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Abstract: Glucose monitoring technologies allow users to monitor glycemic fluctuations (e.g., blood
glucose levels). This is particularly important for individuals who have diabetes mellitus (DM).
Traditional self-monitoring blood glucose (SMBG) devices require the user to prick their finger and
extract a blood drop to measure the blood glucose based on chemical reactions with the blood. Unlike
traditional glucometer devices, noninvasive continuous glucose monitoring (NICGM) devices aim to
solve these issues by consistently monitoring users’ blood glucose levels (BGLs) without invasively
acquiring a sample. In this work, we investigated the feasibility of a novel approach to NICGM using
multiple off-the-shelf wearable sensors and learning-based models (i.e., machine learning) to predict
blood glucose. Two datasets were used for this study: (1) the OhioT1DM dataset, provided by the
Ohio University; and (2) the UofM dataset, created by our research team. The UofM dataset consists
of fourteen features provided by six sensors for studying possible relationships between glucose
and noninvasive biometric measurements. Both datasets are passed through a machine learning
(ML) pipeline that tests linear and nonlinear models to predict BGLs from the set of noninvasive
features. The results of this pilot study show that the combination of fourteen noninvasive biometric
measurements with ML algorithms could lead to accurate BGL predictions within the clinical range;
however, a larger dataset is required to make conclusions about the feasibility of this approach.

Keywords: blood glucose self-monitoring; diabetes mellitus; hyperglycemia; machine learning;
noninvasive; glucose; continuous monitoring

1. Introduction

Diabetes mellitus, colloquially known as diabetes, has been estimated to affect 450 million
people in the global population [1]. This condition is characterized by abnormal levels of
blood sugar. The National Diabetes Data Group (NDDG) identifies three main types of
diabetes: type 1, type 2, and gestational diabetes [2]. Type 1 diabetes, formerly known as
juvenile diabetes, is an autoimmune disorder due to the pancreas’s inability to produce
enough, or any, insulin. An individual who has this condition must undergo daily insulin
therapy via insulin injections or an insulin pump. If insulin levels are too low, the result will
be that the blood glucose levels (BGLs) will be too high, which is known as hyperglycemia.
If too much insulin is administered, this will cause the BGL to be too low, which is known as
hypoglycemia. Type 2 diabetes, also known as adult-onset diabetes and the most prevalent
of the three, frequently causes hyperglycemia due to insulin resistance. In other words, the
body builds a tolerance to insulin and can no longer adequately process it [2]. The third
type of diabetes, gestational diabetes, occurs when hormones from the placenta reduce the
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production of insulin in the mother’s body. Although this condition is usually not chronic,
it can affect both the mother and baby’s health. Aside from these three types of diabetes
mentioned, the NDDG also states several “impaired glucose intolerance” disorders can
result in symptomatic and asymptomatic individuals.

Diabetes may result in the development of secondary complications that can be life-
threatening, such as cardiovascular disease and renal failure. Other less severe secondary
complications related to diabetes include nerve damage, ketosis, and various skin condi-
tions. All the above complications dramatically affect the quality of life of patients who
have diabetes. Accurately being able to measure blood glucose is an essential step in the
healthcare of diabetes patients.

Traditional glucometers fall within a family of devices that utilize enzymatic reactions
to produce electrical signals readable using the meter. These enzymatic reactions are
glucose oxidase, glucose dehydrogenase, and hexokinase. The hexokinase method is the
de facto gold standard for its high specificity [3]. Practically, this home-monitoring (e.g.,
self-monitoring) approach, which requires a drop of blood, leads to poor monitoring habits,
resulting in few measurements per day (i.e., three to seven samples per day), and providing
a brief glimpse of blood glucose. Several methods have been proposed to improve the
sampling rate of traditional self-monitoring techniques and overcome their inconveniences.

Some of these methodologies have even developed as commercial devices. For ex-
ample, the Glucose Oxidase Needle (GON) approach is also an enzyme-based sensor like
the traditional glucometers in which users must insert an enzyme-doped platinum needle
into their subcutaneous tissue to estimate their blood glucose [4] from the interstitial fluid
(ISF). The main difference between the traditional glucometers and GON-based devices is
that the sampling rate has been increased by measuring the blood glucose automatically
every 15 min [4]. In addition, users have access to their data via a smartphone application.
This approach is considered minimally invasive since the platinum needle is small and the
depth at which it is placed is shallow. Therefore, these GON-based devices are currently
considered continuous glucose monitoring (CGM) devices. The Dexcom G5 and Abbot’s
Freestyle Libre II devices are two commercial products based on this GON approach. The
sensors’ lifespan in these commercial devices is limited, needing to be replaced every
two weeks. The need to continually purchase these sensors makes the accessibility of these
commercial devices difficult for users from low-income households.

In 2020, Huang et al. reviewed devices based on electrical impedance spectroscopy
(EIS), which relies on implementing capacitance sensing via interdigital sensors, to provide
a more accessible approach with reduced e-waste [5]. Those interdigital sensors (also
known as fringing field sensors) measure the equivalent impedance of the subcutaneous
tissue at frequencies higher than 200 kHz when electromagnetic fields cross the human skin.
Although the impedance has been shown to be well correlated with the amount of glucose
concentration in the ISF of the skin [6], the accuracy of those devices is highly sensitive
to the magnitude of the electromagnetic field. Caduff’s research group, who was an early
adopter of this EIS approach, developed the commercial PENDRA product [6] which
utilized capacitive sensors to estimate the blood glucose from the measured impedance
of human skin. Despite the great potential of this device to become the first commercial
noninvasive continuous monitor (NICGM) device, it ultimately failed in the market due
to its poor performance in real-world settings (i.e., it only successfully estimated the BGL
of two-thirds of users). Moreover, the PENDRA device required a complex calibration
procedure that had to be performed by a team of healthcare professionals [7]. To increase
the applicability of the PENDRA device, in 2015, Caduff’s research team proposed the
integration of multiple impedance spectroscopy sensors into a single device [8]. Another
similar approach to the EIS-based devices are the microwave planar resonant glucose
sensors [9-11]. These devices, classified into frequency-based, Qu-based, insertion/return
loss-based, and phase-based sensors, rely on measuring the dielectric properties of the
skin using resonant methods. Although these sensors are under further development to
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improve sensitivity, there is potential promise by integrating active circuitry and machine
learning techniques.

