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Abstract. Understanding the neural basis of working memory (WM) is critical 

to study of the higher level cognitive processes. The WM load and the conflu-

ence of related features can be used to characterize many cognitive processes 

and their limits. In particular, to study the neural correlates of visual working 

memory load, we recorded multichannel EEG during a visual WM task which 

varied in difficulty. A set of features extracted from the event-related potentials 

(ERPs) and event-related synchronization/desynchronization (ERS/ERD) were 

used to quantify changes in activation with increasing WM demands. To further 

our understanding of relationship between the stimuli and the underlying neural 

processes, Independent component analysis (ICA) was used on EEG data for 

spatial filtering. Common independent components across variation in task dif-

ficulties were then found by clustering the ICs and used to investigate changes 

in brain activity with increasing memory load.  It was observed that temporal 

properties of ERPs obtained from the independent components are highly dis-

tinguishable as opposed to traditional region of interest (ROI) approach. This 

result suggests that more representative neural correlates could be obtained by 

using this technique. 
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1 Introduction 

Working memory (WM) is considered a limited resource shared among a number 

of different higher-level cognitive functions (e.g., language, planning, problem-

solving). WM is a storage to maintain and manipulate the information during more 

complex mental functions [1]. Event-related potentials (ERP) and event-related 

desynchronization/synchronization (ERD/ERS) [2] are two well-established methods 

that can be used to understand cognitive processes via patterns of scalp-recorded brain 

activity [3]. Different waves of the temporal ERP signal including N100, P300, and 

late positive wave (LPW) have been shown to correlate with memory load [4], [5], 

[6]. Likewise, studies have shown that spectral measures (i.e., ERD/ERS) within dif-

ferent frequency bands show strong correspondence with WM load [7], [8]. 

In previous studies, neural correlates of WM have been investigated by comparing 

responses recorded at single electrode sites from localized regions of the brain [4], 

[7]. Although, previous studies have revealed the existence of spectro-temporal per-

turbations related to memory operation but very little effort has been made to apply 
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these correlates toward understanding their dynamics with changing memory load. 

Independent component analysis (ICA) is an unsupervised spatial filtering method 

which can also be used to separate different rhythmic EEG components, such as right- 

and left-hemispheric mu rhythms from EEG [9]. Here, we investigated changes in 

those ICs which were shared among different levels of difficulty during a WM task to 

understand the common sources of neural activity engaged by this cognitive process 

and how (also which of) these networks are modulated by task demands. Task diffi-

culty was parametrically manipulated by varying the amount of memory effort re-

quired to complete a visual WM task. It was predicted that neural activity (as meas-

ured by spectro-temporal features of the EEG) would vary monotonically with in-

creasing memory load and that neural responses would saturate beyond an individu-

al’s memory capacity limit (as measured behaviorally).  

2 Materials & Methods 

2.1 Subjects 

Ten healthy, right-handed [10] individuals (5 males, 5 females) participated in this 

study. Participants were between 24 and 33 years of age (M = 29.3, SD = 3). None 

reported any neurological disorders or were on medication. All participants gave in-

formed consent according to procedures approved by University of Memphis institu-

tional review board and were compensated for their time. 

2.2 Visual WM task and stimuli 

We adopted a modified version of the well-established Sternberg memory task 

[11]. On each trial, subjects briefly (500ms) observed a matrix consisting of different 

English characters positioned around a center point (“SET”; Fig. 1). The size of each 

character was 1.8°; they were distributed around a center fixation cross and within a 

visual angle of 4.5°. Array size varied randomly (2, 4, 6 or 8 items). After a 3s delay, 

a “TEST” character was shown in the center of the screen. Subjects responded via a 

button press to indicate if this character had occurred in the previous memory “SET”. 

On half the trials, the test item occurred in the set; the other half it did not. Subjects 

were encouraged to respond as accurately as possible and feedback was given via a 

colored light on the screen. The next trial was initiated after a 3.4 sec inter-stimulus 

interval. Following 20 practice trials for task familiarization, subjects completed 60 

experimental trials per set-size condition. 

 

Fig. 1. Time-course of the WM stimulus paradigm 



Subjects were seated inside an electro-acoustically shielded booth. They were in-

structed to avoid body movement and restrict their visual gaze during the task by 

fixating on the center of the screen.  The visual WM task was presented on a LCD 

monitor at a distance of 1 m. Length of single block of experiment was 14.4 min plus 

response time. A 5 min break time was given between conditions blocks. 

