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Motivation for GEL Estimation: Consumption Based
Capital Asset Pricing Model (CCAPM)

Intertemporal optimization

Max
{ct+i}

E[
∑∞
i=0 δ

i
0U(ct+i)|It] subject to

ct +
∑N
j=1 pj,tqj,t = wt +

∑N
j=1 rj,tqj,t−mj

: budget constraint

0 ≤ δ0 ≤ 1: discount factor; It: info set

F.O.C. is given by the Euler equation

pj,tU
′(ct) = E[δ

mj

0 rj,t+mj
U ′(ct+mj

)|It]

⇒ value of utility lost by = E(discounted value of utility

foregoing consumption gained from consuming the

in period t to purchase return on investment in

1 unit of asset j period t+mj)



Motivation cont’d

CRRA: U(ct) =
c
1−γ0
t

1−γ0 (γ0: risk aversion parameter)

E[δ
mj

0 (
rj,t+mj

pj,t
)(
ct+mj

ct
)−γ0 |It]− 1 = 0

2 parameters to estimate: θ0 ≡ (δ0, γ0)

Let g(·, θ0) = δ
mj

0 (
rj,t+mj

pj,t
)(
ct+mj

ct
)−γ0 − 1

By iterated conditional expectation

E[g(·, θ0)zt] = E[[Eg(·, θ0)|It]zt]] = 0 for any zt ∈ It

E.g., zt =
rj,t

pj,t−mj
, ct
ct−mj

for j = 1, 2, · · · , N ;

and any macro/finance variable ∈ It



Motivation cont’d

j = 1 & mj = 1 ⇒ g(·, θ0) = δ0( rt+1

pt
)( ct+1

ct
)−γ0 − 1

⇒ θ0 ≡ (δ0, γ0)⇒ 2 parameters

zt = (1, ct
ct−1

, rt
pt−1

)′ ⇒ 3 moment conditions

E
[(
δ0( rt+1

pt
)( ct+1

ct
)−γ0 − 1

)(
1
)]

= 0

E
[(
δ0( rt+1

pt
)( ct+1

ct
)−γ0 − 1

)(
ct
ct−1

)]
= 0

E
[(
δ0( rt+1

pt
)( ct+1

ct
)−γ0 − 1

)(
rt
pt−1

)]
= 0

⇒ no. of moments, q = 3 > no. of parameters, p = 2
⇒ model over-identified



Estimation of Moment Condition Model: GMM & GEL

q < p ⇒ θ0 under- or un-ID; not consistently estimable

q ≥ p & Rank
[
E
(
∂g(·,θ0)
∂θ′

)]
= p ⇒ θ0 consistently estimable

q = p ⇒ Just (Exact) ID → MOM: sample moments = 0

i.e., gT (θ̂) = 1
T

∑T
t=1 gt(θ̂) = 0

q > p ⇒ Over-ID ⇒ gT (θ̂) 6= 0 → GMM: minimize generalized
distance of sample moments from zero

i.e., θ̂ = arg min
θ

gT (θ)′WT gT (θ)

WT : symmetric PD weighting matrix (distance metric)

Limitation of GMM: Biased estimators in finite samples

One of potential sources of bias: Estimated optimal WT



Estimation of Mom Cond Model: GMM & GEL cont’d

Question: Could there be an alternative to GMM

asymptotically equivalent to GMM, but

does not require WT ?

Answer: Yes, GEL



Existing Tests of Over-ID & Objective of My Paper

Existing tests [Smith (2011, Econometric Theory)]:

LM, LR, and S tests of over-id moment conditions in TS GEL
model

Have certain disadvantages

Objective of my paper:

Develop C(α)-type LM (LMλ) test of over-id moment conditions in
TS GEL model

Thereby counter such disadvantages



Motivation for C(α)-type LM (LMλ) Test

Disadvantages of LM, LR, and S tests: They require estimation
of GEL parameters, which

can be relatively difficult in nonlinear models
requires solution of a saddle-point problem
grows in complexity as p and/or q grow
therefore, computationally more involved
and hence, less appealing

C(α)-type LM (LMλ) test: Attractive alternative when model is
nonlinear

but
√
T -consistent estimators are relatively easily available

e.g., efficient 2SGMM or CUGMM, and one can, therefore,
take advantage of GEL implied probabilities w/o computing GEL
estimators
therefore, computationally less involved
and hence, more appealing