Another noninvasive approach to estimating blood glucose is metabolic heat confor-
mation (MHC). This technique takes advantage of the fact that most of the heat generated
by the human body is a result of the cellular process that converts glucose into energy [12].
This heat is then dispersed into the surrounding environment in the form of convection,
evaporation, and radiation. Within the MHC technique, blood glucose is estimated based
on ambient information (i.e., temperature and humidity), hemoglobin concentration, oxy-
hemoglobin concentration, and blood flow rate. These latter features can be measured from
the fingertips of users’ hands using an optical multiwavelength spectrometer [12]. The
main drawbacks of this approach are its high sensitivity to environmental factors and the
poor sampling rate due to current implementations do not allow continuous measurements.
Nonetheless, it is important to highlight the fact that optical approaches have garnered a
great deal of attention in estimating blood glucose. Most of these optical approaches are
focused on infrared (IR) [5], mid-infrared (mid-IR) [13,14], and near-infrared (near-IR) [15]
spectroscopy. The tradeoff between these three spectroscopic techniques is the penetration
depth versus the glucose absorption.

To finalize the discussion of current noninvasive methods to estimate blood glucose, we
would like to describe a multimodal approach implemented in the GlucoTrack device [16].
This device integrates three different techniques (i.e., ultrasonic, electromagnetic, and
thermal) for the noninvasive estimation of the BGL from the user’s earlobe. The ultrasonic
sensor measures the speed that an acoustic wave travels through the user’s earlobe. The
electromagnetic sensor provides an equivalent measurement of the skin impedance, like
the EIS approach. Finally, the thermal approach applies a known amount of energy for a
predetermined period and obtains the heat transfer characteristics of the tissue, like the
MHC approach. Although none of these techniques directly measure the BGL, a strong
correlation has been shown to exist between the individual measurement characteristics and
the BGL in the earlobes’ tissue [16]. Whereas the procedure for users to use the GlucoTrack
device is quite simple (i.e., simple attachment of the sensor clip onto their earlobe), this
device still does not provide continuous measurements due to the impracticality of wearing
this earlobe clip during the day, hampering its commercial adoption.

In this work, we investigate a synergistic approach to accurately predict BGLs by com-
bining noninvasive biometrics measurements with machine learning (ML) algorithms. The
proposed multimodal approach integrates optical, electromagnetic, and thermal techniques
to measure up to 14 features. The investigated noninvasive features include heart rate
(HR), skin temperature (STEM), heat flux (HF), electrodermal activity (EDA, also known as
galvanic skin response, i.e., GSR), pulse oximetry (SpO2), systolic (5YS) and diastolic (DIAS)
blood pressures, ambient temperature (aTEM), and ambient humidity (aHUM). We chose
these features because they have been shown to perform well in predicting BGLs or have a
moderate correlation with blood sugar, and their respective sensors can be implemented in
a smartwatch-like wearable device [16,17], enabling continuous measurements during the
day and a rapid commercial adoption. This pilot study aims to test different combinations
of noninvasive features and ML algorithms and quantify their performance in predicting
an individual’s blood glucose. We used two datasets to evaluate the combination of nonin-
vasive features and ML algorithms to estimate accurate blood glucose values. The selected
machine learning algorithms for this study fall under the category of regression algorithms.
Among the different regression algorithms, we tested the performance of linear regression
(LR), Support Vector Regression (SVR), K Nearest Neighbors Regression (KNN), Decision
Trees Regression (DTR), bagging trees regression (BTR), Random Forest Regression (RFR),
Gaussian process regression (GPR), and Multi-layer Perceptron Regression (MLP). All these
models are popularly used in the data science community.
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2. Materials and Methods

This section discusses the methodology employed during this study. This study
limited its scope to two datasets. The first dataset is from the “OhioT1DM Dataset for Blood
Glucose Level Prediction” (also known as the Ohio Dataset) [18]. Our research team from
the University of Memphis created the second dataset (i.e., the UofM Dataset) using off-the-
shelf noninvasive sensors to ensure the quality of measurements and ease of data collection.
These sensors were calibrated by each manufacturer. To the best of our knowledge, there
are no public datasets to predict blood glucose using a multimodal, noninvasive wearable
feature. In this section, we also describe the procedure used to process the datasets. Finally,
we discuss the ML modeling techniques and the metrics used to compare them in detail.

2.1. Selection of Multimodal Noninvasive Features

This study focuses on investigating and evaluating noninvasive features collected
via wristband-like devices to estimate accurate blood glucose values. Features were se-
lected based on the MHC technique and the multimodal approach implemented in the
commercial earlobe clip (e.g., GlucoTrack). Features already collected by some commercial
smartwatches and wristbands were also considered during the selection of biometric pa-
rameters. The manufacturer and model of each wristband are specified within parenthesis
(i.e., manufacturer, model). For example, the wristband used in the OhioT1DM (Basis
Peak) measures the galvanic skin response (GSR), skin temperature, air temperature, and
heart rate. Similarly, we chose the E4 wristband (Empatica, E4) which offers real-time
physiological measurements, combining EDA and photoplethysmography (PPG) sensors
that enable the simultaneous measurement of heart rate and the sympathetic nervous
system. This device contains an EDA sensor, similar to the GSR sensor, and a PPG sensor
that provides information about heart rate. The PPG sensor in the E4 device also measures
heart rate variability via the inter-beat interval and blood volume pressure, which are well
correlated to blood glucose [19-22]. The E4 wristband also measures skin temperature. The
features present in the MHC approach are the skin temperature, the heat flux, the skin
humidity, and the ambient humidity and temperature. Apart from these wristbands, we
chose additional sensors to increase the number of features in this study. The commercial
sensors selected were: (1) the heat flux sensor (greenTEG, g-Skin); (2) the skin moisture
sensor (Delfin, MoistureMeterD); (3) the pulse oximeter (Viatom, Checkme O2); (4) the
upper arm blood pressure monitor (Omron, 3 Series) to measure the systolic and diastolic
blood pressures; and finally (5) the ambient humidity and temperature sensor (Adafruit,
DHT11). The pulse oximeter also provided additional features such as heart rate and
motion (e.g., a unitless magnitude that quantifies the amount of movement). The features
that these sensors provide are shown in Figure 1 for both datasets. Figure 1b shows that
several sensors provide the same feature. For example, the heart rate was measured using
the E4 wristband, the Checkme O2, and the Omron.

The datasets used in this study averaged the individual heart rate inputs to generate a
single value with a higher signal-to-noise ratio. These features have been reported in the
literature to be correlated with blood sugar levels [12,17-22]. Most of the selected features in
this study were heavily inspired by the metabolic heat confirmation (MHC), which relates
the metabolic heat, the local oxygen supply, and the glucose concentration [12]. In contrast
to previously reported MHC-based devices, to estimate blood glucose concentrations from
a person’s fingertip [12] or earlobe [17], we selected the sensors that provide these features
in a smartwatch-like wearable device.
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Figure 1. Sensors and their features for the (a) OhioT1DM and (b) UofM datasets.