2.3 EEG Recording 

The continuous EEG was recorded from 64 sintered Ag/AgCl electrodes around 

the scalp at standard 10-20 locations (Neuroscan-Quik-cap). Electrodes placed on the 

outer canthi of the eyes and the superior and inferior orbit were used to monitor ocular 

activity. Data were digitized with a sampling rate of 500Hz and a filter passband from 

DC-250 Hz. Electrode impedance was maintained ≤5kΩ over the course of the exper-

iment. Neuroelectric data are presented with a common average reference (CAR). 

2.4 EEG Preprocessing and analysis 

EEG data were down-sampled to 250Hz, and base-line corrected by removing the 

average of each channel. Ocular artifacts (saccades and blink artifacts) were corrected 

in the EEG using a principal component analysis (PCA) [12]. Responses were then 

band-pass filtered from 1 to 45Hz for visualization and response quantification.  

ERP signals were computed by averaging over all trials with correct responses and 

baseline corrected in reference to a 200ms window prior to stimulus presentation. 

Likewise, event-related spectral perturbation (ERSP) responses were generated using 

the same set of trials and a 2-sec window prior to stimulus presentation as the refer-

ence period. Procedures to compute ERP, ERS/ERD and ERSP are thoroughly ex-

plained in [13], [2], [3]. 

2.5 Component Clustering 

In order to improve the clarity of activity signals, we performed ICA on the 

epoched EEG data. To avoid any pre-assumptions on how brain responds when the 

memory is overloaded or not, we considered each condition of the experiment as in-

dependent tasks. Trials corresponding to each memory set size were bundled together 

in separate datasets. ICA algorithm was performed yielding 64 independent compo-

nents (ICs) per dataset. We chose the maximum number of extractable components 

(64) to segregate independent activity signals with the highest precision available to 

us. Projection vectors corresponding to each IC were then extracted from the mixing 

matrix (
1W ). Another dataset consisting of all projection vectors were formed (256 

vectors from 4 datasets) and a clustering method was run on the dataset to find dis-

tinct clusters. We assumed that each of the 64 ICs represents a separate class of activi-

ty with roughly distinct projection vector. Moreover, the number of ICs which could 

be shared across the four tasks will be maximally equal to 64. We used the k-means 

clustering [14] to find the ICs with similar projection patterns. The number of sepa-

rate clusters was chosen as 64, equal to number of ICs for each task. 

By running the k-means algorithm on the dataset of projection weight vectors, we 

intended to cluster those activity signals that were projected to the electrodes with the 

same pattern across the various memory loads. We are only interested in those clus-



ters which represent common source activity modulated by WM demands. Thus, we 

focused on the common components appearing in all four set size conditions. As such, 

28 component clusters were found which contained components from all four condi-

tions. Fig. 2 shows the projection map of 10 of these components, which showed sig-

nificant changes across set-sizes, with the cluster’s centroid as the projection vector. 

Frequency bands for each subject were tuned in reference to their individual α-

frequency (IAF) [15]. IAF was considered as the frequency with maximum power 

within the α-band. The IAF was determined by analyzing a 2 min resting EEG record-

ing for each subject with eyes closed. θ-, α-, and β-frequency bands were then defined 

as [IAF-4 Hz to IAF-2 Hz], [IAF-2 Hz to IAF+2 Hz] and [IAF+2 Hz to 30 Hz], re-

spectively. Electrodes were grouped into 10 regions of interest (ROI) around the scalp 

(Fig. 3). 

 

Fig. 2. Scalp maps of 10 common independent components with increasing WM load. Warmer 

colors correspond to higher weights. 

 

In order to investigate whether WM load modulated 

responses over the encoding or maintenance period 

(Fig. 1), different features were defined from the EEG 

signal over the time course of the task: 

1. ERP magnitude: The difference between maximum 

positivity and negativity in the ERP signal, occurring 

from 50-700 ms after presentation of the stimulus ar-

ray (Fig. 4). 

2. Total θ ERD encoding: the sum of alpha ERD 

measured during the period in which the ERD signal 

was greater than ¼ of the maximum ERD. 

3. Total α ERD: the sum of alpha ERD measure over 

the encoding and maintenance period. 

Fig. 3. Division of electrodes into ROIs. 



4. Total β ERD of encoding: the sum of 

beta ERD measure during the period in 

which the ERD signal was greater than 

¼ of the maximum ERD. 

5. Total β ERD: the sum of beta ERD 

measure over the encoding and mainte-

nance period. 

6. Total θ ERD: the sum of theta ERD 

measure over the encoding and mainte-

nance period. 

3 Results 

Participants performed well in small set size conditions (2, 4 items); performance 

degraded precipitously with increasing set size (> 6 items). Mean (SD) response accu-

racy were 94.5 (4.4)%, 93.6 (4.4)%, 79.2(6.1)% and 66.8 (7.04)% for set sizes 2, 4, 6 

and 8, respectively. 

