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Abstract: An electric vehicle charging station (EVCS) infrastructure is the backbone of transporta-
tion electrification; however, the EVCS has various vulnerabilities in software, hardware, supply
chain, and incumbent legacy technologies such as network, communication, and control. These
standalone or networked EVCSs open up large attack surfaces for local or state-funded adversaries.
The state-of-the-art approaches are not agile and intelligent enough to defend against and mitigate
advanced persistent threats (APT). We propose data-driven model-free digital clones based on mul-
tiple independent agents deep reinforcement learning (IADRL) that uses the Twin Delayed Deep
Deterministic Policy Gradient (TD3) to efficiently learn the control policy to mitigate the cyberattacks
on the controllers of EVCS. Also, the proposed digital clones trained with TD3 are compared against
the benchmark Deep Deterministic Policy Gradient (DDPG) agent. The attack model considers the
APT designed to malfunction the duty cycles of the EVCS controllers with Type-I low-frequency
attacks and Type-II constant attacks. The proposed model restores the EVCS operation under threat
incidence in any/all controllers by correcting the control signals generated by the legacy controllers.
Our experiments verify the superior control policies and actions of TD3-based clones compared to
the DDPG-based clones. Also, the TD3-based controller clones solve the problem of incremental bias,
suboptimal policy, and hyperparameter sensitivity of the benchmark DDPG-based digital clones,
enforcing the efficient mitigation of the impact of cyberattacks on EVCS controllers.

Keywords: cyberattack; deep reinforcement learning (DRL); electric vehicle charging station;
mitigation

1. Introduction

According to the second-quarterly (Q2) data of 2021 from the Alternative Fuels Data
Center, the United States hosts 128,474 public and private electric vehicle charging station
(EVCS) ports in 50,054 different station locations [1]. In 2021 alone, charging stations
increased by more than 55% in the United States. This upsurge is anticipated to grow
further along with the announcement of the Bipartisan Infrastructure law to build out
the nationwide electric vehicle network in April 2021 [2]. In February of 2022, USDOT
and USDOE announced $5 billion over five years for the new National Electric Vehicle
Infrastructure (NEVI) program. In February of 2022, USDOT and USDOE announced
$5 billion over five years for the new National Electric Vehicle Infrastructure (NEVI) pro-
gram under the Bipartisan law to create a network of electric vehicle (EV) charging stations
and designated alternative fuel corridors on the interstate highway [3].

In contrast with the broad interest and investment in transportation electrification and
EVCS deployment, the cyber-physical security hygiene of EVCS standalone/network is
often slow-paced, poorly defined, and understudied [4–7]. The internet-facing elements
of EVCS are primarily designed for communications and controls with other internet
of things (IoTs) and stakeholders such as EV, EV operators, grid, Supervisory Control
and Data Acquisition (SCADA), EVCS owners, and push the air-gapped critical physical
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infrastructures to the internet [8]. It could potentially open up large attack vectors for the
interconnected systems of the EVCS. We present a brief review of the cyberattack detections
and mitigations efforts in EVCS from the next paragraph that lays the foundation towards
automated cyberattacks mitigation in EVCS.

The works of [9–13] assessed the impacts of cyber-enabled physical attacks on EVCS in-
frastructures ranging from disruption, damage, hijack, and so on. On that note, researchers
have worked on numerous detection methods implementing different computational intel-
ligence algorithms, including machine learning and deep learning [7,9,13–15]. Reference [7]
designed and engineered a deep learning-powered [deep neural network (DNN), long
short-term memory (LSTM)] network intrusion detection system that could detect DDoS
attacks for the EVCS network based on network fingerprint with nearly 99% accuracy.
Similarly, ref. [9] developed a stacked LSTM-based host intrusion detection system solely
based on a local electrical fingerprint that could detect stealthy 5G-borne distributed denial
of service (DDoS) and false data injection (FDI) attacks targeting the legacy controllers of
EVCS with nearly 100% accuracy. Furthermore, several deep learning-based ransomware
detection engines have been proposed, tested, and evaluated that can share the information
in a cloud-based or distributed ransomware detection framework for EVCS [10]. Recently,
generative AI models were deployed to train the detectors to tackle the cyberattack data
scarcity problem. Our previous work successfully achieved more than 99% performance
metrics in detecting the DDoS attacks on EVCS infrastructure [13].