Contributions of C(α)-type LM (LMλ) Test Developed
in this Paper

Contributions of LMλ test

an attractive alternative and addition to the existing repertoire of
Smith’s LM, LR, and S tests of over-id moment conditions in TS
GEL model

possesses superior/competitive size property relative to that of
Smith’s LM, LR, and S tests as evidenced by the Monte Carlo
study completed thus far



Brief Mention of My 3 C(α)-type LM (LMα,LMw
α ,

and LMw
αβ) Tests of Sub-Vector of Parameters under

Strong & Weak ID in Time Series GEL Model
Developed in 3 other Papers

The 3 tests of sub-vector of parameters under S & W ID developed in
my 3 other papers are :

(i) LMα test: C(α)-type LM test of sub-vector α when both the
hypothesized sub-vector α and the nuisance parameter vector β
are S ID

(ii) LMw
α test: C(α)-type LM test of sub-vector α when the

hypothesized sub-vector α contains both W & S ID parameters
while the nuisance parameter vector β is S ID

(iii) LMw
αβ test: C(α)-type LM test of sub-vector α when both

the hypothesized sub-vector α and the nuisance parameter vector
β contain W & S ID parameters



Brief Overview of Time Series GEL Estimation

Let

{zt}∞t=1: l × 1 stationary strong mixing process

{zt}Tt=1: l × 1 random sample

θ: p× 1 unknown parameters

g(zt, θ) ≡ gt(θ) : q × 1 mom ind vectors, Borel funs

q ≥ p
E[g(zt, θ0)] = 0 (θ0 unique) ⇒ S ID of θ0

Note: Dependence structure in TS data →

Corr
[
g(zt, θ0), ∂g(zt,θ0)

∂θ′

]
: one source of bias in estimators

Question: How to remove this source of bias?



Brief Overview of Time Series GEL Estimation cont’d

Answer: Use kernel-smoothed gt(θ)

gtT (θ) = 1
ST

∑t−1
s=t−T κ( s

ST
)gt−s(θ)

κ(·): kernel fun

ST : bandwidth

Anatolyev [(2005), Econometrica]: shows

even when the moment indicator vectors are serially uncorrelated

but not IID across time

smoothing the moment indicator vectors using kernel functions
can reduce the bias



Brief Overview of Time Series GEL Estimation cont’d

To estimate θ, construct GEL criterion fun:

P̂ρ(θ, λ) =
∑T

t=1[ρ(κλ′gtT (θ))− ρ(0)]/T

ρ(v) : V → <; V: open interval in < containing zero

ρ(v): scalar fun, concave, C2 in N0

∂ρ(0)/∂v = ∂2ρ(0)/∂v2 = -1

κ = κ1/κ2; κj =
∫∞
−∞ κ(a)jda, j = 1, 2

ΛT (θ) = {λ ∈ <q : λ′gtT (θ) ∈ V}: Bounds on λ

3 common choices of ρ(v):

ρ(v) = −(1 + v)2/2, V = <: CU-GMM or EEL

ρ(v) = ln(1− v), V = (−∞, 1): EL

ρ(v) = −exp(v), V = <: ET



Brief Overview of Time Series GEL Estimation cont’d

GEL Estimator, θ̂GEL: Solution to saddle point problem

Inner Loop:

λ̂(θ) = arg sup
λ∈ΛT (θ)

P̂ρ(θ, λ)

= arg sup
λ∈ΛT (θ)

∑T
t=1[ρ(κλ′gtT (θ))− ρ(0)]/T

FOC: T−1
∑T

t=1 ρ1(kλ̂(θ)′gtT (θ))gtT (θ) = 0

Outer Loop:

θ̂GEL = arg min
θ∈Θ

P̂ρ(θ, λ̂(θ)) = arg min
θ∈Θ

sup
λ∈ΛT (θ)

P̂ρ(θ, λ)

FOC: T−1
∑T

t=1 ρ1(kλ̂(θ̂)′gtT (θ̂))∂gtT (θ̂)/∂θ′λ̂(θ̂) = 0



Brief Overview of Time Series GEL Estimation cont’d

If conditions on ρ(v) are satisfied, and

λ(θ) = arg sup
λ∈Λ̂T (θ)

P̂ρ(θ, λ) exists, then for t = 1, · · · , T ,

πt(θ̂, λ̂) = ρ1(κλ̂
′gtT (θ̂))∑T

t=1 ρ1(κλ̂
′gtT (θ̂))

: GEL implied probabilities

when pop mom condns hold, mom condns hold in sample

Potential Problem: Obtaining non-negative πt(θ̂, λ̂) requires

κλ̂′gtT (θ̂) be small uniformly in t; may not hold

Effective Solution: Use shrinkage estimator of Antoine, Bonnal &
Renault (2007, Journal of Econometrics):