2.2. OhioT1DM and UofM Dataset
2.2.1. OhioT1DM

The OhioT1DM dataset was collected by researchers at Ohio University in 2018 and
2020. The data user agreement of this dataset allows it to be used for research purposes.
The dataset contains eight weeks of data for six patients per year (e.g., a total of twelve
participants within the two years). In this dataset, all patients have type 1 diabetes. The
patients in the OhioT1DM dataset wore Medtronic 530G or 630G insulin pumps and used
Medtronic Enlite CGM sensors throughout the data collection period. Additionally, the
dataset includes noninvasive features from the Empatica Embrace (2020) or Basis Peak
(2018). Since the Empatica Embrace band device used in the dataset from 2020 did not
measure the heart rate, we focused our evaluation using only the first 6 participant datasets
from 2018. A comprehensive list of all features can be found in [18]. Due to the scope and
purpose of this study, we only selected the features that could be collected via a wristband-
like device (i.e., noninvasive features): GSR, skin temperature, air temperature, and heart
rate. Figure 1a shows the features and the sensors used in the OhioT1DM dataset.

Some preliminary preprocessing was performed on the OhioT1DM dataset to remove
apparent outliers. Outliers were defined as those values that span beyond the likely domain
for each feature. Samples with features falling to zero or below were removed, as this
would indicate bad sensor to skin contact. Then, features were matched by time signatures.
Since the values were continuous and had different sampling rates, down-sampling was
performed on those features with excess samples by rounding their time signatures to the
nearest minute and averaging all values with the same time signatures. Then, we selected
the instances in which the individual features had the same time signature as the target
glucose values. Before splitting into training and testing sets, the preprocessed OhioT1DM
dataset has approximately twelve thousand samples per subject. Each individual’s dataset
was fed through a machine learning pipeline, which automatically tests several ML models
and scaling methods. The description of the pipeline is provided in Section 2.3.

2.2.2. UoftM

As we show in the results’ section, there is a need for a dataset containing more features
to predict accurate blood glucose concentrations within the clinical range. For this reason, a
custom dataset (e.g., UofM dataset) was created using an array of sensors. Figure 1b shows
the features and the sensors used in the UofM dataset. The Freestyle Libre 2 was used as the
target glucose sensor for this dataset. This CGM device provides automatic glucose values
at a sampling frequency of 15 min. However, manual measurements are also allowed for
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up to a maximum sampling frequency of once per minute. Glucose measurements are then
stored in the ancillary data logger or a compatible phone application.

The UofM dataset contains data from two participants with normal ranges of glucose
values (e.g., people without diabetes). Both participants had similar characteristics; they
were Caucasian males in their late 30 s with an average weight and height of 91 kg and
185 cm, approximately. A procedure for the data collection process was defined as follows
to create fluctuations in blood sugar: Datasets were collected for 7 h, sampling the target
glucose concentration every 5 min. This 5 min sampling frequency led to approximately
84 samples for two test subjects. The night before the data collection, subjects were asked
to fast for a minimum of 8 h. Breakfast was administered in the first 90 min of the data
collection. Then, the subjects were asked to exercise for 60 min at low intensity (e.g., heart
rate at 160% of their resting heart rate). Then, the subject increased the intensity level to
175% of their resting heart rate (a high-intensity exercise) for another 30 min. This exercise
period aimed to drop the subject’s blood sugar after breakfast dramatically. Next, lunch was
administered, and subjects were asked to sit idly for 90 min. Two thermal challenges were
simulated to test the sensor’s accuracy under different conditions. In the first 30 min of the
thermal challenge, the subjects were placed in hot temperatures and under direct sunlight
for 30 min. The temperature for this thermal challenge was kept above 26.6 degrees Celsius
(79 F). During the second 30 min portion of the thermal challenge, the subject sat in a room
where the temperature did not exceed 21 degrees Celsius (70 F). Finally, the test subjects
rested for 90 min in idle sitting positions.

The preprocessing procedure of this dataset was like the one applied to the OhioT1DM
dataset. Again, each sensor/feature presented a different sampling rate. Therefore, firstly,
the data points for each feature were downsampled to match the sampling rate of the target
glucose variable. Next, we rounded their time signature to the nearest minute for each
feature. Then, all the instances with equal time signatures were averaged. Finally, we only
kept those instances with the same time signature as the target variable. After the dataset
had been matched by the time, outliers were removed. The most apparent outliers are
those that fall outside the domain that is expected for the feature in question. Samples with
features such as ambient temperature, ambient humidity, skin moisture, and pulse oximetry
were removed if they fell outside the range of 0-100%. These wrong measurements from
the sensors could result from a user error during data collection. After the preprocessing
procedure, the UofM dataset consisted of roughly 80 samples per subject.

2.3. Regression Algorithms

We tested multiple machine learning algorithms on both the OhioT1DM and UofM
dataset. A pipeline script was created in the Python programming language to evaluate
multiple algorithms efficiently. The core toolboxes used were the popular machine learning
toolbox SciKit-Learn (also known as sklearn) [23] and some other auxiliary toolboxes such
as Pandas [24,25], NumPy [26], and Matplotlib [27]. The pipeline also tests a few different
scaling methods to see if it affects the performance significantly. All models used fall
under the broader category of supervised learning algorithms in the family of Artificial
Intelligence. The machine learning models are listed below with descriptions informed by
the SciKit-Learn website [23]: Linear Regression (LR), Support Vector Regression (SVR),
K Nearest Neighbors Regression (KNN), Decision Trees Regression (DTR), bagging trees
regression (BTR), Random Forest Regression (RFR), Gaussian process regression (GPR),
and Multi-layer Perceptron Regression (MLP or NNR).

The implementation of linear regression used is the Ordinary Least Squares [28] (OLS)
method. This model is considered univariate multiple regression as it has a single target
variable and multiple predictor variables. The OLS model attempts to fit a linear model
by iteratively adjusting the coefficient and intercept of the equation by minimizing the
residual sum of squares (i.e., the cost/objective function). This is the simplest of all the
models and would only be expected to perform well if there is a high correlation between
some (or all) of the predictors and the target variable.
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The SVR model is a generalization of Support Vector Machines [29] used for classifica-
tion purposes. The model produced by the SVR model only depends on a subset of the
training data since the model cost function ignores values whose prediction is close to the
target. This model also supports several different kernel types used in the algorithm, which
can fit both linear and nonlinear relationships.

The K Nearest Neighbors (KNN) regression [30] model is another case where a classifi-
cation algorithm is generalized for regression applications. Rather than just taking discrete
variables as class labels for input, this method can fit continuous variables. The predictions
are based on interpolation performed by the model after fitting a training set.