De et al. designed a control-oriented model-based static detector (deviation in battery
cell voltage) and a dynamic detector (using system dynamics) algorithm to detect denial
of charging attacks and overcharging attacks on plug-in electric vehicle (PEV) battery
packs [14]. The threshold-based static and filter-based dynamic detection techniques have
the least flexibility toward advanced persistent threats (APT) and evolving zero-day attacks.

There have been attempts to address the mitigation of cyberattacks on smart grid
paradigms [15–23]. However, no works have exactly addressed the mitigation, defense, and
correction for the cyber-physical attacks on EV charging infrastructures. Girdhar et al. used
the Spoofing, Tampering, Repudiation, Information Disclosure, Denial of service, Elevation
of privilege (STRIDE) method for threat modeling and a weighted attack defense tree for
vulnerability assessment in the ultra-fast charging (XFC) station [15]. The Hidden Markov
Model (HMM)-based detection and prediction system for a multi-step attack scenario was
proposed. The proposed defense strategy optimizes the objective function to minimize
the defense cost added by the cost of reducing the vulnerability index. As a means of
defense/mitigation, the authors recommended isolating and taking the compromised EVCS
off the interconnections and intercommunication. The traditional isolation-based protection
approach fails miserably in the smart grid due to the availability constraints of electricity
and few reserved physical backups. On this note, Mousavian et al. implemented mixed-
integer linear programming (MILP) that jointly optimizes security risk and equipment
availability in grid-connected EVCS systems [16]. Still, their model aimed to isolate a subset
of compromised and likely compromised EVCS, ensuring minimal attack propagation risk
with a satisfactory level of equipment available for supply demand.

Acharya et al. derived the optimal cyber insurance premium for public EVCS to deal
with the financial loss incurred by cyberattacks [17]. However, the cyber insurance does not
address the mitigation of attack impacts. Reference [18] proposed the proportional-integral
(PI) controller-based mitigation approach for the FDI attack on microgrids. This method is
based on the reference tracking application. A feed-forward neural network produces the
reference voltage required for the PI controller, and the PI controller injects the signal to
nullify the FDI. The problem with the method is that the neural networks optimized under
the microgrid’s normal operating conditions may produce unreliable reference signals
under adversarial conditions such as manipulated inputs. Recurrent neural networks better
deal with reference tracking problems than regular feed-forward networks. The proposed
model imposes additional hardware requirements and is not efficient enough to deal with
non-linear and periodic FDI attacks. Reference [19] implemented the DRL-based approach
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for mitigating oscillations of unstable smart inverters in distributed energy resources (DER)
caused by cyberattacks. The adversary who gained system access can reconfigure the
control settings of the smart grid to disrupt the distribution grid operations. To mitigate the
impact, the authors trained the actor-critic-based proximal policy optimization (PPO) DRL
to develop the optimal control policy to reconfigure the control settings of uncompromised
DERs. However, this article has not presented the DRL efficacy of mitigation methods.
Reference [20] proposed the concept of an Autonomous Response Controller that uses
the hierarchical risk correlation tree to model the paths of an attacker and measures the
financial risk at cyber physical systems (CPS) assets. Recently, deep learning powered
mitigations engine are evolving with improved adaptation to system dynamics and control
actions [24].

Based on the above discussions, it appears that state-of-the-art algorithms have pro-
gressed well for attack detection and prediction in EVCS, aided by cutting-edge computa-
tional intelligence at in-network and standalone levels. However, the current state-of-the-art
lacks a proactive vision for developing embedded intelligence that could defend/correct
the attacks on the EVCS controllers.

Above all, there is an imminent need to develop data driven distributed intelli-
gence to proactively and independently defend the critical process controllers under the
threat incidence. It motivates us to design, implement, and test local, independent agent
DRL-based cyber defense clones (software agents) that could detect and mitigate controller-
targeted APT in the EVCS charging process.

