Preparation and Properties of Composites of Molybdenum Disulfide and Titanium Dioxide

Arjun Raj-White Station High School Mentors: Dr. Jingbiao Cui, Mr. Yunlang Cheng

Introduction

- A semiconductor is a kind of material with similar properties of both an insulator and conductor.
- •Molybdenum Disulfide is a 2-D Material with promising properties. Titanium Dioxide is a popular material used in modern electronics.

Focus of Study

The purpose is to observe and record the properties of composites of MoS2 and TiO2.

Experiment

1. Hydrothermal Method to Produce MoS₂

- •A solution of MoS3, Thioacetamide, Urea, and TiO2 is prepared in autoclaves and MoS2is synthesized via extreme heat.
- •The solutions are centrifuged in order to separate the MoS2 and TiO2 solution from other chemicals.

2. Subsequent Processing

- Substrates are made hydrophilic by a plasma generator. The solution of MoS2 and TiO2 is sprayed on the substrates.
- These substrates are now prepared for testing of various properties.

Materials Used in Experiment

Raman spectroscopy

- Used to analyze the components and structure of the substances by testing the chemical bonds of the atoms.
- Figures 1 shows the MoS2, and Figure 2 shows TiO2.

Figure 1- MosS2

SEM (Scanning Electron Microscope)

- Uses electrons instead of visible light to observe the surface of a sample.
- •Set 1 shows a series of images of a composite of MoS₂ and TiO2 on a silicon substrate.

Set 1-Various Views of Sample; Phenom Pure SEM was used

The Hall Effect

- •Electrons or ions in a sample of material that can move directed under a vertical magnetic field
- •Table 1 and 2 show the data collected from the Hall Effect.

Escopia HMS-3000

100n4	sampleI		mple2 sample	3 sample	sumple4	
	0	7,93E+03	7,948:03	5.330:05	2.306+04	
	150	2.09(+04	6.03(-03	2.156+04	1.09E+04	
	200	2.096+04	9,07(+03	2.85E+04	6,225:03	
	750	2.24E(06)	5. 71F+D4	7. 44F.+04	9.35E+04	

Table 1-Resitivity

100n,5	saplel	sample2	sample3	sample4
0	8, 26E+00	4, 95E+00	7, 11E-01	5,84E+00
150	2.72E+01	4,89E+00	5.07E+00	8, 03E+02
200	3, 56€±01	5, 296-01	9. 02E+00	2.17E+03
250	5, 49E+01	5.07E-01	1, 01E+01	2.09E+01

Table 2- Mobility

UV-Vis System

•Used to see absorbance of light by sample.

•The figures below show the absorbance of an annealed and unannealed sample, respectively.

- The properties demonstrated show promising semi conducive characteristics for this composite.
- Further testing is required to form a complete conclusion.

Bourzac, Katherine. "Molybdenum-Disulfide 2D Transistors." IEEE Spectrum: Technology, Engineering, and Science News. IEEE Spectrum. Stryker, Lori, B.Sc. "Titanium Dioxide." Natural Organic Make-up - Titanium Dioxide: Toxic or Safe? Organic Make-Up Company, n.d. "What Is Semiconductor? - Definition from WhatIs.com." WhatIs.com. N.p., n.d. Shanmugam, Mariyappan, Chris A. Durcan, and Bin Yu. "Layered Semiconductor Molybdenum Disulfide Nanomembrane Based Schottky-barrier Solar Cells." Nanoscale. The Royal Society of Chemistry, 03 Oct. 2012. "Molybdenum Disulfide as a Hydrogen Evolution Catalyst for Water Photodecomposition on Semiconductors." Molybdenum Disulfide as a Hydrogen Evolution Catalyst for Water Photodecomposition on Semiconductors - ScienceDirect, N.p., n.d.

Acknowledgments

I would like to thank Dr. Cui and Dr. Sabri for allowing me to participate in such a wonderful experience. I hope to continue researching more about semiconductors and nanotechnology. I would like to give a special thanks to Mr. Yunlang Cheng, who advised and explained every experiment and process we did. I could not have gotten anywhere without him. I hope to work with him in the future. I would like to also thank my parents for allowing me to do such a prestigious program.

