert space and let $\phi : B(H) \rightarrow B(H)$ be a bijective continuous unital linear map preserving generalized invertibility in both directions. Then

$$\phi(K(H)) = K(H),$$

and the induced map $\varphi : C(H) \rightarrow C(H)$, (i.e. $\varphi \circ \pi = \pi \circ \phi$), is either an automorphism, or an anti-automorphism.
Theorem [M. Mbekhta, L. Rodman and P. Šemrl, 2006]

Let H be an infinite-dimensional separable Hilbert space and let $\phi : B(H) \to B(H)$ be a bijective continuous unital linear map preserving generalized invertibility in both directions. Then

$$\phi(K(H)) = K(H),$$

and the induced map $\varphi : C(H) \to C(H)$, (i.e. $\varphi \circ \pi = \pi \circ \phi$), is either an automorphism, or an anti-automorphism.
Generalized inverse

Let H be an infinite-dimensional separable Hilbert space and let $\phi : B(H) \to B(H)$ be a bijective continuous unital linear map preserving generalized invertibility in both directions. Then

$$\phi(K(H)) = K(H),$$

and the induced map $\varphi : C(H) \to C(H)$, (i.e. $\varphi \circ \pi = \pi \circ \phi$), is either an automorphism, or an anti-automorphism.

Can we relax the assumptions of this theorem? The following theorem, answers this question in the affirmative.
II. Semi-Fredholm preserver maps
We recall that an operator $A \in B(H)$ is said to be Fredholm if its range is closed and both its kernel and cokernel are finite-dimensional,
II. Semi-Fredholm preserver maps

We recall that an operator $A \in B(H)$ is said to be *Fredholm* if its range is closed and both its kernel and cokernel are finite-dimensional, and is *semi-Fredholm* if its range is closed and its kernel or its cokernel is finite-dimensional.
II. Semi-Fredholm preserver maps

We recall that an operator $A \in B(H)$ is said to be Fredholm if its range is closed and both its kernel and cokernel are finite-dimensional, and is semi-Fredholm if its range is closed and its kernel or its cokernel is finite-dimensional.

We denote by $SF(H) \subset B(H)$ the subset of all semi-Fredholm operators and let $F(H) \subset B(H)$ the ideal of all finite rank operators,
II. Semi-Fredholm preserver maps

We recall that an operator $A \in B(H)$ is said to be Fredholm if its range is closed and both its kernel and cokernel are finite-dimensional, and is semi-Fredholm if its range is closed and its kernel or its cokernel is finite-dimensional.

We denote by $SF(H) \subset B(H)$ the subset of all semi-Fredholm operators and let $F(H) \subset B(H)$ the ideal of all finite rank operators,

Definition We say that $\phi : B(H) \rightarrow B(H)$ is surjective up to finite rank (resp. compact) operators if for every $A \in B(H)$ there exists $B \in B(H)$ such that $A - \phi(B) \in F(H)$ (resp. $K(H)$).
Theorem [M. Mbekhta and P. Šemrl 2009]

Let H be an infinite-dimensional separable Hilbert space and $\phi : B(H) \to B(H)$ a surjective up to finite rank operators linear map.

If ϕ preserves generalized invertibility in both directions, then $\phi(K(H)) \subseteq K(H)$ and the induced map $\phi : C(H) \to C(H)$ is either an automorphism, or an anti-automorphism multiplied by an invertible element $a \in C(H)$.

The above theorem allows us to establish the following result which is of independent interest.

We say that a map $\phi : B(H) \to B(H)$ preserves semi-Fredholm operators in both directions if for every $A \in B(H)$ the operator $\phi(A)$ is semi-Fredholm if and only if A is.
Theorem [M. Mbekhta and P. Šemrl 2009]

Let H be an infinite-dimensional separable Hilbert space and $\phi : B(H) \to B(H)$ a surjective up to finite rank operators linear map. If ϕ preserves generalized invertibility in both directions, then $\phi(K(H)) \subseteq K(H)$ and the induced map $\varphi : C(H) \to C(H)$ is either an automorphism, or an anti-automorphism multiplied by an invertible element $a \in C(H)$.

The above theorem allows us to establish the following result which is of independent interest. We say that a map $\phi : B(H) \to B(H)$ preserves semi-Fredholm operators in both directions if for every $A \in B(H)$ the operator $\phi(A)$ is semi-Fredholm if and only if A is. For a Fredholm operator $T \in B(H)$ we define the index of T by $\text{ind}(T) = \dim \ker T - \text{codim} \im T \in \mathbb{Z}$.
Theorem [M. Mbekhta and P. Šemrl 2009]

Let H be an infinite-dimensional separable Hilbert space and $\phi : B(H) \rightarrow B(H)$ a surjective up to finite rank operators linear map. If ϕ preserves generalized invertibility in both directions, then $\phi(K(H)) \subseteq K(H)$.

The above theorem allows us to establish the following result which is of independent interest. We say that a map $\phi : B(H) \rightarrow B(H)$ preserves semi-Fredholm operators in both directions if for every $A \in B(H)$ the operator $\phi(A)$ is semi-Fredholm if and only if A is.

For a Fredholm operator $T \in B(H)$ we define the index of T by $\text{ind}(T) = \dim \ker T - \text{codim} \text{Im} T \in \mathbb{Z}$.

Mostafa Mbekhta
Theorem [M.Mbekhta and P. Šemrl 2009]

Let H be an infinite-dimensional separable Hilbert space and $\phi : B(H) \to B(H)$ a surjective up to finite rank operators linear map. If ϕ preserves generalized invertibility in both directions, then $\phi(K(H)) \subseteq K(H)$ and the induced map $\varphi : C(H) \to C(H)$ is either an automorphism, or an anti-automorphism multiplied by an invertible element $a \in C(H)$.
Semi-Fredholm

Theorem [M. Mbekhta and P. Šemrl 2009]

Let H be an infinite-dimensional separable Hilbert space and
$\phi : B(H) \to B(H)$ a surjective up to finite rank operators linear map.
If ϕ preserves generalized invertibility in both directions, then
$\phi(K(H)) \subseteq K(H)$ and the induced map $\varphi : C(H) \to C(H)$ is either
an automorphism, or an anti-automorphism multiplied by an
invertible element $a \in C(H)$.

The above theorem allows us to establish the following result which is
of independent interest.
Theorem [M. Mbekhta and P. Šemrl 2009]

Let H be an infinite-dimensional separable Hilbert space and $\phi : B(H) \to B(H)$ a surjective up to finite rank operators linear map. If ϕ preserves generalized invertibility in both directions, then $\phi(K(H)) \subseteq K(H)$ and the induced map $\varphi : C(H) \to C(H)$ is either an automorphism, or an anti-automorphism multiplied by an invertible element $a \in C(H)$.

The above theorem allows us to establish the following result which is of independent interest.

We say that a map $\phi : B(H) \to B(H)$ preserves semi-Fredholm operators in both directions if for every $A \in B(H)$ the operator $\phi(A)$ is semi-Fredholm if and only if A is.
Theorem [M. Mbekhta and P. Šemrl 2009]

Let H be an infinite-dimensional separable Hilbert space and $\phi : B(H) \to B(H)$ a surjective up to finite rank operators linear map. If ϕ preserves generalized invertibility in both directions, then $\phi(K(H)) \subseteq K(H)$ and the induced map $\varphi : C(H) \to C(H)$ is either an automorphism, or an anti-automorphism multiplied by an invertible element $a \in C(H)$.

The above theorem allows us to establish the following result which is of independent interest.

We say that a map $\phi : B(H) \to B(H)$ preserves semi-Fredholm operators in both directions if for every $A \in B(H)$ the operator $\phi(A)$ is semi-Fredholm if and only if A is.

For a Fredholm operator $T \in B(H)$ we define the index of T by $\text{ind}(T) = \dim \ker T - \text{codim} \text{Im } T \in \mathbb{Z}$.
Let H be an infinite-dimensional separable Hilbert space and $\phi : B(H) \to B(H)$ a surjective up to compact operators linear map.

Theorem

Let H be an infinite-dimensional separable Hilbert space and $\phi : B(H) \to B(H)$ a surjective up to compact operators linear map.

Theorem

Let H be an infinite-dimensional separable Hilbert space and $\phi : B(H) \to B(H)$ a surjective up to compact operators linear map.

Theorem

Let H be an infinite-dimensional separable Hilbert space and $\phi : B(H) \to B(H)$ a surjective up to compact operators linear map.

Theorem

Let H be an infinite-dimensional separable Hilbert space and $\phi : B(H) \to B(H)$ a surjective up to compact operators linear map.

Theorem

Let H be an infinite-dimensional separable Hilbert space and $\phi : B(H) \to B(H)$ a surjective up to compact operators linear map.

Theorem

Let H be an infinite-dimensional separable Hilbert space and $\phi : B(H) \to B(H)$ a surjective up to compact operators linear map.

Theorem

Let H be an infinite-dimensional separable Hilbert space and $\phi : B(H) \to B(H)$ a surjective up to compact operators linear map.

Theorem

Let H be an infinite-dimensional separable Hilbert space and $\phi : B(H) \to B(H)$ a surjective up to compact operators linear map.

Theorem

Let H be an infinite-dimensional separable Hilbert space and $\phi : B(H) \to B(H)$ a surjective up to compact operators linear map.
Theorem

Let H be an infinite-dimensional separable Hilbert space and $\phi : B(H) \to B(H)$ a surjective up to compact operators linear map.
Let H be an infinite-dimensional separable Hilbert space and $\phi : B(H) \to B(H)$ a surjective up to compact operators linear map. If ϕ preserves semi-Fredholm operators in both directions, then $\phi(K(H)) \subseteq K(H)$.
Let H be an infinite-dimensional separable Hilbert space and $\phi : B(H) \to B(H)$ a surjective up to compact operators linear map. If ϕ preserves semi-Fredholm operators in both directions, then $\phi(K(H)) \subseteq K(H)$ and the induced map $\varphi : C(H) \to C(H)$ is either an automorphism, or an anti-automorphism multiplied by an invertible element $a \in C(H)$.

Theorem
Let H be an infinite-dimensional separable Hilbert space and $\phi : B(H) \to B(H)$ a surjective up to compact operators linear map. If ϕ preserves semi-Fredholm operators in both directions, then $\phi(K(H)) \subseteq K(H)$ and the induced map $\varphi : C(H) \to C(H)$ is either an automorphism, or an anti-automorphism multiplied by an invertible element $a \in C(H)$.