Similar to KNN, the Gaussian process regression (GPR) model [31] interpolates ob-
servations to generalize into a regression algorithm. The benefit of GPR models is that
they also return empirical confidence intervals for each prediction, providing quantitative
information about the projections. This quantitative information may lead to models that
can be further refit in some regions of the dataset. GPR models are also very versatile since
they can implement several kernels. However, they are not considered sparse models like
ensemble trees [32].

Decision trees [33], otherwise known as Classification and Regression Trees, can be
visualized as trees of if-else statements whose branches are decisions formed by previous
experience. This model is a powerful regression algorithm that perfectly fits an arbitrary
dataset. Nonetheless, they are heavily prone to overfitting; thereby its results should be
viewed as optimistic unless thoroughly validated.

Bagging trees regression (BTR) [33,34] is an ensemble method created from a collection
of decision trees. This method takes a random subset of samples from each feature to train
the statistical black box estimator, reducing the variance inherent in simple decision trees.
This approach is what makes this model a sparse one. By injecting some randomness into
the process, BTR becomes more robust to high variance and, therefore, less prone to overfit-
ting than regular decision trees. BIR results in much larger and more complex models that
cannot be easily understood and are quite indeterministic because of the randomness.

The Random Forests Regression (RFR) [35,36] model is a sparse ensemble model
created from a collection of decision trees. Like BTR, this method employs randomness to
combat overfitting. The difference between BTR and RFR models is that the RFR model
takes a random number of samples from a random subset of features instead of using all
features to create the random subset of samples. This difference makes the RFR model even
more robust to high variance and overfitting since not all features are used to train any tree.

Finally, the Multi-layer Perceptron (MLP) regression [35] model is a specific case of
the neural network family that implements regression analysis via a feed-forward neural
network. Neural networks are known to fit any arbitrary decision boundary, not being
limited to a linear relationship. The term MLP refers to an Artificial Neural Network that is
feedforward and uses a nonlinear activation function at each neuron but the input node.

Since many of these evaluated algorithms tend to overfit, the trained models were
tested using unseen data (e.g., a testing dataset). Figure 2 shows the steps implemented
in our pipeline. Note that scaling should be performed after splitting the dataset into the
training and testing sets to avoid data leakage. The dataset was split randomly by 75%
of the instances for the training dataset and 25% of the instances for the testing dataset.
Additionally, the testing dataset should be scaled using the mean and standard deviation of
the training dataset. A validation method was also needed to avoid overly optimistic results.
The validation method chosen was K-fold cross-validation since it is more appropriate for
smaller datasets such as the UofM dataset. The selection of K is important in balancing the
bias—variance ratio. References [36,37] recommend values of K =5 or 10, as these values
have been shown empirically to have a good balance between bias and variance. The higher
the value of K (number of folds), the lower the bias of the training process. However, as
you increase the value of K, you reduce the number of samples in each of the folds. In
our dataset, K = 10 was chosen due to our limited sample size. The best model was then
selected based on the mean and standard deviation of the evaluation metrics on the training
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dataset. The selected model was then fitted to the entire training dataset and tested on the
previously separated testing dataset to determine how well the model would perform on
unseen data.

Load in Data Data Pre- Split Data Training Data Data =~ | Model
processing Transformation | | Training
"""""""""""""""""""""""""""" P, E 5
Ordina T;ZZLS regression " Meanand | Model |
Y gresst . Std.Dev. Validation
Support Vector Regression S .
K Nearest Neighbors R S S l """"""""
Gaussian Process

Regression
Decision Trees Regression
+ Bagged Trees
* Random Forest
Multilayer Perceptron

 Data |

Testing Data

f Data !
| Transformation |

Best Model

Predictions

(Neural Network)

and Results

Figure 2. Flowchart of the machine learning pipeline for evaluating different regression models to
estimate blood glucose values from a set of noninvasive features.

2.4. Evaluation Metrics

We evaluated the performance of the different regression algorithms to predict blood
glucose concentrations using common metrics reported in the literature and associated
with the application of machine learning [1,12,17,28-37]. The first metric was the Root
Mean Squared Error (RMSE), whose equation is given below,

n

1 .
RMSE = sz%_%f, (1)
i=1

where 7; is the predicted blood glucose concentration using the testing dataset, y; is the
true/target glucose level, and 7 is the number of instances. The RMSE metric is commonly
used for quantifying the performance of regression algorithms and is usually implemented
in programming toolboxes [23]. Equation (1) quantifies the standard deviation of the error
difference between the true and predicted glucose concentrations (e.g., residuals). Thus, the
lower the RMSE metric, the higher the accuracy of the trained model is to estimate glucose
concentration. Since the units of the RMSE value and the original target variable are the
same, RMSE provides a quantitative intuition of the model’s performance.

The second metric used was the coefficient of determination (R?), which is defined by

SSres —1_

RZ—=1-— =
SStot

, @)

™M=|I0=

Il
—_

where SSi¢s is the sum of squares of the residuals (also known as errors), and SSiot is the
total sum of squares, which is proportional to the variance of the target data. In Equation
(2), y refers to the mean of the target glucose concentration. Generally, the R? value ranges
between 0 and 1. If the R? value is less than zero, this means the model is arbitrarily
performing worse than if it was guessing the mean of the target variable. An R? value equal
to zero would indicate that the predictions are no better than if the regression algorithm
assumed the mean of the target for every prediction. If the R? value is equal to one, the
model accurately predicts each target value without errors (e.g., maximum accuracy).
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Finally, our final metric was the Clarke Error Grid Analysis which provided us a
visual tool to evaluate the model performance to predict blood glucose concentrations
within the clinical range. The Clarke Error Grid is considered the gold-standard metric
for measuring the quality of glucometer predictions [38]. This plot is a scatterplot of the
predicted /estimated glucose values plotted against the true/target values to determine the
accuracy of the predictive model. The Clarke Error Grid is divided into five regions: A, B,
C, D, and E. The accuracy of the predictions depends on the region where the predictions
fall in. For example, predicted values plotted in region A fall within 20% of the actual
values. Although the predictions fall outside 20% of the true values in region B, they would
not lead to inappropriate actions to correct any health condition. Conversely, region C
could result in predicted glucose values that could cause the patient to take wrong actions
to manage their condition. Region D could lead to a harmful action due to the lack of
detection of hyper- and hypoglycemia. Finally, region E confuses hyper- and hypoglycemia
events (i.e., an individual with a blood sugar of 250 mg/dL can get a predicted value of
50 mg/dL).