π∗t (θ̂, λ̂) = 1
1+εT (θ̂,λ̂)

πt(θ̂, λ̂) + εT (θ̂,λ̂)

1+εT (θ̂,λ̂)
1
T

where εT (θ̂, λ̂) = −T min
[

min
1≤t≤T

πt(θ̂, λ̂), 0
]



Smith’s LM, LR, and S Tests of Over-ID Mom Conds

Let E[g(zt, θ0)] = 0 (θ0 unique) ⇒ Strong ID of θ0

g : q × 1

θ0 : p× 1

q > p ⇒ (q − p) Over-ID mom condns → Test of Over-ID

Duality: E[g(zt, θ0)] = 0 ⇔ λ = 0

Exploiting above duality, Smith (2011, Econometric Theory) tests

H0 : λ = 0 against Ha : λ 6= 0 by developing

LM = (T/S2
T )λ̂′Ω̂T (θ̂)λ̂

d→ χ2(q − p)

LR = 2(T/ST )P̂ρ(θ̂, λ̂)/(k21/k2)
d→ χ2(q − p)

S = T ĝT (θ̂)′Ω̂T (θ̂)−1ĝT (θ̂)/(k21)
d→ χ2(q − p)



My C(α)-type LM (LMλ) Test of Over-ID Mom Conds
Let

θ̂ :
√
T -consistent est of θ0, e.g., eff 2SGMM or CUGMM

Dλ(θ̂)
q×1

, Dθ(θ̂)
p×1

: score (gradient) w.r.t. λ and θ, respectively

D(θ̂)
(q+p)×(q+p)

=

( Dλλ(θ̂)
q×q

Dλθ(θ̂)
q×p

Dθλ(θ̂)
p×q

Dθθ(θ̂)
p×p

)
: Hessian w.r.t. λ and θ, or

matrix of outer product of scores

Then, for testing H0 : λ = 0 against Ha : λ 6= 0, my proposed

C(α)-type LM statistic:

LMλ(θ̂) = T
ST

κ2
κ21

(
Dλ(θ̂)−Dλθ(θ̂)Dθθ(θ̂)

−1Dθ(θ̂)
)′

×
(
Dλλ(θ̂)−Dλθ(θ̂)Dθθ(θ̂)

−1Dθλ(θ̂)
)−1

×
(
Dλ(θ̂)−Dλθ(θ̂)Dθθ(θ̂)

−1Dθ(θ̂)
)



Assumptions for Derivation of Limiting Distribution of

LMλ(θ̂) Statistic

Assumption 1. The process {zt}∞t=1 is a finite dimensional stationary
and strong mixing with mixing coefficients

∑∞
i=1 i

2α(i)(ν−1)/ν <∞ for
some ν > 1.

Assumption 2. (a) ST →∞ and ST = O(T
1
2
−η) for 1

6 < η < 1
2 ; (b)

k(.) : R → [−kmax, kmax], kmax <∞, k(0) 6= 0, k1 6= 0, and is continuous
at 0 and almost everywhere; (c)

∫
(−∞,∞) k(x)dx <∞; (d) |K(λ)| ≥ 0

∀λ ∈ R, where k(x) =
{ supy≥x|k(y)| if x ≥ 0
supy≤x|k(y)| if x < 0

and K(λ) = 1
2π

∫
k(x)e−iλxdx.



Assumptions for Derivation of Limiting Distribution of

LMλ(θ̂) Statistic cont’d

Assumption 3. (a) θ0 ∈ Θ is unique solution to E[gt(θ)] = 0; (b) Θ
is compact; (c) gt(θ) is continuous at each θ ∈ Θ with probability one;
(d) E[supθ∈Θ‖gt(θ)‖α] <∞, γ > max(4ν, 1

η );

(e) Ω(θ) = lim
T→∞

var[T 1/2ĝ(θ)] finite and p.d. ∀θ ∈ Θ.

Assumption 4. (a) ρ(v) : V → < scalar, concave, C2 ∈ N0, V open
int in < containing zero, ∂ρ(0)/∂v = ∂2ρ(0)/∂v2 = −1;
(b) λ ∈ ΛT = {λ : ‖λ‖ ≤ D(T/S2

T )−ζ}, D > 0 and 1
2γη < ζ < 1

2 .

Assumption 5. (a) θ0 ∈ int(Θ); (b) g(., θ) differentiable in Nθ0 and
E[supθ∈Nθ0‖∂gt(θ)/∂θ

′‖γ/(γ−1)] <∞; (c) rank(G) = p
where G = E[∂gt(θ0)/∂θ′].