For the behavior of the index, we have the following result
Theorem

Let H be an infinite-dimensional separable Hilbert space and $\varphi : B(H) \to B(H)$ a surjective up to compact operators linear map. If φ preserves semi-Fredholm operators in both directions, then $\varphi(K(H)) \subseteq K(H)$ and the induced map $\varphi : C(H) \to C(H)$ is either an automorphism, or an anti-automorphism multiplied by an invertible element $a \in C(H)$.

For the behavior of the index, we have the following result

Theorem

Under the same hypothesis and notation as in the above theorem, the following statements hold:

1. φ preserves Fredholm operators in both directions;
2. There is an $n_0 \in \mathbb{Z}$ such that either $\text{ind}(\varphi(T)) = n_0 + \text{ind}(T)$ for every Fredholm operator T, or $\text{ind}(\varphi(T)) = n_0 - \text{ind}(T)$ for every Fredholm operator T.
Theorem

Let H be an infinite-dimensional separable Hilbert space and $\phi : B(H) \to B(H)$ a surjective up to compact operators linear map. If ϕ preserves semi-Fredholm operators in both directions, then $\phi(K(H)) \subseteq K(H)$ and the induced map $\varphi : C(H) \to C(H)$ is either an automorphism, or an anti-automorphism multiplied by an invertible element $a \in C(H)$.

For the behavior of the index, we have the following result

Theorem

Under the same hypothesis and notation as in the above theorem, the following statements hold:
Theorem

Let H be an infinite-dimensional separable Hilbert space and $\phi : B(H) \to B(H)$ a surjective up to compact operators linear map. If ϕ preserves semi-Fredholm operators in both directions, then $\phi(K(H)) \subseteq K(H)$ and the induced map $\varphi : C(H) \to C(H)$ is either an automorphism, or an anti-automorphism multiplied by an invertible element $a \in C(H)$.

For the behavior of the index, we have the following result

Theorem

Under the same hypothesis and notation as in the above theorem, the following statements hold:

(i) ϕ preserves Fredholm operators in both directions;
Let H be an infinite-dimensional separable Hilbert space and $\phi : B(H) \to B(H)$ a surjective up to compact operators linear map. If ϕ preserves semi-Fredholm operators in both directions, then $\phi(K(H)) \subseteq K(H)$ and the induced map $\varphi : C(H) \to C(H)$ is either an automorphism, or an anti-automorphism multiplied by an invertible element $a \in C(H)$.

For the behavior of the index, we have the following result

Under the same hypothesis and notation as in the above theorem, the following statements hold:

(i) ϕ preserves Fredholm operators in both directions;
(ii) there is an $n_0 \in \mathbb{Z}$ such that either $\text{ind}(\phi(T)) = n_0 + \text{ind}(T)$ for every Fredholm operator T, or
Theorem

Let H be an infinite-dimensional separable Hilbert space and $\phi : B(H) \to B(H)$ a surjective up to compact operators linear map. If ϕ preserves semi-Fredholm operators in both directions, then $\phi(K(H)) \subseteq K(H)$ and the induced map $\varphi : C(H) \to C(H)$ is either an automorphism, or an anti-automorphism multiplied by an invertible element $a \in C(H)$.

For the behavior of the index, we have the following result

Theorem

Under the same hypothesis and notation as in the above theorem, the following statements hold:

(i) ϕ preserves Fredholm operators in both directions;

(ii) there is an $n_0 \in \mathbb{Z}$ such that either $\text{ind}(\phi(T)) = n_0 + \text{ind}(T)$ for every Fredholm operator T, or $\text{ind}(\phi(T)) = n_0 - \text{ind}(T)$ for every Fredholm operator T.

Mostafa Mbekhta

INVITATION TO LINEAR PRESERVER PROBLEMS, PART II
Lemma

Let $A \in B(H)$. Then the following are equivalent:

(i) A is semi-Fredholm,
Lemma

Let $A \in B(H)$. Then the following are equivalent:
(i) A is semi-Fredholm,
Lemma

Let $A \in B(H)$. Then the following are equivalent:
(i) A is semi-Fredholm,
(ii) for every $B \in B(H)$ there exists $\delta > 0$ such that $A + \lambda B \in B(H)^\wedge$ for every complex λ with $|\lambda| < \delta$.
Lemma

Let $A \in B(H)$. Then the following are equivalent:

(i) A is semi-Fredholm,

(ii) for every $B \in B(H)$ there exists $\delta > 0$ such that $A + \lambda B \in B(H)^\wedge$

for every complex λ with $|\lambda| < \delta$.

Corollary

Let H be an infinite-dimensional separable Hilbert space and $\phi : B(H) \to B(H)$ a surjective up to finite rank op linear map.
Lemma

Let $A \in B(H)$. Then the following are equivalent:

(i) A is semi-Fredholm,

(ii) for every $B \in B(H)$ there exists $\delta > 0$ such that $A + \lambda B \in B(H)^{\wedge}$ for every complex λ with $|\lambda| < \delta$.

Corollary

Let H be an infinite-dimensional separable Hilbert space and $\phi : B(H) \to B(H)$ a surjective up to finite rank op linear map.
Lemma

Let $A \in B(H)$. Then the following are equivalent:
(i) A is semi-Fredholm,
(ii) for every $B \in B(H)$ there exists $\delta > 0$ such that $A + \lambda B \in B(H)^{\wedge}$ for every complex λ with $|\lambda| < \delta$.

Corollary

Let H be an infinite-dimensional separable Hilbert space and $\phi : B(H) \rightarrow B(H)$ a surjective up to finite rank op linear map. Then ϕ preserves generalized invertibility in both directions implies ϕ preserves semi-Fredholm operators in both directions.
For $T \in \mathcal{B}(H)$, the \textit{essential spectrum}, $\sigma_e(T)$, of T, is defined as the spectrum of $\pi(T)$ in the Calkin algebra $\mathcal{C}(H)$, i.e. $\sigma_e(T) = \sigma(\pi(T))$. Obviously,

$$\sigma_e(T) = \{ \lambda \in \mathbb{C}; \quad T - \lambda I \text{ is not Fredholm} \}.$$
For $T \in \mathcal{B}(H)$, the essential spectrum, $\sigma_e(T)$, of T, is defined as the spectrum of $\pi(T)$ in the Calkin algebra $\mathcal{C}(H)$, i.e. $\sigma_e(T) = \sigma(\pi(T))$. Obviously,

$$\sigma_e(T) = \{ \lambda \in \mathbb{C}; \quad T - \lambda I \text{ is not Fredholm } \}.$$

We say that a linear map $\phi : \mathcal{B}(H) \to \mathcal{B}(H)$ preserves the essential spectrum if $\sigma_e(\phi(T)) = \sigma_e(T)$ for all $T \in \mathcal{B}(H)$.

Theorem

Let H be an infinite-dimensional Hilbert space and let $\phi : \mathcal{B}(H) \to \mathcal{B}(H)$ be a linear map. Assume that ϕ is surjective up to compact operators. Then the following are equivalent:

(i) ϕ preserves the essential spectrum;

(ii) ϕ preserves the set of Fredholm operators in both directions and $\phi(I) = I - K$ where $K \in \mathcal{K}(H)$;

(iii) $\phi(\mathcal{K}(H)) \subseteq \mathcal{K}(H)$ and the induced map $\phi : \mathcal{C}(H) \to \mathcal{C}(H)$, $\phi \circ \pi = \pi \circ \phi$, is either an automorphism, or an anti-automorphism.
For $T \in \mathcal{B}(H)$, the essential spectrum, $\sigma_e(T)$, of T, is defined as the spectrum of $\pi(T)$ in the Calkin algebra $\mathcal{C}(H)$, i.e. $\sigma_e(T) = \sigma(\pi(T))$. Obviously,

$$\sigma_e(T) = \{ \lambda \in \mathbb{C}; \quad T - \lambda I \text{ is not Fredholm} \}.$$

We say that a linear map $\phi : \mathcal{B}(H) \rightarrow \mathcal{B}(H)$ preserves the essential spectrum if $\sigma_e(\phi(T)) = \sigma_e(T)$ for all $T \in \mathcal{B}(H)$.

Theorem [M.M. 2007]

Let H be an infinite-dimensional Hilbert space and let $\phi : \mathcal{B}(H) \rightarrow \mathcal{B}(H)$ be a linear map. Assume that ϕ is surjective up to compact operators. Then the following are equivalent:
For $T \in \mathcal{B}(H)$, the essential spectrum, $\sigma_e(T)$, of T, is defined as the spectrum of $\pi(T)$ in the Calkin algebra $\mathcal{C}(H)$, i.e. $\sigma_e(T) = \sigma(\pi(T))$. Obviously,

$$\sigma_e(T) = \{ \lambda \in \mathbb{C}; \ T - \lambda I \text{ is not Fredholm} \}.$$

We say that a linear map $\phi : \mathcal{B}(H) \to \mathcal{B}(H)$ preserves the essential spectrum if $\sigma_e(\phi(T)) = \sigma_e(T)$ for all $T \in \mathcal{B}(H)$.

Theorem [M.M. 2007]

Let H be an infinite-dimensional Hilbert space and let $\phi : \mathcal{B}(H) \to \mathcal{B}(H)$ be a linear map. Assume that ϕ is surjective up to compact operators. Then the following are equivalent:
For $T \in \mathcal{B}(H)$, the essential spectrum, $\sigma_e(T)$, of T, is defined as the spectrum of $\pi(T)$ in the Calkin algebra $\mathcal{C}(H)$, i.e. $\sigma_e(T) = \sigma(\pi(T))$. Obviously,

$$\sigma_e(T) = \{ \lambda \in \mathbb{C}; \quad T - \lambda I \text{ is not Fredholm } \}.$$

We say that a linear map $\phi : \mathcal{B}(H) \rightarrow \mathcal{B}(H)$ preserves the essential spectrum if $\sigma_e(\phi(T)) = \sigma_e(T)$ for all $T \in \mathcal{B}(H)$.

Theorem [M.M. 2007]

Let H be an infinite-dimensional Hilbert space and let $\phi : \mathcal{B}(H) \rightarrow \mathcal{B}(H)$ be a linear map. Assume that ϕ is surjective up to compact operators. Then the following are equivalent:

(i) ϕ preserves the essential spectrum;
For $T \in \mathcal{B}(H)$, the essential spectrum, $\sigma_e(T)$, of T, is defined as the spectrum of $\pi(T)$ in the Calkin algebra $\mathcal{C}(H)$, i.e. $\sigma_e(T) = \sigma(\pi(T))$. Obviously,

$$\sigma_e(T) = \{ \lambda \in \mathbb{C}; \ T - \lambda I \text{ is not Fredholm} \}.$$

We say that a linear map $\phi : \mathcal{B}(H) \to \mathcal{B}(H)$ preserves the essential spectrum if $\sigma_e(\phi(T)) = \sigma_e(T)$ for all $T \in \mathcal{B}(H)$.