3. Results

In this section, we investigate and analyze the performance of several regression
models to estimate the blood glucose for the two datasets (the OhioT1DM and UofM
datasets). This study does not aim to investigate global models; each individual dataset
was trained using our pipeline and tested using unseen data from the same subject to
determine the best model for each subject.

3.1. OhioT1DM Results

Without limiting the generality of our study, only two subjects from the OhioT1DM
dataset are discussed in this section. The two patients are Subject 559 and 563. These
subjects were chosen because they present the highest and lowest variance of the blood
glucose concentration, respectively. The only features kept from the original datasets are:
blood glucose level (BGL, target variable), ambient temperature (aTEM), galvanic skin
response (GSR), heart rate (HR), and skin temperature (STEM). Tables 1 and 2 summarize the
main characteristics of the dataset, including the number of instances (e.g., sample count),
mean, standard deviation, minimum and maximum values, 25% quartile, 50% quartile, and
75% quartile for the target variable (glucose) and each feature in both subjects. Note that
we transformed the GSR feature using the logarithm operation with base 10 (e.g., log(GSR)
feature) to remove some of the skewness of the original GSR data. This engineered feature is
shown in the last column of Tables 1 and 2.

Table 1. Statistical analysis of Subject 559 from the OhioT1DM dataset. BGL—blood glucose level
in mg/dL; aTEM—ambient temperature in °F; GSR—galvanic skin response; HR—hear rate in bpm;
sTEM—skin temperature in °F; log(GSR)—logarithm with base 10 of the galvanic skin response.

BGL aTEM GSR HR sTEM log(GSR)

Mean 167.23 84.28 0.40 73.89 87.66 —0.39
Std. Dev. 70.36 4.38 2.04 15.94 3.44 0.31

Min. 40.00 63.86 0.00 46.00 72.32 —4.17

25% 110.00 81.32 0.00 62.00 85.10 —4.11

50% 158.00 83.66 0.00 69.00 87.44 -3.99

75% 210.00 87.62 0.00 83.00 90.50 -3.25
Max 400.00 96.98 23.02 189.00 95.90 1.36

Count 12,432 12,432 12,432 12,432 12,432 12,432
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Table 2. Statistical analysis of Subject 563 from the OhioT1DM dataset.
BGL aTEM GSR HR sTEM log(GSR)

Mean 150.53 84.02 0.41 96.46 87.94 —0.39
Std. Devw. 50.50 3.60 1.68 13.88 2.71 0.23

Min. 40.00 57.02 0.00 66.00 66.20 —4.36

25% 112.00 82.40 0.00 88.00 86.90 —4.03

50% 145.00 84.20 0.00 97.00 88.16 —3.32

75% 184.00 86.00 0.02 105.00 89.60 —1.76
Max 400.00 98.78 21.98 167.00 97.52 1.34

Count 13,008 13,008 13,008 13,008 13,008 13,008

Abbreviations defined in Table 1.

Figure 3 shows the correlation coefficient between the variables of the OhioT1DM
dataset for both subjects. We colored the cells in Figure 3 to identify high correlation values
better using the terminology established by Cohen [39]. The degree of correlation is high
when the magnitude of the correlation coefficient is higher than or equal to 0.5. If the
magnitude of the correlation coefficient ranges from 0.3 to 0.5, we say that the features
are moderately correlated. A low degree of correlation between features exists when the
magnitude of the correlation coefficient ranges from 0.1 to 0.3. Finally, a null correlation
exists if the correlation coefficient’s magnitude is below or equal to 0.1. For example, the
blood glucose concentration has a low correlation to the heart rate (correlation coefficient
equal to 0.2) in Subject 559’s data. The ambient and skin temperature also seem to be
correlated to the glucose level (magnitude of the correlation coefficient equal to 0.16 and
0.15, respectively). However, due to the reduced correlation coefficient between the target
glucose concentration with respect to the GSR and log(GSR) values, it is expected that
these features (i.e., GSR and log(GSR)) are not very good predictors of BGLs if linear
regression models are used using Subject 559's data. Regarding Subject 563’s data, the
blood glucose concentration value does not seem correlated to any of the investigated
noninvasive features. The highest correlation coefficient is equal to —0.10 between the
glucose level and the GSR feature. For this reason, our pipeline contains several models
that account for nonlinear relationships between the BGLs and the features. Among the
features of our regression algorithms, the heart rate is moderately correlated with the GSR
(correlation coefficient = 0.26), and the skin temperature (correlation coefficient = —0.49)
in Subject 559’s data. Note that a negative correlation indicates that the heart rate value
decreases as the ambient temperature increases or vice versa. In other words, the heart rate
and ambient temperature move in opposite directions. A similar correlation coefficient is
found between the heart rate and GSR for Subject 563, indicating a relationship between
these two features. For both subjects, the features of ambient and skin temperatures are
highly correlated (correlation coefficient > 0.95).

These datasets were passed through the machine learning pipeline (described in
Section 2.3). Each model was trained using 10-fold cross-validation. Figure 4 shows the
results of the best model (e.g., lower RMSE value). For both subjects, the best model was an
ensemble method called Bagged Trees. From Figure 4, we can conclude that the predicted
values (orange circles in panels (a) and (c)) do not follow the same trend as the target
glucose concentrations (blue circles in panels (a) and (c)). These results indicate that the
four features from the Ohio dataset do not have sufficient predictive power to estimate
blood glucose levels. The mean and standard deviation lines are also plotted in Figure 4a,c
to highlight the low performance of the models. We observe that the models tend to choose
the safest predictions around one standard deviation from the mean of the target/reference
data, which provides the minimum RMSE value, rather than accurately predicting the
target output. Note that no predictions were made outside one standard deviation of
the average.
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(a) Subject 559

Features | Glucose | Amb. Temp. GSR Heart Rate | Skin Temp. | l0g(GSR
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Skin Temp.

(b) Subject 563
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Figure 3. The correlation coefficient between target glucose concentrations and selected features of

subject (a) 559 and (b) 563 from the OhioT1DM dataset.
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Figure 4. Performance of the best-trained model for both subjects (a,b for Subject 559 and ¢,d for Sub-

ject 563) from the OhioT1DM dataset. In panels (a,c), the pred
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The Clarke Error Grid provides another useful way of analyzing these results, as
shown in Figure 4b,d. Predictions in a good model fall within region A (i.e., predicted
values may differ up to 20% of the target values). For both subjects, the predicted glucose
concentrations are clustered in all the grid regions, indicating that the models poorly predict
accurate blood glucose values. Therefore, these models are underfitting the data due to the
lack of a high relationship between the target glucose concentration and the used features
(i-e., the lack of useful features). Table 3 summarizes the metrics for both subjects in the
OhioT1DM dataset. Note that the RMSE value is lower for Subject 563 because the variance
of his/her target glucose concentration is lower, as Table 2 shows. For both subjects, the
best model has a poor R? value (close to zero), meaning the results are no better than if
random input values are given as predictors. Furthermore, a significant portion (~6-12%)
of the predicted glucose concentrations results fall outside the clinically acceptable regions
of A and B, leading to inappropriate actions from the patient’s perspective to manage
his /her glucose concentrations.

