Solve any four of the following six problems. Please write carefully and give sufficient explanations.

Problem 1

For $1 \leq p \leq \infty$, let $l^p = L^p(\mathbb{N}, \mu)$ where μ denotes the counting measure. Hence l^p consists of sequences (x_n) such that $\|(x_n)\|_p = (\sum_{k=1}^{\infty} |x_n|^p)^{1/p} < \infty$ in case $1 \leq p < \infty$ and $\|(x_n)\|_\infty = \sup\{|x_n| \mid n \in \mathbb{N}\} < \infty$ in case $p = \infty$.

Let c_0 be the closed subspace of l^1 consisting of all sequences that converge to 0.

(a) Prove: If (y_n) is a sequence in l^1 and f is defined for (x_n) in c_0 by $f((x_n)) = \sum_{k=1}^{\infty} x_k y_k$, then f is a bounded linear functional on c_0 and $\|f\| = \|(y_n)\|_1$.

(b) Conclude that c_0^*, the dual space of c_0, and l^1 are isometrically isomorphic.

(c) Prove: Every sequence (y_n) in l^1 gives rise to a bounded linear functional on l^1 as in part (a).

However, there is a non-zero bounded linear functional on l^1 that vanishes on all of c_0.

Problem 2

Let $\{e_k \mid k \in \mathbb{N}\}$ and $\{f_k \mid k \in \mathbb{N}\}$ be two orthonormal bases of $L^2(0,1)$. Let $X = \text{span}\{e_k \mid k \in \mathbb{N}\}$, endowed with the L^2-norm. Hence X consists of finite linear combinations of the basis elements e_k.

Consider the linear operator $T : X \rightarrow L^2(0,1)$, defined by $Te_k = k f_k$, $k \in \mathbb{N}$.

Show that T is an unbounded, injective operator, that its inverse is bounded and that the range of T is dense in $L^2(0,1)$.

Problem 3

Let (f_n) be a sequence of real valued, integrable functions defined on a measurable subset of \mathbb{R}, denoted by E. Prove that, if $\sum_{n=1}^{\infty} \int_E |f_n| < \infty$ then $\sum_{n=1}^{\infty} f_n$ converges almost everywhere on E to an integrable function f and $\int_E f = \sum_{n=1}^{\infty} \int_E f_n$.

Problem 4

Let $[a, b]$ be a closed interval in \mathbb{R}. Denote by BV_0 the set of all functions of bounded variation on $[a, b]$ that vanish at a. For each function f on $[a, b]$, set $\|f\| = V_a^b f$ where V_a^b denotes total variation on $[a, b]$. Prove:

1. The product of two functions in BV_0 is in BV_0.
2. $\|f\| = V_a^b f$ defines a norm on BV_0.
3. A Cauchy sequence of functions in BV_0 converges to a function in BV_0.
Problem 5

Prove:
(a) If \(f \) is an integrable function defined on a measurable set \(E \subset \mathbb{R} \), then the set
\[
A = \{ x \in E : f(x) \neq 0 \}
\]
is \(\sigma \)-finite (i.e. it can be written as a countable union of measurable sets, each with finite measure).
(b) Suppose \(f \) and \(g \) are measurable functions on \(\mathbb{R} \). If \(\sqrt{f^2+g^2} \) is integrable then \(fg \) is integrable.

Problem 6

(a) Define what it means for a real function to be absolutely continuous on a closed interval \([a, b] \subset \mathbb{R}\).
(b) Let \(f \) be a continuous function on \([a, b]\) of bounded variation such that \(f \) is absolutely continuous on \([a, c]\) for all \(c \in (a, b) \). Prove that \(f \) is absolutely continuous on \([a, b]\).
(c) Let \(f \) be defined on \([0, 1]\) by \(f(x) = x^2 \sin(1/x^2) \) for \(x \neq 0 \) and \(f(0) = 0 \). Prove that \(f \) has finite derivative at every point. Is \(f \) absolutely continuous? Explain your answer.