Theorem [M.M. 2007]

Let H be an infinite-dimensional Hilbert space and let $\phi : \mathcal{B}(H) \to \mathcal{B}(H)$ be a linear map. Assume that ϕ is surjective up to compact operators. Then the following are equivalent:

(i) ϕ preserves the essential spectrum;

(ii) ϕ preserves the set of Fredholm operators in both directions and $\phi(I) = I - K$ where $K \in \mathcal{K}(H)$;
For $T \in \mathcal{B}(H)$, the \textit{essential spectrum}, $\sigma_e(T)$, of T, is defined as the spectrum of $\pi(T)$ in the Calkin algebra $\mathcal{C}(H)$, i.e. $\sigma_e(T) = \sigma(\pi(T))$. Obviously,

$$\sigma_e(T) = \{ \lambda \in \mathbb{C}; \ T - \lambda I \text{ is not Fredholm} \}.$$

We say that a linear map $\phi : \mathcal{B}(H) \to \mathcal{B}(H)$ \textit{preserves the essential spectrum} if $\sigma_e(\phi(T)) = \sigma_e(T)$ for all $T \in \mathcal{B}(H)$.

\textbf{Theorem}[M.M. 2007]

Let H be an infinite-dimensional Hilbert space and let $\phi : \mathcal{B}(H) \to \mathcal{B}(H)$ be a linear map. Assume that ϕ is surjective up to compact operators. Then the following are equivalent:

(i) ϕ preserves the essential spectrum;

(ii) ϕ preserves the set of Fredholm operators in both directions and $\phi(I) = I - K$ where $K \in \mathcal{K}(H)$;

(iii) $\phi(\mathcal{K}(H)) \subseteq \mathcal{K}(H)$ and the induced map $\varphi : \mathcal{C}(H) \to \mathcal{C}(H)$, $\varphi \circ \pi = \pi \circ \phi$, is either an automorphism, or an anti-automorphism.
Conjecture

Let H be an infinite-dimensional Hilbert space and let $\phi : B(H) \to B(H)$ be a linear map. Assume that ϕ is surjective up to compact operators. Then the following conditions are equivalent:

(I) ϕ preserves the essential spectrum;

(II) there exists $\psi : B(H) \to B(H)$ either an automorphism or an anti-automorphism and there exists a linear map $\chi : B(H) \to K(H)$ such that $\phi(T) = \psi(T) + \chi(T)$, $T \in B(H)$;

(III) either (i) $\phi(T) = ATA^{-1} + \chi(T)$ for every $T \in B(H)$ where A is an invertible operator in $B(H)$ and $\chi : B(H) \to K(H)$ linear, or (ii) $\phi(T) = BT_{tr}B^{-1} + \chi(T)$ for every $T \in B(H)$ where B is an invertible operator in $B(H)$ and $\chi : B(H) \to K(H)$ linear.

Notice that the implications (II) \iff (III) \implies (I) hold. Therefore, it remains to prove that (I) \implies (II) or (I) \implies (III).
Conjecture

Let H be an infinite-dimensional Hilbert space and let $\phi : B(H) \to B(H)$ be a linear map. Assume that ϕ is surjective up to compact operators. Then the following conditions are equivalent:

(I) ϕ preserves the essential spectrum;

(II) there exists $\psi : B(H) \to B(H)$ either an automorphism or an anti-automorphism and there exists a linear map $\chi : B(H) \to K(H)$ such that $\phi(T) = \psi(T) + \chi(T)$, $T \in B(H)$;

(III) either

(i) $\phi(T) = AT^2 - 1 + \chi(T)$ for every $T \in B(H)$ where A is an invertible operator in $B(H)$ and $\chi : B(H) \to K(H)$ linear, or

(ii) $\phi(T) = BT^2 - 1 + \chi(T)$ for every $T \in B(H)$ where B is an invertible operator in $B(H)$ and $\chi : B(H) \to K(H)$ linear.

Notice that the implications (II) \iff (III) \implies (I) hold. Therefore, it remains to prove that (I) \implies (II) or (I) \implies (III).
Conjecture

Let H be an infinite-dimensional Hilbert space and let $\phi : \mathcal{B}(H) \rightarrow \mathcal{B}(H)$ be a linear map. Assume that ϕ is surjective up to compact operators. Then the following conditions are equivalent:

(I) ϕ preserves the essential spectrum;

(II) there exists $\psi : \mathcal{B}(H) \rightarrow \mathcal{B}(H)$ either an automorphism or an anti-automorphism and there exists a linear map $\chi : \mathcal{B}(H) \rightarrow \mathcal{K}(H)$ such that $\phi(T) = \psi(T) + \chi(T)$, $T \in \mathcal{B}(H)$;

Notice that the implications (II) \iff (III) \implies (I) hold. Therefore, it remains to prove that (I) \implies (II) or (I) \implies (III).
Conjecture

Let H be an infinite-dimensional Hilbert space and let $\phi : \mathcal{B}(H) \rightarrow \mathcal{B}(H)$ be a linear map. Assume that ϕ is surjective up to compact operators. Then the following conditions are equivalent:

(I) ϕ preserves the essential spectrum;

(II) there exists $\psi : \mathcal{B}(H) \rightarrow \mathcal{B}(H)$ either an automorphism or an anti-automorphism and there exists a linear map $\chi : \mathcal{B}(H) \rightarrow \mathcal{K}(H)$ such that $\phi(T) = \psi(T) + \chi(T)$, $T \in \mathcal{B}(H)$;

(III) either

Notice that the implications (II) \iff (III) \implies (I) hold. Therefore, it remains to prove that (I) \implies (II) or (I) \implies (III).
Conjecture

Let H be an infinite-dimensional Hilbert space and let \(\phi : \mathcal{B}(H) \to \mathcal{B}(H) \) be a linear map. Assume that \(\phi \) is surjective up to compact operators. Then the following conditions are equivalent:

(I) \(\phi \) preserves the essential spectrum;

(II) there exists \(\psi : \mathcal{B}(H) \to \mathcal{B}(H) \) either an automorphism or an anti-automorphism and there exists a linear map \(\chi : \mathcal{B}(H) \to \mathcal{K}(H) \) such that \(\phi(T) = \psi(T) + \chi(T), \quad T \in \mathcal{B}(H) \);

(III) either

(i) \(\phi(T) = ATA^{-1} + \chi(T) \) for every \(T \in \mathcal{B}(H) \) where \(A \) is an invertible operator in \(\mathcal{B}(H) \) and \(\chi : \mathcal{B}(H) \to \mathcal{K}(H) \) linear, or

Notice that the implications (II) \(\iff \) (III) \(\implies \) (I) hold. Therefore, it remains to prove that (I) \(\implies \) (II) or (I) \(\implies \) (III).
Conjecture

Let H be an infinite-dimensional Hilbert space and let $\phi : \mathcal{B}(H) \rightarrow \mathcal{B}(H)$ be a linear map. Assume that ϕ is surjective up to compact operators. Then the following conditions are equivalent:

(I) ϕ preserves the essential spectrum;

(II) there exists $\psi : \mathcal{B}(H) \rightarrow \mathcal{B}(H)$ either an automorphism or an anti-automorphism and there exists a linear map $\chi : \mathcal{B}(H) \rightarrow \mathcal{K}(H)$ such that $\phi(T) = \psi(T) + \chi(T)$, $T \in \mathcal{B}(H)$;

(III) either

(i) $\phi(T) = AT A^{-1} + \chi(T)$ for every $T \in \mathcal{B}(H)$ where A is an invertible operator in $\mathcal{B}(H)$ and $\chi : \mathcal{B}(H) \rightarrow \mathcal{K}(H)$ linear, or

(ii) $\phi(T) = B T^{\text{tr} } B^{-1} + \chi(T)$ for every $T \in \mathcal{B}(H)$ where B is an invertible operator in $\mathcal{B}(H)$ and $\chi : \mathcal{B}(H) \rightarrow \mathcal{K}(H)$ linear.

Notice that the implications $(\text{II}) \iff (\text{III}) \implies (\text{I})$ hold. Therefore, it remains to prove that $(\text{I}) \implies (\text{II})$ or $(\text{I}) \implies (\text{III})$.
We denote by A^{-1} the set of invertible elements of A. We shall say that an additive map $\phi: A \to B$ strongly preserves invertibility if $\phi(x^{-1}) = \phi(x)^{-1}$ for every $x \in A^{-1}$. Similarly, we shall say that ϕ strongly preserves generalized invertibility if $\phi(y)$ is a generalized inverse of $\phi(x)$ whenever y is a generalized inverse of x.

Remark. One easily checks that a Jordan homomorphism strongly preserves invertibility (resp. generalized inverses). The motivation for this problem is Hua's theorem which states that every unital additive map ϕ between two fields such that $\phi(x^{-1}) = \phi(x)^{-1}$ is an isomorphism or an anti-isomorphism.
III. Additive maps strongly preserving generalized inverses

We denote by \mathcal{A}^{-1} the set of invertible elements of \mathcal{A}. We shall say that an additive map $\phi : \mathcal{A} \to \mathcal{B}$ strongly preserves invertibility if $\phi(x^{-1}) = \phi(x)^{-1}$ for every $x \in \mathcal{A}^{-1}$. Similarly, we shall say that ϕ strongly preserves generalized invertibility if $\phi(y)$ is a generalized inverse of $\phi(x)$ whenever y is a generalized inverse of x.

Remark. One easily checks that a Jordan homomorphism strongly preserves invertibility (resp. generalized inverses).

The motivation for this problem is Hua's theorem which states that every unital additive map $\phi : \mathcal{A} \to \mathcal{B}$ strongly preserving invertibility is an isomorphism or an anti-isomorphism.
III. Additive maps strongly preserving generalized inverses

We denote by \mathcal{A}^{-1} the set of invertible elements of \mathcal{A}. We shall say that an additive map $\phi : \mathcal{A} \rightarrow \mathcal{B}$ strongly preserves invertibility if $\phi(x^{-1}) = \phi(x)^{-1}$ for every $x \in \mathcal{A}^{-1}$. Similarly, we shall say that ϕ strongly preserves generalized invertibility if $\phi(y)$ is a generalized inverse of $\phi(x)$ whenever y is a generalized inverse of x.