Within each EEG cluster, if multiple components from single condition existed, 

the component with the highest mean projected variance  was selected. We used re-

peated measures ANOVA to quantify the variability of the measurements across con-

ditions and subjects. Table-1 illustrates the components as well as electrode regions 

which showed significant (p<0.05) variation in the response feature across stimulus 

set sizes. Results from the ROI approach which has repeatedly been used in the study 

of memory load [4, 7, 8] were also included for comparison purposes. 

Table 1. Electrode ROIs /ICs with significant changes across stimulus conditions. 

Feature type ROI number IC number 

ERP magnitude 5
*
 2

* 
, 4

*** 
, 5

¤
, 6

* 
, 8

** 
, 9

¤ 
 

Total Encod. α ERD 1
*
, 5

*
, 7

¤ 
, 9

* 
, 10

**
 1

* 
, 5

* 
, 7

** 
, 8

* 
, 10

**
 

Total α ERD 5
* 
, 7

*** 
, 9

* 
, 10

*
 1

* 
, 3

* 
, 5

** 
, 7

* 
, 10

**
 

Total Encod. β ERD 7
* 
 1

* 
, 7

* 
, 10

*
 

Total β ERD - 3
* 
, 10

*
 

Total θ ERD 5
** 

, 7
** 

 1
* 
, 3

* 
, 8

* 
, 10

*
 

*p<0.05, **p<0.01, ***p<0.001, ¤p<0.0001 

 

It is clear from Table-1 that the features extracted from the ICs are far more dis-

tinctive than those obtained from the ROI approach, especially for the ERP magnitude 

feature. As an example, ERSP of the component cluster 1 is illustrated in Fig. 5. This 

figure shows a build-up of the response during the encoding period which extends 

with increasing memory load. The main activity in this component which exists in all 

three frequency bands (more dominant in α-band) beginning ~200ms after presenta-

tion of the “SET” array and extending up to 2400ms after the cessation of stimulus 

presentation. 

Fig. 4. ERP magnitude. t=0 represents the 

onset of presentation of the stimulus “SET”. 
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Fig. 5. ERSP comparison across conditions for component cluster 1 during the encoding and 

maintenance periods. Rows 1-4 illustrate the response to stimulus set-sizes 2, 4, 6 and 8 respec-

tively. The dotted line demarcates the cessation of the stimulus “SET” presentation.  

4 Discussion 

In this study, we examined the effect of memory load by comparing changes in 

spectro-temporal features of evoked brain activity during a visual WM task. The 

ERPs showed that neural activity in fronto-central areas covaried well with stimulus 

array set size and hence, task difficulty. Changes in the ERD α-power across condi-

tions were also observed during the encoding period of the visual stimuli particularly 

in postero-central locations. More posterior electrode locations also showed signifi-

cant changes in β- and θ -power during the encoding and maintenance period.  

In comparison, ICs of evoked brain activity revealed significant WM load-induced 

changes originated from source components 1, 3, 5, 7, 8 and 10 which spanned both 

fronto-central and postero-central networks (Fig. 2). Component time courses not 

only explain the recordings in each area but also provide a means to understand how 

their source networks are distributed spatially. Furthermore, this method also revealed 

task-relevant activity (e.g., θ-band ERD) in frontal regions otherwise unobservable in 

the conventional ERP averages. The trend of changes in almost all spectral features 

and all positions/components with high significance showed a steady increase be-

tween set-sizes 2, 4 and 6 but a decrease from 6 to 8. This non-monotonic nature of 

neural responses and parallel pattern in behavioral accuracy implies that subjects 

reached a cognitive overload after a set size ~6 items. Our electrophysiological results 

are also consistent with previous findings from EEG and fMRI studies [16], [7], [17]. 

While compared to traditional ROI analysis, the IC study delivers a much more accu-

rate spatial estimation (as compared to the ROI approach which divides the cortex 

area into a predefined number of regions) that preserves the spectro-temporal charac-

teristics of the activities. In addition, IC comparisons showed significant changes in β- 

and θ- bands in frontal and occipital regions unobservable in electrode ROIs 

measures.  

 



5 Conclusions 

Spatial filtering is an effective method for extraction of features with higher sensi-

tivity and robustness. In the current study, spatial filtering was used to separate differ-

ent components during each variation of the same task and the common components 

across the variations were then sought using an unsupervised clustering method. It 

was observed that ICA based spatial filtering offers a means to distinguish neurophys-

iological activity underlying cognitive processing with higher sensitivity than tradi-

tional EEG methodology. This work is an important step towards our future work in 

modeling the memory load from EEG signals. 
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