Table 3. Summary of the studied metrics for Subject 559 and 563.

Metric Subject 559 Subject 563
Total 12,432 13,008
RMSE 66.32 46.38

R? 0.11 0.16

A 37.89% 49.91%

B 49.02% 43.83%

C. 1.67% 0.12%

D 10.80% 6.03%

E 0.62% 0.12%
Total 12,432 13,008

3.2. UofM Results

Tables 4 and 5 summarize the main characteristics of the UofM dataset. The UofM
dataset contains ten additional features to the OhioT1DM dataset. These features are:
Sp0O2, motion (MOT), ambient humidity (aHUM), ventral and dorsal moisture (vMOI and
dMOI), heat flux (HF), blood volume pulses (BVP), inter-beat interval (IBI), and systolic
and diastolic blood pressure (SYS and DIAS). Note that the UofM dataset collects the
electrodermal activity (EDA, formerly named as GSR), which measures emotional and
sympathetic responses of the human body that cause continuous variation in the electrical
properties of the skin. The dataset also includes a feature labeled motion, which is a unitless
magnitude of the amount of movement measured using the Viatom sensor. The UofM
dataset also contains the blood glucose levels (BGLs) measured using the Freestyle Libre
2. Observing the target BGLs in the first column of Tables 4 and 5, it is easy to realize that
the ranges of the target glucose concentrations were greatly reduced compared to the Ohio
dataset because the two subjects in the UofM dataset are nondiabetic. Note that the blood
glucose concentration standard deviation is almost double in Subject 2 from the UofM
dataset. However, the UofM dataset does not contain hypo- (e.g., BGL <70 mg/dL) and
hyperglycemic (e.g., BGL > 180 mg/dL) events. Therefore, we cannot validate the accuracy
of the model in these scenarios to which diabetes patients are often prone to.
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Table 4. Statistical analysis of Subject 1 from the UofM dataset: BGL—blood glucose level in mg/dL;
SpO2 in %; HR—hear rate in bpm; MOT—motion; aHUM—ambient humidity in %; aTEM—ambient
temperature in °C; vMOIST—ventral moisture in %; dMOI—dorsal moisture in %; HF—heat flux in
W /m; BVP—Dblood volume pulse; IBI—inter-beat interval in seconds; sSTEM—skin temperature in °C;
EDA—electrodermal activity in pS; SYS—systolic blood pressure in mmHg; DIAS—diastolic blood
pressure in mmHg.

BGL SpO2 HR MOT aHUM aTEM vMOI dMOI HF BVP IBI sTEM EDA SYS DIAS
Mean  87.30 96.72 75.05 2.32 49.40  21.52 4156 4093 62263 —1.42 0.44 28.76 9.78 12524  81.07
STD 12.96 1.04 14.15 1.57 9.83 5.20 9.57 9.36 375.18  10.51 0.32 4.48 18.77  11.67 5.33
Min.  68.00 92.00  56.00 0.33 0.00 0.00 0.00 1930 43821 —33.30 0.00 0.00 0.00 106.00  65.00
25% 78.00  96.31  64.67 1.27 4835 20.63 3920 3580 325.07 —1.38 0.21 27.95 0.18 117.00  78.00
50% 83.00 96.97  71.43 1.97 50.10  21.00 4320 39.70 615.68 —0.20 0.45 28.49 0.44 121.00  80.00
75% 96.00 9728  83.32 2.83 5275 2170 4655 4635 81954  0.69 0.65 29.36 6.97 130.25  83.63
Max 11900 9830 11263 8.13 6530 3420 5540  56.60 12481 57.16 1.33 3934 8099 163.00 94.00
Count 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00  80.00
Table 5. Statistical analysis of Subject 2 from the UofM dataset.
BGL  SpO2 HR MOT aHUM aTEM vMOI dMOI HF BVP IBI sTEM EDA SYS DIAS
Mean 11375 96.14 77.83 2.81 43.86  22.04 3454 4262 35175 290 0.78 32.94 4.47 136.56  74.23
STD 23.18 1.66 14.96 2.24 5.40 3.59 12.61 11.39 12172 56.40 0.15 1.57 7.20 26.27 10.98
Min. 8400 86.00 57.00 0.00 23.85 1070  11.40 8.30 030  265.85  0.00 30.11 0.08 108.00  55.00
25% 96.00 9557  67.70 1.20 4190  20.00 2320 43.00 27842 —-10.67 0.73 31.79 0.28 119.00  67.00
50% 106.00  96.33 70.93 2.07 4490 2295 3235 47.00 379.35 1.89 0.80 32.50 0.43 125.00  72.00
75% 12800 9710 8178 3.85 46.40 2370 47.00 4845 44705 1352 0.86 34.25 4.24 150.00  77.50
Max 17200 9833 121.63 1087 5260 2920 5330 59.90 543.11 23837 1.02 36.33 2247 193.00 97.00
Count 79.00 79.00 79.00 79.00 79.00 79.00 79.00 79.00 79.00 79.00 79.00 79.00 79.00 79.00  79.00

Abbreviations defined in Table 3.