Remark. One easily checks that a Jordan homomorphism strongly preserves invertibility (resp. generalized inverses). The motivation for this problem is Hua's theorem which states that every unital additive map ϕ between two fields such that $\phi(x^{-1}) = \phi(x)^{-1}$ is an isomorphism or an anti-isomorphism.
III. Additive maps strongly preserving generalized inverses

We denote by \mathcal{A}^{-1} the set of invertible elements of \mathcal{A}. We shall say that an additive map $\phi : \mathcal{A} \to \mathcal{B}$ strongly preserves invertibility if $\phi(x^{-1}) = \phi(x)^{-1}$ for every $x \in \mathcal{A}^{-1}$. Similarly, we shall say that ϕ strongly preserves generalized invertibility if $\phi(y)$ is a generalized inverse of $\phi(x)$ whenever y is a generalized inverse of x.

Remark. One easily checks that a Jordan homomorphism strongly preserves invertibility (resp. generalized inverses).
III. Additive maps strongly preserving generalized inverses

We denote by A^{-1} the set of invertible elements of A. We shall say that an additive map $\phi : \mathcal{A} \rightarrow \mathcal{B}$ strongly preserves invertibility if $\phi(x^{-1}) = \phi(x)^{-1}$ for every $x \in \mathcal{A}^{-1}$. Similarly, we shall say that ϕ strongly preserves generalized invertibility if $\phi(y)$ is a generalized inverse of $\phi(x)$ whenever y is a generalized inverse of x.

Remark. One easily checks that a Jordan homomorphism strongly preserves invertibility (resp. generalized inverses). The motivation for this problem is Hua’s theorem which states that every unital additive map ϕ between two fields such that $\phi(x^{-1}) = \phi(x)^{-1}$ is an isomorphism or an anti-isomorphism.
Theorem [N.Boudi and M.M. 2010]

Let A and B be unital Banach algebras and let $\phi : A \to B$ be an additive map.

Then ϕ strongly preserves invertibility if and only if $\phi(1)$ is a unital Jordan homomorphism and $\phi(1)$ commutes with the range of ϕ. For the special case of the complex matrix algebra $A = M_n(C)$, we derive the following corollary that provides a more explicit form.

Corollary

Let $\phi : M_n(C) \to M_n(C)$, be a linear map. Then the following conditions are equivalent:

1. ϕ preserves invertibility;
2. ϕ strongly preserves invertibility;
3. there is a $\lambda \in \{-1, 1\}$ such that ϕ takes one of the following forms:
 - $\phi(x) = \lambda axa^{-1}$
 - $\phi(x) = \lambda ax \text{tr}a - 1$,
 for some invertible element $a \in M_n(C)$.

*Mostafa Mbekhta

INVITATION TO LINEAR PRESERVER PROBLEMS, PART II*
Theorem [N.Boudi and M.M. 2010]

Let A and B be unital Banach algebras and let $\phi : A \to B$ be an additive map.

Then ϕ strongly preserves invertibility if and only if $\phi(1)$ is a unital Jordan homomorphism and $\phi(1)$ commutes with the range of ϕ.

For the special case of the complex matrix algebra $A = M_n(\mathbb{C})$, we derive the following corollary that provides a more explicit form:

Corollary

Let $\phi : M_n(\mathbb{C}) \to M_n(\mathbb{C})$, be a linear map. Then the following conditions are equivalent:

1. ϕ preserves invertibility;
2. ϕ strongly preserves invertibility;
3. there is a $\lambda \in \{-1, 1\}$ such that ϕ takes one of the following forms:

 $\phi(x) = \lambda axa^{-1}$ or $\phi(x) = \lambda ax \text{tr} a^{-1}$,

 for some invertible element $a \in M_n(\mathbb{C})$.
Theorem [N.Boudi and M.M. 2010]

Let A and B be unital Banach algebras and let $\phi : A \to B$ be an additive map. Then ϕ strongly preserves invertibility if and only if $\phi(1)\phi$ is a unital Jordan homomorphism and $\phi(1)$ commutes with the range of ϕ.

For the special case of the complex matrix algebra $A = M_n(\mathbb{C})$, we derive the following corollary that provides a more explicit form.

Corollary

Let $\phi : M_n(\mathbb{C}) \to M_n(\mathbb{C})$, be a linear map. Then the following conditions are equivalent:

1. ϕ preserves invertibility;
2. ϕ strongly preserves invertibility;
3. there is a $\lambda \in \{-1, 1\}$ such that ϕ takes one of the following forms:
 - $\phi(x) = \lambda axa^{-1}$
 - $\phi(x) = \lambda ax \text{tr} a - 1$,
 for some invertible element $a \in M_n(\mathbb{C})$.

Mostafa Mbekhta
Theorem [N.Boudi and M.M. 2010]

Let A and B be unital Banach algebras and let $\phi : A \to B$ be an additive map. Then ϕ strongly preserves invertibility if and only if $\phi(1)\phi$ is a unital Jordan homomorphism and $\phi(1)$ commutes with the range of ϕ.

For the special case of the complex matrix algebra $A = \mathcal{M}_n(\mathbb{C})$, we derive the following corollary that provides a more explicit form.
Theorem [N.Boudi and M.M. 2010]

Let \mathcal{A} and \mathcal{B} be unital Banach algebras and let $\phi : \mathcal{A} \to \mathcal{B}$ be an additive map. Then ϕ strongly preserves invertibility if and only if $\phi(1)\phi$ is a unital Jordan homomorphism and $\phi(1)$ commutes with the range of ϕ.

For the special case of the complex matrix algebra $\mathcal{A} = \mathcal{M}_n(\mathbb{C})$, we derive the following corollary that provides a more explicit form.

Corollary

Let $\phi : \mathcal{M}_n(\mathbb{C}) \to \mathcal{M}_n(\mathbb{C})$, be a linear map. Then the following conditions are equivalent:

1. ϕ preserves invertibility;
2. ϕ strongly preserves invertibility;
3. there is a $\lambda \in \{-1, 1\}$ such that ϕ takes one of the following forms: $\phi(x) = \lambda axa^{-1}$ or $\phi(x) = \lambda ax^{tr}a^{-1}$, for some invertible element $a \in \mathcal{M}_n(\mathbb{C})$.

Mostafa Mbekhta
strongly preserving generalized inverses

For generalized invertibility, we have

Theorem [N.Boudi and M.M. 2010]

Let A and B be unital complex Banach algebras and let $\phi : A \to B$ be an additive map such that $1 \in \text{Im}(\phi)$ or $\phi(1)$ is invertible.

Then the following conditions are equivalent:

(i) ϕ strongly preserves generalized invertibility;

(ii) $\phi(1)\phi$ is a unital Jordan homomorphism and $\phi(1)$ commutes with the range of ϕ.

For linear maps over the complex matrix algebra $A = M_n(C)$,

Corollary

Let $\phi : M_n(C) \to M_n(C)$, be a linear map. Then ϕ strongly preserves generalized inverses if and only if either $\phi = 0$ or there is $\lambda \in \{-1, 1\}$ such that ϕ takes one of the following forms:

$\phi(x) = \lambda axa^{-1}$ or $\phi(x) = \lambda ax\text{tr}a^{-1}$,

for some invertible element $a \in M_n(C)$.
strongly preserving generalized inverses

For generalized invertibility, we have

Theorem [N.Boudi and M.M. 2010]

Let A and B be unital complex Banach algebras and let $\phi : A \to B$ be an additive map such that $1 \in \text{Im}(\phi)$ or $\phi(1)$ is invertible.

Corollary

Let $\phi : M_n(C) \to M_n(C)$, be a linear map. Then ϕ strongly preserves generalized inverses if and only if either $\phi = 0$ or there is $\lambda \in \{-1, 1\}$ such that ϕ takes one of the following forms:

$$\phi(x) = \lambda axa^{-1} \quad \text{or} \quad \phi(x) = \lambda ax tr(a) a^{-1},$$

for some invertible element $a \in M_n(C)$.
strongly preserving generalized inverses

For generalized invertibility, we have

Theorem [N.Boudi and M.M. 2010]

Let \mathcal{A} and \mathcal{B} be unital complex Banach algebras and let $\phi : \mathcal{A} \to \mathcal{B}$ be an additive map such that $1 \in \text{Im}(\phi)$ or $\phi(1)$ is invertible.
For generalized invertibility, we have

Theorem [N.Boudi and M.M. 2010]

Let A and B be unital complex Banach algebras and let $\phi : A \to B$ be an additive map such that $1 \in \text{Im}(\phi)$ or $\phi(1)$ is invertible. Then the following conditions are equivalent:

(i) ϕ strongly preserves generalized invertibility;

(ii) $\phi(1)$ is a unital Jordan homomorphism and $\phi(1)$ commutes with the range of ϕ.

For linear maps over the complex matrix algebra $A = \mathcal{M}_n(\mathbb{C})$,

Corollary

Let $\phi : \mathcal{M}_n(\mathbb{C}) \to \mathcal{M}_n(\mathbb{C})$, be a linear map. Then ϕ strongly preserves generalized inverses if and only if either $\phi = 0$ or there is $\lambda \in \{-1, 1\}$ such that $\phi(x) = \lambda axa^{-1}$ or $\phi(x) = \lambda ax \text{tr}a^{-1}$, for some invertible element $a \in \mathcal{M}_n(\mathbb{C})$.

Mostafa Mbekhta
For generalized invertibility, we have

Theorem [N. Boudi and M. M. 2010]

Let A and B be unital complex Banach algebras and let $\phi : A \to B$ be an additive map such that $1 \in \text{Im}(\phi)$ or $\phi(1)$ is invertible. Then the following conditions are equivalent:

(i) ϕ strongly preserves generalized invertibility;
For generalized invertibility, we have

Theorem [N.Boudi and M.M. 2010]

Let A and B be unital complex Banach algebras and let $\phi : A \to B$ be an additive map such that $1 \in \text{Im}(\phi)$ or $\phi(1)$ is invertible. Then the following conditions are equivalent:

(i) ϕ strongly preserves generalized invertibility;
(ii) $\phi(1)\phi$ is a unital Jordan homomorphism and $\phi(1)$ commutes with the range of ϕ.
For generalized invertibility, we have

Theorem [N.Boudi and M.M. 2010]

Let \mathcal{A} and \mathcal{B} be unital complex Banach algebras and let $\phi : \mathcal{A} \to \mathcal{B}$ be an additive map such that $1 \in \text{Im}(\phi)$ or $\phi(1)$ is invertible. Then the following conditions are equivalent:

(i) ϕ strongly preserves generalized invertibility;
(ii) $\phi(1)\phi$ is a unital Jordan homomorphism and $\phi(1)$ commutes with the range of ϕ.