Limiting Distribution of LMλ(θ̂) Statistic

Theorem 1 Let Assumptions 1-5 hold and let θ̂ be an efficient
2SGMM (therefore,

√
T -consistent) estimator of θ0, based on

kernel-smoothed moment indicator vectors. Then, under H0 : λ = 0,

LMλ(θ̂)
d→ χ2

q−p.

Reject H0 in favor of Ha at level α if LMλ(θ̂) > χ2
q−p, 1−α, where

χ2
q−p, 1−α is (1− α)-th quantile of χ2 dist with q − p d.f.



Monte Carlo Study of Size Property of LM, LR, S,
and LMλ Tests

Objective of Monte Carlo Study:

Investigate: size property of tests using

EL as representative of GEL class

10,000 Monte Carlo replications

truncated κ(·)

implied probabilities

Monte Carlo Design:

Simple Linear IV Model based on

stationary TS data

w/ structural form errors and instruments as AR(1) processes

w/o exogenous variables in structural equation



Monte Carlo Design of LM, LR, S, and LMλ Tests
cont’d

DGP:

• yt = αx1t + βx2t + ut, ut = ρuut−1 + εut

• xt = (x1t, x2t)
′ = πzt + εxt, zt = ρzIqzt−1 + εzt

(t = 1, · · · , T )

zt drawn independently of ut and εxt

α0 = 0 and β0 = 1

q = 4

π =

(
π11 π12 π13 π14

π21 π22 π23 π24

)
=

(
1 −1 1 −1
1 1 1 1

)



Monte Carlo Design of LM, LR, S, and LMλ Tests
cont’d

ρu = ρz = 0.9

(
εut
εxt

)
=

 εut
εx1t
εx2t

 ∼ N
0,

 1 0.8 0.8
0.8 1 0.3
0.8 0.3 1


εzt ∼ N(0, I4)

T ∈ {50, 100, 200, 500}

ST ∈ {1, 2, · · · , 35}



Monte Carlo Results of Size Property of LM, LR, S,
and LMλ Tests

Results:

Report P value plots in Figs 1-20

Horizontal axis: probability values; Vertical axis: actual sizes of
test statistic

If P value plot lies close to 45◦ line, then it indicates hypothesis
under test rejected approx correct proportion of time

⇒ finite sample behavior of test stat well approx by its limiting
dist

Figs 1-12: P value plots of Smith’s LM, LR, and S stats



Monte Carlo Results of Size Property of LM, LR, S,
and LMλ Tests cont’d

Results cont’d:

Their inspection reveals: For all sample sizes and bandwidths
considered, all 3 tests, i.e., LM, LR, and S, are oversized

However, they exhibit the desirable pattern that increase in sample
size along with concomitant increase in bandwidth makes them less
and less oversized

E.g., plots for T = 200 and ST ∈ {6, · · · , 10} are closer to 45◦ line
than those for T = 100 and ST ∈ {6, · · · , 10}, and plots for T = 500
and ST ∈ {11, · · · , 15} are even closer to 45◦ line than those for T
= 200 and ST ∈ {6, · · · , 10}

⇒ for larger sample size and concomitant larger bandwidth, quality
of asy approx to finite sample behavior of LM, LR, and S stats
becomes more satisfactory



Monte Carlo Results of Size Property of LM, LR, S,
and LMλ Tests cont’d/ Conclusion

Results cont’d:

Figs 13-16 and Figs 17-20: P value plots of my LMλ stat for
testing Over-ID mom condns under same parameter configurations
as for Smith’s LM, LR, and S stats

Difference between settings in Figs 13-16 and Figs 17-20: In Figs
13-16 eff info obtained from Hessian, while that in Figs 17-20
obtained from OP of scores

Inspection of Figs 13-16 and Figs 17-20 reveals: For all sample
sizes and bandwidths considered, P value plots of my LMλ stat lie
closer to 45◦ line than those of Smith’s LM, LR, and S stats.
Particularly at smaller prob values (thus more relevant for
hypothesis testing)
⇒ Conclusion: LMλ test enjoys superior/competitive size
property relative to that of Smith’s LM, LR, and S tests



Further Work To Do

Further Monte Carlo study to investigate:

Power property of LM, LR, S, and LMλ tests

Sensitivity of size and power properties of LM, LR, S, and LMλ

tests to other choices of

kernel functions

autoregressive parameters, and

length of instrument vectors



Thank You!
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