Again, we calculated the correlation coefficient between the target glucose concen-
tration and the selected fourteen features to identify those most likely contributing to the
model predictive power. Figure 5 shows the correlation coefficients of the UofM dataset.
The first columns in panels (a) and (b) provide the bivariate correlation between the target
glucose value and all selected predictors, enabling the identification of more predictive
features using linear regression algorithms. For Subject 1, we identified three key features
with a correlation coefficient higher than 0.3: heart rate, heat flux, and electrodermal activity
(EDA). However, it seems that motion and ventral and dorsal moisture features are also
slightly correlated to blood glucose. Whereas the heart rate and EDA features were also
identified as potential features in Subject 2, additional features could be identified in this
subject, including SpO2, diastolic blood pressure, and skin temperature. The latter one
presents the highest correlation coefficient (magnitude equal to 0.61) with respect to the
target blood glucose. No clear relationship between IBI feature and the target glucose con-
centration was identified for both subjects. Although we introduced two thermal challenges
to determine if the blood glucose concentration varied by sudden changes in ambient tem-
perature, no clear relationship was found between ambient and skin temperature features
in this dataset like the one shown in the Ohio dataset. As shown in Figure 5, the correlation
between the glucose level and the ambient temperature is not significant (magnitudes equal
to 0.10 for subject 1 and —0.06 for subject 2). The ambient humidity also seems not to be a
good predictive feature of the blood glucose level. These results are expected since these
two quantities are not directly correlated to blood glucose level. Nonetheless, we want to
preserve them in our dataset based on the metabolic heat confirmation (MHC) technique,
which uses these two features as inputs in its regression algorithms. Based on the analysis
of the UofM dataset, these two features do not have any linear relationship to any other
feature apart from each other. Future work may focus on integrating these features in
the preprocessing stages of the data so that they may be used to remove perturbations.
Alternatively, the ambient features could be rolled into engineered features in the hopes of
finding a more useful feature. If neither of these pursuits manages to use the ambient data,
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these sensors could be removed from a final device altogether. It is important to realize
that the direction of the correlation (positive versus negative correlation coefficients) is
subject-dependent. For example, the heat flux has a negative correlation coefficient of 0.45
in Subject 1, whereas it is equal to positive 0.12 in Subject 2. Finally, aside from identifying
good features that contribute to the model predictive power, Figure 5 also aids in identify-
ing potentially redundant features that could be removed or combined into an engineered
feature, which has the benefit of simplifying the model by reducing dimensionality. For
example, the heart rate is highly correlated to motion, moisture (versal and dorsal), EDA,
and blood pressure (systolic and diastolic) in both subjects. Finally, Figure 5a,b show that
the EDA feature seems to be a good predictive feature to estimate blood pressure in a
noninvasive way.

(a) e’ . IBI |Skin Temp.| EDA

(b) b > isture: Moisture: 1Bl |Skin Temp.
(Glucose 1.00 0.2

15p02 040 1.00
Heart rate -0.37 -0.48 1.00

kin Temp. 0. -0.8
[EDA N

[Systolic
piastolic 0. 0. 2 1

Figure 5. The correlation coefficient between target glucose concentrations and the selected fourteen
features for both subjects, (a) Subject 1 and (b) Subject 2, from the UofM dataset.

As before, each regression algorithm of the pipeline was trained using the UofM
dataset. The same 10-fold cross-validation was performed to compare all different models’
fit to this dataset and select the one with lower RMSE (e.g., the best model). Figure 6 shows
the predicted glucose values of unseen data provided by the best model for both subjects
from the UofM dataset. The Bagged Trees Ensemble and the Gaussian Process Regression
with rational quadratic kernel function models provided more accurate predicted glucose
values for Subjects 1 and 2, respectively. This is likely due to the advantage of using
ensemble tree methods (also known as forests). Forests inherently introduce randomness
in the training process [33,34]. Both bagged trees and random forests introduce this
randomness during training individual trees using a random subsample of the overall
training dataset. However, random trees also train individual trees based on a limited
selection of predictors. The benefit of injecting this randomness into these ensemble models
is that they become more robust to overfitting. Figure 6 shows that the performance of the
trained models was significantly improved by adding more features to the training dataset.
The predicted glucose concentrations follow the same trend as the target glucose values,
increasing the R? coefficient as shown in panels (Figure 6b,d). In addition, the RMSE values
are reduced to 8.39 mg/dL for Subject 1 and 13.73 mg/dL for Subject 2. This difference
may be related to the glucose range between both subjects. We plotted the Clarke Error
Grid in Figure 6b,d to finalize this analysis. Whereas all the predicted glucose values for
Subject 1, Figure 6b, fall in the clinically acceptable range of being within 20% of the target
glucose concentrations (region A), only 10% of the predictions for subject 2 fall within
region B; Figure 6d. Nonetheless, although predicted values in region B differ a factor
higher than 20% from the target value, they would not necessarily lead to inappropriate
health management.
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Figure 6. Performance of the best-trained model in unseen instances for both subjects from the UofM
dataset. Panels (a,c) show the predicted and target glucose concentrations from unseen data. The
Clarke Error Grids are shown in panels (b,d). RMSE and R? values of the best model are reported in
panels (b,d). We also report the percentage of instances (red font) falling in each region of the Clarke
Error Grid.

4. Discussion and Conclusions

This study explored the feasibility of using multiple noninvasive sensors to predict
blood glucose concentrations. Firstly, we investigated our approach by using the already-
existing OhioT1DM dataset. The original dataset was preprocessed to select only the
features that fit into a wearable device (e.g., heart rate, GSR, skin ambient, and ambient
temperature). Nine different regression algorithms, including models that can account for
both linear and nonlinear relationships between the target glucose concentration and the
features, were tested. The high RMSE value (>45 mg/dL) and low R? coefficient provided
by the best-trained model for Subjects 559 and 563 from the OhioT1DM dataset show that
the investigated features (e.g., heart rate, GSR, skin ambient, and ambient temperature) are
not sufficient for the accurate prediction of glucose level. Note that 1702 instances from a
total of 13,008 were predicted outside the clinically acceptable range (regions C-E in the
Clarke Error Grid) for the subject with the lowest variance in the glucose concentration
and the highest number of instances (e.g., subject 563). To improve the performance of the
regression model, we also tested the performance of the models using additional engineered
features. Among the multiple engineered features, we included the product of the heart
rate and GSR (correlation coefficient = 0.26 and 0.20 for subjects 559 and 563, Figure 3), the
product of the GSR and skin temperature (correlation coefficient = —0.14, and —0.12 for
subjects 559 and 563), and the triple product between GSR, skin temperature, and the heart
rate. Nonetheless, the best-trained model using engineered features (not shown) did not
enable predictions of glucose concentrations within the A and B regions in Figure 4.
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Therefore, a new dataset including additional features was required to predict glucose
concentrations. This new dataset (e.g., the UofM dataset) contains nine additional features
compared to the Ohiot1DM dataset: SpO2, motion, ambient humidity, ventral and dorsal
moisture, heat flux, blood volume pulse, and inter-beat interval. Adding these features
into the regression algorithms enabled training models that follow the target glucose
concentrations. The performance of the best-trained models was significantly increased
(R? =~ 0.71-0.72 for the UofM dataset versus R? ~ 0.11-0.16 for the OhioT1DM dataset).
This improvement is related to the fact that the feature in the UofM dataset presents a
much higher correlation with the target glucose concentration (Figure 5), enhancing the
model’s predictive power. Overfitting was combatted using cross-validation and ensemble
tree models since they insert some randomness into the training process, and therefore
are less prone to overfitting. Although the best model for Subject 2 is a Gaussian process
regression algorithm, the performance of a bagged trees ensemble regression algorithm
for Subject 2 is almost identical (RMSE of the bagged tree ensemble is 13.91 mg/dL versus
13.72 mg/dL for the Gaussian process model). This means that the bagged tree model
generates predicted glucose values within the clinical range (e.g., A and B regions in the
Clarke Error Grid) for both UofM subjects.