For linear maps over the complex matrix algebra $\mathcal{A} = \mathcal{M}_n(\mathbb{C})$,

Mostafa Mbekhta

INVITATION TO LINEAR PRESERVER PROBLEMS, PART II
strongly preserving generalized inverses

For generalized invertibility, we have

Theorem [N.Boudi and M.M. 2010]

Let \mathcal{A} and \mathcal{B} be unital complex Banach algebras and let $\phi : \mathcal{A} \to \mathcal{B}$ be an additive map such that $1 \in \text{Im}(\phi)$ or $\phi(1)$ is invertible. Then the following conditions are equivalent:

(i) ϕ strongly preserves generalized invertibility;

(ii) $\phi(1)\phi$ is a unital Jordan homomorphism and $\phi(1)$ commutes with the range of ϕ.

For linear maps over the complex matrix algebra $\mathcal{A} = \mathcal{M}_n(\mathbb{C})$,

Corollary

Let $\phi : \mathcal{M}_n(\mathbb{C}) \to \mathcal{M}_n(\mathbb{C})$, be a linear map. Then ϕ strongly preserves generalized inverses if and only if either $\phi = 0$ or there is $\lambda \in \{-1, 1\}$ such that ϕ takes one of the following forms:

- $\phi(x) = \lambda axa^{-1}$
- $\phi(x) = \lambda ax^\text{tr}a^{-1}$,

for some invertible element $a \in \mathcal{M}_n(\mathbb{C})$.
IV. Moore-Penrose inverses preservers maps

In the context C^*-algebras, it is well known that every generalized invertible element a has a unique generalized inverse b for which ab and ba are projections, such an element b is called the Moore-Penrose inverse of a and denoted by a^\dagger.
IV. Moore-Penrose inverses preservers maps

In the context C^*-algebras, it is well known that every generalized invertible element a has a unique generalized inverse b for which ab and ba are projections, such an element b is called the Moore-Penrose inverse of a and denoted by a^\dagger.

In other words, a^\dagger is the unique element of A that satisfies:

$$aa^\dagger a = a, \quad a^\dagger aa^\dagger = a^\dagger, \quad (aa^\dagger)^* = aa^\dagger, \quad (a^\dagger a)^* = a^\dagger a.$$
IV. Moore-Penrose inverses preservers maps

In the context C^*-algebras, it is well known that every generalized invertible element a has a unique generalized inverse b for which ab and ba are projections, such an element b is called the Moore-Penrose inverse of a and denoted by a^\dagger.

In other words, a^\dagger is the unique element of A that satisfies:

\[
aa^\dagger a = a, \quad a^\dagger aa^\dagger = a^\dagger, \quad (aa^\dagger)^* = aa^\dagger, \quad (a^\dagger a)^* = a^\dagger a.
\]

Let A^\dagger denotes the set of all elements of A having a Moore-Penrose inverse.
IV. Moore-Penrose inverses preservers maps

In the context C^*-algebras, it is well known that every generalized invertible element a has a unique generalized inverse b for which ab and ba are projections, such an element b is called the Moore-Penrose inverse of a and denoted by a^\dagger.

In other words, a^\dagger is the unique element of \mathcal{A} that satisfies:

$$aa^\dagger a = a, \quad a^\dagger aa^\dagger = a^\dagger, \quad (aa^\dagger)^* = aa^\dagger, \quad (a^\dagger a)^* = a^\dagger a.$$

Let \mathcal{A}^\dagger denotes the set of all elements of \mathcal{A} having a Moore-Penrose inverse.

We will say that a linear map $\phi : \mathcal{A} \rightarrow \mathcal{B}$ preserves strongly $Moore$-$Penrose$ invertibility if $\phi(x^\dagger) = \phi(x)^\dagger, \quad \forall x \in \mathcal{A}^\dagger.$
IV. Moore-Penrose inverses preservers maps

In the context C^*-algebras, it is well known that every generalized invertible element a has a unique generalized inverse b for which ab and ba are projections, such an element b is called the Moore-Penrose inverse of a and denoted by a^\dagger.

In other words, a^\dagger is the unique element of A that satisfies:

\[aa^\dagger a = a, \quad a^\dagger aa^\dagger = a^\dagger, \quad (aa^\dagger)^* = aa^\dagger, \quad (a^\dagger a)^* = a^\dagger a. \]

Let A^\dagger denotes the set of all elements of A having a Moore-Penrose inverse.

We will say that a linear map $\phi : A \to B$ preserves strongly Moore-Penrose invertibility if $\phi(x^\dagger) = \phi(x)^\dagger$, $\forall x \in A^\dagger$.

We will say that a linear map $\phi : A \to B$ is C^*-Jordan homomorphism if it is a Jordan homomorphism which preserves the adjoint operation, i.e. $\phi(x^*) = \phi(x)^*$ for all x in A.
IV. Moore-Penrose inverses preservers maps

In the context C^*-algebras, it is well known that every generalized invertible element a has a unique generalized inverse b for which ab and ba are projections, such an element b is called the Moore-Penrose inverse of a and denoted by a^\dagger.

In other words, a^\dagger is the unique element of A that satisfies:

$$aa^\dagger a = a, \ a^\dagger aa^\dagger = a^\dagger, \ (aa^\dagger)^* = aa^\dagger, \ (a^\dagger a)^* = a^\dagger a.$$

Let A^\dagger denotes the set of all elements of A having a Moore-Penrose inverse.

We will say that a linear map $\phi : A \rightarrow B$ preserves strongly Moore-Penrose invertibility if $\phi(x^\dagger) = \phi(x)^\dagger$, $\forall x \in A^\dagger$.

We will say that a linear map $\phi : A \rightarrow B$ is C^*-Jordan homomorphism if it is a Jordan homomorphism which preserves the adjoint operation, i.e. $\phi(x^*) = \phi(x)^*$ for all x in A.

The C^*-homomorphism and C^*-anti-homomorphism are analogously defined.
Theorem [M.M.]

Let A be a C^*-algebra of real rank zero and B a prime C^*-algebra. Let $\phi : A \to B$ be a surjective, unital linear map. Then the following conditions are equivalent:

1) $\phi(x^\dagger) = \phi(x)^\dagger$ for all $x \in A^\dagger$;

2) ϕ is either a C^*-homomorphism or a C^*-anti-homomorphism.

Denote by $B^\dagger(H)$ the set of the operators on H that possess a Moore-Penrose inverse.

Corollary

Let $\phi : B(H) \to B(H)$ be a surjective unital additive map. Then the following conditions are equivalent:

1) $\phi(T^\dagger) = \phi(T)^\dagger$ for all $T \in B^\dagger(H)$;

2) there is a unitary operator U in $B(H)$ such that ϕ takes one of the following forms $\phi(T) = UTU^*$ or $\phi(T) = UTU$ for all T.

Mostafa Mbekhta

INVITATION TO LINEAR PRESERVER PROBLEMS, PART II
Theorem[M.M.]

Let A be a C^*-algebra of real rank zero and B a prime C^*-algebra. Let $\phi : A \to B$ be a surjective, unital linear map. Then the following conditions are equivalent:

1) $\phi(x^\dagger) = \phi(x)^\dagger$ for all $x \in A^\dagger$;
2) ϕ is either a C^*-homomorphism or a C^*-anti-homomorphism.

Corollary

Let $\phi : B(H) \to B(H)$ be a surjective unital additive map. Then the following conditions are equivalent:

1) $\phi(T^\dagger) = \phi(T)^\dagger$ for all $T \in B(H)^\dagger$;
2) there is a unitary operator U in $B(H)$ such that ϕ takes one of the following forms $\phi(T) = UTU^*$ or $\phi(T) = UTU^\text{tr}$ for all T.

Moore-Penrose inverses
Moore-Penrose inverses

Theorem [M.M.]

Let A be a C^*-algebra of real rank zero and B a prime C^*-algebra. Let $\phi : A \to B$ be a surjective, unital linear map. Then the following conditions are equivalent:

1) $\phi(x^\dagger) = \phi(x)^\dagger$ for all $x \in A^\dagger$;

2) ϕ is either a C^*-homomorphism or a C^*-anti-homomorphism.
Theorem [M.M.]

Let A be a C^*-algebra of real rank zero and B a prime C^*-algebra. Let $\phi : A \to B$ be a surjective, unital linear map. Then the following conditions are equivalent:

1) $\phi(x^\dagger) = \phi(x)^\dagger$ for all $x \in A^\dagger$;
2) ϕ is either a C^*-homomorphism or a C^*-anti-homomorphism.
Moore-Penrose inverses

Theorem [M.M.]

Let A be a C^*-algebra of real rank zero and B a prime C^*-algebra. Let $\phi : A \to B$ be a surjective, unital linear map. Then the following conditions are equivalent:

1) $\phi(x^\dagger) = \phi(x)^\dagger$ for all $x \in A^\dagger$;
2) ϕ is either a C^*-homomorphism or a C^*-anti-homomorphism.

Denote by $B^\dagger(H)$ the set of the operators on H that possess a Moore-Penrose inverse.
Theorem[M.M.]

Let A be a C^*-algebra of real rank zero and B a prime C^*-algebra. Let $\phi : A \to B$ be a surjective, unital linear map. Then the following conditions are equivalent:

1) $\phi(x^\dagger) = \phi(x)^\dagger$ for all $x \in A^\dagger$;
2) ϕ is either a C^*-homomorphism or a C^*-anti-homomorphism.

Denote by $B^\dagger(H)$ the set of the operators on H that possess a Moore-Penrose inverse.

