Predicting Fine-Grained Crime Types using Social Media

Deepak Venugopal
Assistant professor
Department of Computer Science
University of Memphis
Partying in downtown!

Depressed about grades

Demonstration on 5th street
I Hate XXXxxx

School party

Afraid to go to school

Noisy neighbors can’t concentrate!!
Partying in downtown!

Depressed about grades

Demonstration on 5th street

School party

I Hate XXXxxx

Afraid to go to school

Noisy neighbors can’t concentrate!!

Signals of potential crime events
Partying in downtown!

Depressed about grades

Demonstration on 5th street

I Hate XXXxxx

School party

Afraid to go to school

Noisy neighbors can’t concentrate!!

Research Challenge: Can we predict fine-grained, potential criminal activity in real-time from tweets?
Twitter-based Model

• Collect a tweet corpus offline and annotate it with the following categories
 • Violent Crime
 • Racism
 • Fraud
 • Narcotics
Twitter-based Model

• Collect a tweet corpus offline and annotate it with the following categories
 • Violent Crime
 • Racism
 • Fraud
 • Narcotics

• Pre-process tweet text (lots of noise)
Twitter-based Model

• Collect a tweet corpus offline and annotate it with the following categories
 • Violent Crime
 • Racism
 • Fraud
 • Narcotics

• Pre-process tweet text (lots of noise)

• Learn a Machine learning model from features obtained from processed tweets to distinguish between crime categories

• Capture live tweets and predict crime categories based on learned model
Implementation

• Implemented on top of Amazon cloud services
• Spark streaming to process thousands of tweets quickly in a cluster environment
Implementation

• Implemented on top of Amazon cloud services
• Spark streaming to process thousands of tweets quickly in a cluster environment
• Use a filter to look only for tweets that suggest potential criminal activity
• Detailed visualization dashboards to explain prediction results in real-time
Challenges

• Twitter data is very noisy
Challenges

• Twitter data is very noisy
• Twitter allows users access to a miniscule percent of their tweets
Challenges

• Twitter data is very noisy
• Twitter allows users access to a miniscule percent of their tweets
• Among these tweets, those relevant to crime are even fewer
Challenges

• Twitter data is very noisy
• Twitter allows users access to a miniscule percent of their tweets
• Among these tweets, those relevant to crime are even fewer
• Among the crime-relevant tweets, very few are specific to a geo-location
 • Geo-tags are generally empty in most tweets
• In short, very hard to get reliable signals for specific geo-locations from twitter content alone
Can we use more reliable data?

• Utilize Memphis specific data from Bluecrush
 • Incidents recorded along with type of incident and date
Can we use more reliable data?

• Utilize Memphis specific data from Bluecrush
 • Incidents recorded along with type of incident and date

• Developed a Hidden Markov Model
 • Latent crime states
 • Observable crime events (7 types of crime)
Can we use more reliable data?

• Utilize Memphis specific data from Bluecrush
 • Incidents recorded along with type of incident and date

• Developed a Hidden Markov Model
 • Latent crime states
 • Observable crime events (7 types of crime)

• Predict future incidents from the HMM
 • Different granularity levels (by zipcode, precinct zone, etc.)
HMM-based predictions

• Can be tailored to specific geo-locations
 • More reliable signals
HMM-based predictions

• Can be tailored to specific geo-locations
 • More reliable signals

• Not a real-time model
 • Incidents must be recorded and published
 • Need to update model with new incidents

• Augment the Twitter model
 • Combine the models systematically (ongoing work)
Results

• 5000 tweet training corpus collected and annotated
• Several Machine learning methods evaluated
 • Support Vector Machines with Linear Kernels work best
 • Around 88% weighted F1-score using 5-fold cross validation
• Scalable to process thousands of tweets in real-time
• Real-time visualizations of predictions
Example visualization dashboards (updated in real-time)
HMM Model

• Collected data recorded over a two month period
• Predict specific crime types for the last 10 days in the collected period
• Error rate of around 12 – 15% on average
 • Shows promise in modeling based on recorded instances
• Granularity affects performance
 • Merge/Split incidents based on zip-codes
 • Split by wards/precinct-zones, etc.
Future work

• Combine the HMM and Twitter model
 • The twitter model may not be particularly sensitive to geo-location
 • The HMM model is much more specific

• Advanced linguistic features from neural embeddings using non-annotated data
 • The duck tacos were delicious and the chocolate fondant with jalapeños and lime cream to die for
 • I made a killing from the Apple stocks today!!!
 • Whoever said head wounds bleed the most never skinned his shin while shaving!!

• Look for more events in specific tweets
 • Follow specific local individuals or organizations
Acknowledgements

• Several students
 • Saichand Upputuri (MS Summer 2017)
 • Lindsey Warren (BS Fall 2017)
 • Chris Kent (ongoing)