Figure 5 shows the additional correlation between the input features. For example,
the systolic and diastolic blood pressure seems to be moderately and highly correlated to
the heart rate, EDA, heat flux, and skin temperature. Considering the correlation between
the blood volume pressures and the other features, we investigated the model performance
without using the systolic and diastolic blood pressures as input features. The values of
the RMSE are 10.192 mg/dL and 21.8522 mg/dL for Subjects 1 and 2, respectively. The
RMSE value was increased by a factor of 1.21x and 1.59x for Subjects 1 and 2, respec-
tively. Therefore, removing the blood pressure features leads to a less predictive model.
Based on this reduction, the best approach may be to create engineered features taking
advantage of the strong correlation between the features in Figure 5. Tables 6 and 7 report
the performance of the best-trained model for Subjects 1 and 2 from the UofM dataset,
respectively, when we removed features systematically. Comparing the last two rows in
Tables 6 and 7, the performance of the regression algorithm seems quite invariant to SpO2
and motion features. Although the removal of blood pressure and skin moisture (third and
fourth rows in Tables 6 and 7) penalize the accuracy of the predicted blood glucose, the
R? value between the target and predicted glucose values is still highly correlated (e.g., R?
equal to 0.49-0.56 for subject 1 and 0.64-0.66 for subject 2). The removal of features such
as IBI, BVP, and HF (second row in Tables 6 and 7) predicts blood glucose values that fall
within region C, causing the patient to make wrong actions to manage his/her condition.
Finally, in the first row in Tables 6 and 7, we selected the same features to the OhioT1DM
dataset (e.g., heart rate, EDA, and skin temperature). Even though the range of our glucose
values is highly reduced (e.g., blood glucose level ranges from 68 to 172 mg/dL), this result
proves that these four features do not provide significant predictive power to estimate
blood glucose levels. Note that the prediction power of a truncated version of the Ohio
dataset within the healthy range (e.g., 60—200 mg/dL) is still null and poor for Subjects
559 and 563 (e.g., R? equal to 0.06 for subject 559 and 0.13 for subject 563). This result
shows that these features are not sufficient to predict accurate values of blood glucose, even
though the truncated version of the Ohio dataset contains approximately 10,000 instances
per subject. Future work should investigate feature engineering and extraction to produce
more meaningful features while decreasing the input features in our model. Principal
component analysis or similar dimensionality reduction techniques could also be used
to transform the data of some features into a lower-dimensional space, thereby reducing
the feature to sample ratio while preserving the information. For developing commercial
wrist-worn devices, it is mandatory to identify the most critical features that the device
must incorporate.
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Table 6. Performance of the best-trained GPR model in unseen instances versus different noninvasive
features for Subject 1 from the UofM dataset.

Features RMSE R? A (%) B (%) C(%) D (%) E (%)
HR, aTEM, sTEM, EDA (like OhioDataset) 11.69 0.42 70 15 10 5 0
HR, aTEM, sTEM, EDA, aHUM, HF 9.54 0.55 85 5 10 0 0
HR, aTEM, sTEM, EDA, HF, IBI, BVP 8.71 0.64 95 5 0 0 0
HR, aTEM, sTEM, EDA, HF, IBI, BVP, vMOI, dMOI 8.43 0.66 95 5 0 0 0
HR, aTEM, sTEM, EDA, HF, 1BI, BVP, vMOI, dMOI, SYS, DIAS 8.01 0.78 100 0 0 0 0
HR, aTEM, sTEM, EDA, HF, IBI, BVP, vMOI, dMOQ], SYS, DIAS, SpO2, MOT 8.14 0.76 100 0 0 0 0

Table 7. Performance of the best-trained bagged tree model in unseen instances versus different
noninvasive features for Subject 2 from the UofM dataset.

Features RMSE R? A (%) B (%) C(%) D (%) E (%)
HR, aTEM, sTEM, EDA (like OhioDataset) 15.85 0.29 83.33 16.67 0 0 0
HR, aTEM, sTEM, EDA, aHUM, HF 14.95 0.44 88.88 5.56 5.56 0 0
HR, aTEM, sTEM, EDA, HF, IBI, BVP 14.39 0.49 88.88 11.12 0 0 0
HR, aTEM, sTEM, EDA, HF, IBI, BVP, vMOI, dMOI 14.03 0.56 94.44 5.56 0 0 0
HR, aTEM, sTEM, EDA, HF, IBI, BVP, vMOI, dMO], SYS, DIAS 11.95 0.67 94.44 5.56 0 0 0
HR, aTEM, sTEM, EDA, HF, 1BI, BVP, vMOI, dMO], SYS, DIAS, SpO2, MOT 11.39 0.7 94.44 5.56 0 0 0

Future work will also be focused on investigating more sophisticated methods to
preprocess the dataset. For example, in this study, the dataset was generated by simply
removing outliers, averaging the values over the same time signature, and selecting the
values that match with the timestamp of the target blood glucose. We will also consider ex-
tracting additional features from current measurements to improve the predictive model in
future work. For example, we could use the MATLAB-based KARDIA software package to
measure phasic cardiac responses and time- and frequency-domain heart rate variability us-
ing the IBI data generated by the Empatica E4 wristband [20]. Note that blood glucose levels
have been well correlated to heart rate variability using photoplethysmography [19,21,22].
In addition, we could investigate the extraction of better features by decomposing the skin
conductance (i.e., EDA) into its tonic and phase components using the MATLAB-based
software package Ledalab [40]. These two packages are distributed free of charge.

Future work should also be focused on investigating a global model (as opposed to
user-specific or local), including specific user information as input features. This would
allow a global model to discriminate based on key biometrics (such as BMI, age, race, and
gender) to increase the accuracy of blood glucose level predictions for individuals.

In conclusion, for the first time, to our knowledge, this study demonstrates the use of
noninvasive sensors implemented in a wrist-based device to predict blood sugar concentra-
tions noninvasively within the healthy range, which may be significant for athletes and
military personnel who require continuous monitoring of their blood glucose. Our results
should be viewed as a proof-of-concept study, still requiring a larger dataset, including a
broad range of individuals (different ages, races, and health conditions). Furthermore, this
multimodal approach must be tested to accurately estimate both hypo- and hyper-glycemic
events. Even though accurate and continuous blood glucose monitoring is important for
general health management, this technology would have the greatest impact within the
diabetic community. Future datasets must include individuals with diabetes. We believe
that this is the first step before a clinical research study to determine the key features to be
implemented in a glucose-based smartwatch.
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