Corollary

Let $\phi : B(H) \to B(H)$ be a surjective unital additive map. Then the following conditions are equivalent:

(1) $\phi(T^\dagger) = \phi(T)^\dagger$ for all $T \in B^\dagger(H)$;
(2) there is a unitary operator U in $B(H)$ such that ϕ takes one of the following forms
\[\phi(T) = UTU^* \quad \text{or} \quad \phi(T) = UT^{tr}U^* \quad \text{for all } T. \]
In connection with Theorem, we conclude by the following conjecture

Conjecture

Let A and B be C^*-algebras. Let $\phi: A \rightarrow B$ be a surjective linear map. Then the following conditions are equivalent:

1) $\phi(x^\dagger) = \phi(x)^\dagger$ for all $x \in A^\dagger$;
2) ϕ is a C^*-Jordan homomorphism or a C^*-anti-homomorphism.
In connection with Theorem, we conclude by the following conjecture

Conjecture

Let A and B be \mathbb{C}^*-algebras. Let $\phi : A \rightarrow B$ be a surjective linear map. Then the following conditions are equivalent:

1) $\phi(x^\dagger) = \phi(x)^\dagger$ for all $x \in A^\dagger$;

2) ϕ is a \mathbb{C}^*-Jordan homomorphism or a \mathbb{C}^*-anti-homomorphism.
In connection with Theorem, we conclude by the following conjecture

Conjecture

Let A and B be C^*-algebras. Let $\phi : A \to B$ be a surjective linear map. Then the following conditions are equivalent:

1) $\phi(x^\dagger) = \phi(x)^\dagger$ for all $x \in A^\dagger$;
In connection with Theorem, we conclude by the following conjecture

Conjecture

Let A and B be C^*-algebras. Let $\phi : A \to B$ be a surjective linear map. Then the following conditions are equivalent:

1) $\phi(x^\dagger) = \phi(x)^\dagger$ for all $x \in A^\dagger$;
2) ϕ is a C^*-Jordan homomorphism or a C^*-anti-homomorphism.
V. ascent and descent preserver maps
The ascent $a(T)$ and descent $d(T)$ of $T \in \mathcal{L}(X)$ are defined by

\[a(T) = \inf\{n \geq 0 : \ker(T^n) = \ker(T^{n+1})\} \]
\[d(T) = \inf\{n \geq 0 : R(T^n) = R(T^{n+1})\}, \]
where the infimum over the empty set is taken to be infinite.
V. ascent and descent preserver maps

The ascent $a(T)$ and descent $d(T)$ of $T \in \mathcal{L}(X)$ are defined by

$$a(T) = \inf\{n \geq 0 : \ker(T^n) = \ker(T^{n+1})\}$$

$$d(T) = \inf\{n \geq 0 : R(T^n) = R(T^{n+1})\},$$

where the infimum over the empty set is taken to be infinite.

An operator $T \in \mathcal{L}(X)$ is said to have a Drazin inverse, or to be Drazin invertible, if there exists $S \in \mathcal{L}(X)$ and a non-negative integer n such that

$$T^{n+1}S = T^n, \quad STS = S \quad \text{and} \quad TS = ST.$$ \hspace{1cm} (1)

Note that if T possesses a Drazin inverse, then it is unique and the smallest non-negative integer n in (1) is called the index of T and is denoted by $i(T)$. It is well known that T is Drazin invertible if and only if it has finite ascent and descent, and in this case $a(T) = d(T) = i(T)$.
Recall also that an operator \(T \in \mathcal{L}(X) \) is called \textit{upper} (resp. \textit{lower}) \textit{semi-Fredholm} if \(\text{R}(T) \) is closed and \(\dim \text{N}(T) \) (resp. \(\text{codim} \text{R}(T) \)) is finite. The set of such operators is denoted by \(\mathcal{F}_+(X) \) (resp. \(\mathcal{F}_-(X) \)). The \textit{Fredholm} and \textit{semi-Fredholm} subsets are defined by \\
\(\mathcal{F}(X) := \mathcal{F}_+(X) \cap \mathcal{F}_-(X) \) and \(\mathcal{F}_\pm(X) := \mathcal{F}_+(X) \cup \mathcal{F}_-(X) \), respectively.
Let us introduce the following subsets:

(i) $A(X) := \{ T \in \mathcal{L}(X) : a(T) < \infty \}$ the set of finite ascent operators,
Let us introduce the following subsets:

(i) \(A(X) := \{ T \in \mathcal{L}(X) : a(T) < \infty \} \) the set of finite ascent operators,

(ii) \(D(X) := \{ T \in \mathcal{L}(X) : d(T) < \infty \} \) the set of finite descent operators,
Let us introduce the following subsets:

(i) \(\mathcal{A}(X) := \{ T \in \mathcal{L}(X) : a(T) < \infty \} \) the set of finite ascent operators,

(ii) \(\mathcal{D}(X) := \{ T \in \mathcal{L}(X) : d(T) < \infty \} \) the set of finite descent operators,

(iii) \(\mathcal{D}^r(X) := \mathcal{A}(X) \cap \mathcal{D}(X) \) the set of Drazin invertible operators,

(iv) \(\mathcal{B}^+ (X) := \mathcal{F}^+ (X) \cap \mathcal{A}(X) \) the set of upper semi-Browder operators,

(v) \(\mathcal{B}^− (X) := \mathcal{F}^− (X) \cap \mathcal{D}(X) \) the set of lower semi-Browder operators,

(vi) \(\mathcal{B}^\pm (X) := \mathcal{B}^+ (X) \cup \mathcal{B}^− (X) \) the set of semi-Browder operators,

(vii) \(\mathcal{B} (X) := \mathcal{B}^+ (X) \cap \mathcal{B}^− (X) \) the set of Browder operators.
Let us introduce the following subsets:

(i) \(A(X) := \{ T \in \mathcal{L}(X) : a(T) < \infty \} \) the set of finite ascent operators,

(ii) \(D(X) := \{ T \in \mathcal{L}(X) : d(T) < \infty \} \) the set of finite descent operators,

(iii) \(D^r(X) := A(X) \cap D(X) \) the set of Drazin invertible operators,

(iv) \(B_+(X) := F_+(X) \cap A(X) \) the set of upper semi-Browder operators,
Let us introduce the following subsets:

(i) $\mathcal{A}(X) := \{ T \in \mathcal{L}(X) : a(T) < \infty \}$ the set of finite ascent operators,

(ii) $\mathcal{D}(X) := \{ T \in \mathcal{L}(X) : d(T) < \infty \}$ the set of finite descent operators,

(iii) $\mathcal{D}'(X) := \mathcal{A}(X) \cap \mathcal{D}(X)$ the set of Drazin invertible operators,

(iv) $\mathcal{B}_+(X) := \mathcal{F}_+(X) \cap \mathcal{A}(X)$ the set of upper semi-Browder operators,

(v) $\mathcal{B}_-(X) := \mathcal{F}_-(X) \cap \mathcal{D}(X)$ the set of lower semi-Browder operators,
Let us introduce the following subsets:

(i) \(\mathcal{A}(X) := \{ T \in \mathcal{L}(X) : a(T) < \infty \} \) the set of finite ascent operators,

(ii) \(\mathcal{D}(X) := \{ T \in \mathcal{L}(X) : d(T) < \infty \} \) the set of finite descent operators,

(iii) \(\mathcal{D}^r(X) := \mathcal{A}(X) \cap \mathcal{D}(X) \) the set of Drazin invertible operators,

(iv) \(\mathcal{B}_+(X) := \mathcal{F}_+(X) \cap \mathcal{A}(X) \) the set of upper semi-Browder operators,

(v) \(\mathcal{B}_-(X) := \mathcal{F}_-(X) \cap \mathcal{D}(X) \) the set of lower semi-Browder operators,

(vi) \(\mathcal{B}_\pm(X) := \mathcal{B}_+(X) \cup \mathcal{B}_-(X) \) the set of semi-Browder operators,
Let us introduce the following subsets:

(i) $\mathcal{A}(X) := \{ T \in \mathcal{L}(X) : a(T) < \infty \}$ the set of finite ascent operators,

(ii) $\mathcal{D}(X) := \{ T \in \mathcal{L}(X) : d(T) < \infty \}$ the set of finite descent operators,

(iii) $\mathcal{D}^r(X) := \mathcal{A}(X) \cap \mathcal{D}(X)$ the set of Drazin invertible operators,

(iv) $\mathcal{B}_+(X) := \mathcal{F}_+(X) \cap \mathcal{A}(X)$ the set of upper semi-Browder operators,

(v) $\mathcal{B}_-(X) := \mathcal{F}_-(X) \cap \mathcal{D}(X)$ the set of lower semi-Browder operators,

(vi) $\mathcal{B}_\pm(X) := \mathcal{B}_+(X) \cup \mathcal{B}_-(X)$ the set of semi-Browder operators,

(vii) $\mathcal{B}(X) := \mathcal{B}_+(X) \cap \mathcal{B}_-(X)$ the set of Browder operators.
Let us introduce the following subsets:

(i) $\mathcal{A}(X) := \{ T \in \mathcal{L}(X) : a(T) < \infty \}$ the set of finite ascent operators,

(ii) $\mathcal{D}(X) := \{ T \in \mathcal{L}(X) : d(T) < \infty \}$ the set of finite descent operators,

(iii) $\mathcal{D}^r(X) := \mathcal{A}(X) \cap \mathcal{D}(X)$ the set of Drazin invertible operators,

(iv) $\mathcal{B}_+(X) := \mathcal{F}_+(X) \cap \mathcal{A}(X)$ the set of upper semi-Browder operators,

(v) $\mathcal{B}_-(X) := \mathcal{F}_-(X) \cap \mathcal{D}(X)$ the set of lower semi-Browder operators,

(vi) $\mathcal{B}_{\pm}(X) := \mathcal{B}_+(X) \cup \mathcal{B}_-(X)$ the set of semi-Browder operators,

(vii) $\mathcal{B}(X) := \mathcal{B}_+(X) \cap \mathcal{B}_-(X)$ the set of Browder operators.
Let us introduce the following subsets:

(i) \(A(X) := \{ T \in \mathcal{L}(X) : a(T) < \infty \} \) the set of finite ascent operators,

(ii) \(D(X) := \{ T \in \mathcal{L}(X) : d(T) < \infty \} \) the set of finite descent operators,

(iii) \(D^r(X) := A(X) \cap D(X) \) the set of Drazin invertible operators,

(iv) \(B_+(X) := \mathcal{F}_+(X) \cap A(X) \) the set of upper semi-Browder operators,

(v) \(B_-(X) := \mathcal{F}_-(X) \cap D(X) \) the set of lower semi-Browder operators,

(vi) \(B_{\pm}(X) := B_+(X) \cup B_-(X) \) the set of semi-Browder operators,

(vii) \(B(X) := B_+(X) \cap B_-(X) \) the set of Browder operators.

Let \(S \) denotes one of the subsets (i)-(vii). A surjective additive maps \(\Phi : \mathcal{L}(X) \to \mathcal{L}(Y) \) is said to preserve \(S \) in the both direction if \(T \in S \) if and only if \(\Phi(T) \in S \).
Theorem [M.M, V.Muller, M.Oudghiri 2014]

Let $\Phi : \mathcal{L}(H) \rightarrow \mathcal{L}(K)$ be a surjective additive continuous map. Then the following assertions are equivalent:

(i) Φ preserves the finiteness-of-ascent.

(ii) Φ preserves the finiteness-of-descent.

(iii) Φ preserves in both direction B^+.

(iv) Φ preserves in both direction B^-.

(v) There exists an invertible bounded linear, or conjugate linear, operator $A : H \rightarrow K$ and a non-zero complex number c such that $\Phi(T) = cATA^{-1}$ for all $T \in \mathcal{L}(H)$.
Theorem [M.M, V.Muller, M.Oudghiri 2014]

Let $\Phi : \mathcal{L}(H) \to \mathcal{L}(K)$ be a surjective additive continuous map. Then the following assertions are equivalent:

(i) Φ preserves the finiteness-of-ascent.

(ii) Φ preserves the finiteness-of-descent.

(iii) Φ preserves in both directions \mathcal{B}^{+}.

(iv) Φ preserves in both directions \mathcal{B}^{-}.

(v) There exists an invertible bounded linear, or conjugate linear, operator $A : H \to K$ and a non-zero complex number c such that $\Phi(T) = cATA^{-1}$ for all $T \in \mathcal{L}(H)$.
Theorem [M.M, V.Muller, M.Oudghiri 2014]

Let $\Phi : \mathcal{L}(H) \rightarrow \mathcal{L}(K)$ be a surjective additive continuous map. Then the following assertions are equivalent:

(i) Φ preserves the finiteness-of-ascent.

(ii) Φ preserves the finiteness-of-descent.

(iii) Φ preserves in both direction $B^+.

(iv) Φ preserves in both direction $B^-.

(v) There exists an invertible bounded linear, or conjugate linear, operator $A : H \rightarrow K$ and a non-zero complex number c such that $\Phi(T) = cATA^{-1}$ for all $T \in \mathcal{L}(H)$.
Theorem [M.M, V.Muller, M.Oudghiri 2014]

Let $\Phi : \mathcal{L}(H) \rightarrow \mathcal{L}(K)$ be a surjective additive continuous map. Then the following assertions are equivalent:

(i) Φ preserves the finiteness-of-ascent.

(ii) Φ preserves the finiteness-of-descent.

(iii) Φ preserves in both direction \mathcal{B}_+.

(iv) Φ preserves in both direction \mathcal{B}_-.

(v) There exists an invertible bounded linear, or conjugate linear, operator $A : H \rightarrow K$ and a non-zero complex number c such that $\Phi(T) = cATA^{-1}$ for all $T \in \mathcal{L}(H)$.

Mostafa Mbekhta

INVITATION TO LINEAR PRESERVER PROBLEMS, PART II
Theorem [M.M, V.Muller, M.Oudghiri 2014]

Let $\Phi : \mathcal{L}(H) \to \mathcal{L}(K)$ be a surjective additive continuous map. Then the following assertions are equivalent:

(i) Φ preserves the finiteness-of-ascent.
(ii) Φ preserves the finiteness-of-descent.
(iii) Φ preserves in both direction \mathcal{B}_+.
(iv) Φ preserves in both direction \mathcal{B}_-.

(v) there exists an invertible bounded linear, or conjugate linear, operator $A : H \to K$ and a non-zero complex number c such that $\Phi(T) = cATA^{-1}$ for all $T \in \mathcal{L}(H)$.

Mostafa Mbekhta

INVITATION TO LINEAR PRESERVER PROBLEMS, PART II
Theorem [M.M, V.Muller, M.Oudghiri 2014]

Let $\Phi : \mathcal{L}(H) \to \mathcal{L}(K)$ be a surjective additive continuous map. Then the following assertions are equivalent:

(i) Φ preserves the finiteness-of-ascent.

(ii) Φ preserves the finiteness-of-descent.

(iii) Φ preserves in both direction \mathcal{B}_+.

(iv) Φ preserves in both direction \mathcal{B}_-.

(v) there exists an invertible bounded linear, or conjugate linear, operator $A : H \to K$ and a non-zero complex number c such that $\Phi(T) = cATA^{-1}$ for all $T \in \mathcal{L}(H)$.

Mostafa Mbekhta

INVITATION TO LINEAR PRESERVER PROBLEMS, PART II
Theorem [M.M, Muller, Oudghiri 2014]

Let $\Phi : \mathcal{L}(H) \to \mathcal{L}(K)$ be a surjective additive continuous map. Then the following assertions are equivalent:

(i) Φ preserves the Drazin invertibility.

(ii) Φ preserves in both direction Semi-Browder operators.

(iii) Φ preserves in both direction B^\ast.

(iv) There exists an invertible bounded linear, or conjugate linear, operator $A : H \to K$ and a non-zero complex number c such that either $\Phi(T) = cATA^{-1}$ for all $T \in \mathcal{L}(H)$, or $\Phi(T) = cAT^\ast A^{-1}$ for all $T \in \mathcal{L}(H)$.
Theorem [M.M, Muller, Oudghiri 2014]

Let $\Phi : \mathcal{L}(H) \to \mathcal{L}(K)$ be a surjective additive continuous map. Then the following assertions are equivalent:

(i) Φ preserves the Drazin invertibility.

(ii) Φ preserves in both direction Semi-Browder operators.

(iii) Φ preserves in both direction \mathcal{B}.

(iv) There exists an invertible bounded linear, or conjugate linear, operator $A : H \to K$ and a non-zero complex number c such that either $\Phi(T) = cATA^{-1}$ for all $T \in \mathcal{L}(H)$, or $\Phi(T) = cAT^*A^{-1}$ for all $T \in \mathcal{L}(H)$.

Mostafa Mbekhta
Theorem [M.M, Muller, Oudghiri 2014]

Let $\Phi : \mathcal{L}(H) \to \mathcal{L}(K)$ be a surjective additive continuous map. Then the following assertions are equivalent:

(i) Φ preserves the Drazin invertibility.

(ii) Φ preserves in both direction Semi-Browder operators.

(iii) Φ preserves in both direction \mathcal{B}.

(iv) There exists an invertible bounded linear, or conjugate linear, operator $A : H \to K$ and a non-zero complex number c such that either $\Phi(T) = cATA^{-1}$ for all $T \in \mathcal{L}(H)$, or $\Phi(T) = cAT^\ast A^{-1}$ for all $T \in \mathcal{L}(H)$.

Mostafa Mbekhta
INVITATION TO LINEAR PRESERVER PROBLEMS, PART II
Let $\Phi : \mathcal{L}(H) \to \mathcal{L}(K)$ be a surjective additive continuous map. Then the following assertions are equivalent:

(i) Φ preserves the Drazin invertibility.

(ii) Φ preserves in both direction Semi-Browder operators.

(iii) Φ preserves in both direction \mathcal{B}.
Theorem [M.M, Muller, Oudghiri 2014]

Let $\Phi : \mathcal{L}(H) \to \mathcal{L}(K)$ be a surjective additive continuous map. Then the following assertions are equivalent:

(i) Φ preserves the Drazin invertibility.

(ii) Φ preserves in both direction Semi-Browder operators.

(iii) Φ preserves in both direction \mathcal{B}.

(iv) there exists an invertible bounded linear, or conjugate linear, operator $A : H \to K$ and a non-zero complex number c such that either $\Phi(T) = cATA^{-1}$ for all $T \in \mathcal{L}(H)$, or $\Phi(T) = cAT^{*}A^{-1}$ for all $T \in \mathcal{L}(H)$.

Mostafa Mbekhta
INVITATION TO LINEAR PRESERVER PROBLEMS, PART II
Definition

$T \in \mathcal{L}(X)$ is said to be \textit{group invertible} if there exists $S \in \mathcal{L}(X)$ such that

$$TST = T, STS = S \text{ and } ST = TS.$$

In this case, S is \textit{unique} and is denoted by $T^\#$.

The set of group invertible operators is denoted by \mathcal{G}.
Definition

$T \in \mathcal{L}(X)$ is said to be \textit{group invertible} if there exists $S \in \mathcal{L}(X)$ such that

$$TST = T, STS = S \text{ and } ST = TS.$$

In this case, S is \textit{unique} and is denoted by $T^\#$.

The set of group invertible operators is denoted by \mathcal{G}.

Definition

$T \in \mathcal{L}(X)$ is said to be group invertible if there exists $S \in \mathcal{L}(X)$ such that

$$TST = T, STS = S \text{ and } ST = TS.$$

In this case, S is unique and is denoted by $T^\#$.

The set of group invertible operators is denoted by \mathcal{G}.

- $\text{Inv} \left(\mathcal{L}(X) \right) \subseteq \mathcal{G}$, in this case $T^\# = T^{-1}$ for T invertible.
Definition

$T \in \mathcal{L}(X)$ is said to be group invertible if there exists $S \in \mathcal{L}(X)$ such that

$$TST = T, STS = S \text{ and } ST = TS.$$

In this case, S is unique and is denoted by $T^\#$.

The set of group invertible operators is denoted by \mathcal{G}.

- $\text{Inv}(\mathcal{L}(X)) \subseteq \mathcal{G}$, in this case $T^\# = T^{-1}$ for T invertible.
Group inverse

Definition

\(T \in \mathcal{L}(X) \) is said to be *group invertible* if there exists \(S \in \mathcal{L}(X) \) such that

\[
TST = T, \quad STS = S \quad \text{and} \quad ST = TS.
\]

In this case, \(S \) is unique and is denoted by \(T^\# \).

The set of group invertible operators is denoted by \(G \).

- \(\text{Inv}(\mathcal{L}(X)) \subseteq G \), in this case \(T^\# = T^{-1} \) for \(T \) invertible.
- \(\{ P \in \mathcal{L}(X) : P^2 = P \} \subseteq G \), in this case \(P^\# = P \).
Definition

$T \in \mathcal{L}(X)$ is said to be *group invertible* if there exists $S \in \mathcal{L}(X)$ such that

$$TST = T, \ STS = S \text{ and } ST = TS.$$

In this case, S is unique and is denoted by $T^#$.

The set of group invertible operators is denoted by \mathcal{G}.

- $\text{Inv}(\mathcal{L}(X)) \subseteq \mathcal{G}$, in this case $T^# = T^{-1}$ for T invertible.
- $\{P \in \mathcal{L}(X) : P^2 = P\} \subseteq \mathcal{G}$, in this case $P^# = P$.

Mostafa Mbekhta

INVITATION TO LINEAR PRESERVER PROBLEMS, PART II
Definition

$T \in \mathcal{L}(X)$ is said to be *group invertible* if there exists $S \in \mathcal{L}(X)$ such that

$$TST = T, \ STS = S \text{ and } ST = TS.$$

In this case, S is unique and is denoted by $T^\#$.

The set of group invertible operators is denoted by \mathcal{G}.

- $\text{Inv}(\mathcal{L}(X)) \subseteq \mathcal{G}$, in this case $T^\# = T^{-1}$ for T invertible.
- $\{P \in \mathcal{L}(X) : P^2 = P\} \subseteq \mathcal{G}$, in this case $P^\# = P$.
- $T \in \mathcal{G} \iff T$ is Drazin invertible with $i(T) \leq 1$.

Mostafa Mbekhta

INVITATION TO LINEAR PRESERVER PROBLEMS, PART II
Group inverse

Definition

T ∈ ℒ(X) is said to be *group invertible* if there exists *S ∈ ℒ(X)* such that

\[TST = T, STS = S \text{ and } ST = TS. \]

In this case, *S* is **unique** and is denoted by *T#*.

The set of group invertible operators is denoted by *G*.

- \(\text{Inv}(ℒ(𝑋)) \subseteq G \), in this case *T# = T}^{-1} \) for *T* invertible.
- \(\{ P ∈ ℒ(𝑋) : P^2 = P \} \subseteq G \), in this case *P# = P*.
- *T ∈ G ⇔ T* is Drazin invertible with \(i(T) \leq 1 \).
Group inverse

Definition

$T \in \mathcal{L}(X)$ is said to be group invertible if there exists $S \in \mathcal{L}(X)$ such that

$$TST = T, STS = S \text{ and } ST = TS.$$

In this case, S is unique and is denoted by $T^\#$.

The set of group invertible operators is denoted by \mathcal{G}.

- $\text{Inv}(\mathcal{L}(X)) \subseteq \mathcal{G}$, in this case $T^\# = T^{-1}$ for T invertible.
- $\{P \in \mathcal{L}(X) : P^2 = P\} \subseteq \mathcal{G}$, in this case $P^\# = P$.
- $T \in \mathcal{G} \iff T \text{ is Drazin invertible with } i(T) \leq 1$.
- $T \in \mathcal{G} \iff T^* \in \mathcal{G}(X^*)$. Furthermore, $(T^*)^\# = (T^\#)^*$.
Definition

$T \in \mathcal{L}(X)$ is said to be *group invertible* if there exists $S \in \mathcal{L}(X)$ such that

$$TST = T, STS = S \text{ and } ST = TS.$$

In this case, S is unique and is denoted by $T^\#$.

The set of group invertible operators is denoted by \mathcal{G}.

- $\text{Inv}(\mathcal{L}(X)) \subseteq \mathcal{G}$, in this case $T^\# = T^{-1}$ for T invertible.
- $\{P \in \mathcal{L}(X) : P^2 = P\} \subseteq \mathcal{G}$, in this case $P^\# = P$.
- $T \in \mathcal{G} \iff T$ is Drazin invertible with $i(T) \leq 1$.
- $T \in \mathcal{G} \iff T^* \in \mathcal{G}(X^*)$. Furthermore, $(T^*)^\# = (T^\#)^*$.
Definition

$T \in \mathcal{L}(X)$ is said to be *group invertible* if there exists $S \in \mathcal{L}(X)$ such that

$$TST = T, STS = S \text{ and } ST = TS.$$

In this case, S is unique and is denoted by $T^\#$.

The set of group invertible operators is denoted by \mathcal{G}.

- $\text{Inv}(\mathcal{L}(X)) \subseteq \mathcal{G}$, in this case $T^\# = T^{-1}$ for T invertible.
- $\{P \in \mathcal{L}(X) : P^2 = P\} \subseteq \mathcal{G}$, in this case $P^\# = P$.
- $T \in \mathcal{G} \leftrightarrow T$ is Drazin invertible with $i(T) \leq 1$.
- $T \in \mathcal{G} \leftrightarrow T^* \in \mathcal{G}(X^*)$. Furthermore, $(T^*)^\# = (T^\#)^*$.
- $T \in \mathcal{G} \leftrightarrow \exists P; P^2 = P$ and $T + P$ is invertible.
Theorem [M.M-Oudghiri, 2017]

Let X be a real or complex infinite-dimensional Banach space, and let $\Phi : \mathcal{L}(X) \to \mathcal{L}(X)$ be a surjective additive map. The following assertions are equivalent.

(i) Φ preserves G in both directions;

(ii) there exist a non-zero $\alpha \in \mathbb{C}$ and a bounded invertible linear, or conjugate linear, operator A between suitable spaces such that $\Phi(T) = \alpha ATA^{-1}$ for all $T \in \mathcal{L}(X)$ or $\Phi(T) = \alpha AT^*A^{-1}$ for all $T \in \mathcal{L}(X)$.
Theorem [M.M-Oudghiri, 2017]

Let X be a real or complex infinite-dimensional Banach space, and let $\Phi : \mathcal{L}(X) \rightarrow \mathcal{L}(X)$ be a surjective additive map. The following assertions are equivalent.

(i) Φ preserves \mathcal{G} in both directions;
Theorem [M.M-Oudghiri, 2017]

Let X be a real or complex infinite-dimensional Banach space, and let $\Phi : \mathcal{L}(X) \to \mathcal{L}(X)$ be a surjective additive map. The following assertions are equivalent.

(i) Φ preserves G in both directions;

(ii) there exist a non-zero $\alpha \in \mathbb{C}$ and a bounded invertible linear, or conjugate linear, operator A between suitable spaces such that

$$\Phi(T) = \alpha A T A^{-1} \text{ for all } T \in \mathcal{L}(X)$$

or

$$\Phi(T) = \alpha A T^* A^{-1} \text{ for all } T \in \mathcal{L}(X).$$
Question

It would be interesting to know if the main theorem holds true for surjective additive maps Φ on $\mathcal{L}(X)$ preserving group invertibility in one direction: $T \in \mathcal{G} \Rightarrow \Phi(T) \in \mathcal{G}$.
Question

It would be interesting to know if the main theorem holds true for surjective additive maps Φ on $\mathcal{L}(X)$ preserving group invertibility in one direction: $T \in \mathcal{G} \Rightarrow \Phi(T) \in \mathcal{G}$.
Question

It would be interesting to know if the main theorem holds true for surjective additive maps Φ on $L(X)$ preserving group invertibility in one direction: $T \in \mathcal{G} \Rightarrow \Phi(T) \in \mathcal{G}$.

For each positive integer n, let $\mathcal{D}_n(X)$ denote the set of all Drazin invertible operators in $L(X)$ of index n.
Question

It would be interesting to know if the main theorem holds true for surjective additive maps Φ on $\mathcal{L}(X)$ preserving group invertibility in one direction: $T \in \mathcal{G} \Rightarrow \Phi(T) \in \mathcal{G}$.

For each positive integer n, let $\mathcal{D}_n(X)$ denote the set of all Drazin invertible operators in $\mathcal{L}(X)$ of index n.

Theorem [M.M-Oudghiri-Souilah, 2017]

Let X be a real or complex infinite-dimensional Banach space, and let $\Phi : \mathcal{L}(X) \to \mathcal{L}(X)$ be a surjective additive map. Then ϕ preserves $\mathcal{D}_n(X)$ if and only if there exist a scalar $\alpha \neq 0$ and a bounded invertible linear, or conjugate linear, operator A such that either

$$\Phi(T) = \alpha ATA^{-1} \quad \text{or} \quad \Phi(T) = \alpha AT^*A^{-1}.$$
For $T \in \mathcal{L}(X)$, we denote by $\mathcal{P}_n(T)$ the set of all the poles of order n of its resolvent.
For $T \in \mathcal{L}(X)$, we denote by $\mathcal{P}_n(T)$ the set of all the poles of order n of its resolvent.

Corollary

Let $\Phi : \mathcal{L}(X) \to \mathcal{L}(X)$ be an additive surjective map, and let $n \geq 2$ be an integer. Then $\mathcal{P}_n(\Phi(T)) = \mathcal{P}_n(T)$ for all $T \in \mathcal{L}(X)$ if and only if one of the following assertions holds:

1. There is a bijective continuous mapping $A : X \to X$, either linear or conjugate linear, such that $\Phi(T) = ATA^{-1}$ for all $T \in \mathcal{L}(X)$.

2. X is reflexive and there is a bijective continuous mapping $B : X^* \to X$, either linear or conjugate linear, such that $\Phi(T) = BT^*B^{-1}$ for all $T \in \mathcal{L}(X)$.
For $T \in \mathcal{L}(X)$, we denote by $\mathcal{P}_n(T)$ the set of all the poles of order n of its resolvent.

Corollary

Let $\Phi : \mathcal{L}(X) \to \mathcal{L}(X)$ be an additive surjective map, and let $n \geq 2$ be an integer. Then $\mathcal{P}_n(\Phi(T)) = \mathcal{P}_n(T)$ for all $T \in \mathcal{L}(X)$ if and only if one of the following assertions holds:

1. There is a bijective continuous mapping $A : X \to X$, either linear or conjugate linear, such that

 $$\Phi(T) = ATA^{-1} \text{ for all } T \in \mathcal{L}(X).$$

For $T \in \mathcal{L}(X)$, we denote by $\mathcal{P}_n(T)$ the set of all the poles of order n of its resolvent.

Corollary

Let $\Phi : \mathcal{L}(X) \to \mathcal{L}(X)$ be an additive surjective map, and let $n \geq 2$ be an integer. Then $\mathcal{P}_n(\Phi(T)) = \mathcal{P}_n(T)$ for all $T \in \mathcal{L}(X)$ if and only if one of the following assertions holds:

1. There is a bijective continuous mapping $A : X \to X$, either linear or conjugate linear, such that

 $$\Phi(T) = ATA^{-1} \text{ for all } T \in \mathcal{L}(X).$$

2. X is reflexive and here is a bijective continuous mapping $B : X^* \to X$, either linear or conjugate linear, such that

 $$\Phi(T) = BT^*B^{-1} \text{ for all } T \in \mathcal{L}(X).$$