To fill the gap in cyber-physical defense research at EVCS, we propose novel, independent
multiple-agent RL-based clones that oversee the critical functionality of all the controllers
in the system and corrects and defend them under the detection of threat incidence as well
as an anomaly. The proposed software agents operate solely based on the local data at
EVCS to be purely air-gapped. Without shutting down the process, they can take over
all the infected and frozen controllers under the worst cyberattack, such as ransomware
and/or APT. In addition, the proposed TD3-based clones mitigation approach is designed,
verified and compared against the benchmark Deep Deterministic Policy Gradient (DDPG)
clones. For the verification of proposed algorithms, the PV-powered, off-the-grid standalone
EVCS prototype with a battery energy storage (BES) and an EV with the corresponding
control circuitry of MPPT controller, PI controller-based BES controller, and EV controller
are designed. The APT attacks (Type-I: low-frequency attack, Type-II: constant magnitude
attack) are engineered and launched on the duty cycle of the controllers. Since the scope of
the paper is defense/mitigation, a threshold-based detection engine is used for simplicity. We
summarize the contribution of this paper as follows:

• Proposed novel data-driven controller clones with TD3-based algorithm that could
correct or take over the legacy controllers under APT detection.

• Agents can learn and adapt control policies online, accommodating changes in EVCS
dynamics or configurations, a feature lacking in traditional legacy controllers.

• The proposed agents successfully restore the regular operation under the APT attacks
and system anomaly on the legacy EVCS controllers.

• Finally, the proposed digital clones with TD3 outperforms the benchmark DDPG-based
clones in terms of stability, convergence, and mitigation performance.

2. Cybersecurity Issues in EVCS

Our prior work [9] designed the PV-powered off-the-grid standalone EVCS prototype
comprised of PV, BES, and EV with an associated control strategy. Figure 1 depicts the
SCADA system communicating with three isolated field controllers: PV, BES, and EV. The
EVCS architecture, control circuitry, system formulation, and component modeling are
available in [9]. These field controllers are responsible for the reliable and safe operation
of EVCS and hold exploitable technical vulnerabilities. Using social engineering and/or
reverse engineering, the adversary can poison the control signals reaching the physical con-
trollers at EVCS either at the network level of the SCADA or at the physical infrastructure



Energies 2023, 16, 7296 4 of 20

layer. On that note, the threat actors with domain expertise can launch vicious APT attacks
on these legacy controllers. To deal with these APT, reinforcement learning can be the
reasonable control paradigm. Figure 1 depicts the working mechanisms of an individual
DRL-based controller agent and is valid for all controller agents: PV, BES, and EV. Each
controller is equipped with the detection engine and the controller agent. The detection
engine continuously monitors the control signals and detects the cyberattack, if any, on the
deployed controller based on the heuristics of the signal integrity. Whenever the detection
engine is triggered, the RL-based control agent takes over the control process bypassing
the traditional controllers; maintains regular operation until the attack event is cleared. The
detailed functionality and deployment of these agents with states, rewards, and actions
information will be discussed in Section 4.
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3. Attack Modeling and Detection
3.1. Attack Modelling

The attacker’s primary goal is to disrupt, damage, or freeze the critical controllers
of EVCS. The attacker is assumed to poison/manipulate the critical parameters with
sophisticated attacking tools and domain expertise. Most legacy controllers generate a
critical control signal, i.e., the duty cycle that controls the switching of the high-frequency
transistor switches. It is assumed that the attacker decides the number of controllers
(Nc ∈ R) to exploit, the attack duration (Ta ∈ R) and Types of the attack Sa = {(A t, Ea)}
once it exploited the critical control signals C = {C1, C2, .., Cn} from controllers N1, N2, .., Nn.
The attacker chooses the set of exploited resources ζ from another setM = {Nc, Ta, Sa, C}
in such a way as to minimize the critical functionality CF of the process as in (1). The
attack Type Sa can be a tuple of attack time At = {sim, di f f } and engineered attack Types
Ea = {τ1, τ2} where sim and diff refer to the attack that can be launched simultaneously
and at different times, respectively, with attack Types τ1 and τ2 defined in (2) and (3).

argmin
ζ⊂M

CF (1)
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τ1 = T(α) (2)

τ2 = c (3)

where T is some random function parameterized by parameters α and c is some scalar
constant. The function T is envisioned to generate the statistical randomness in the attack.
With critical control signals of the controllers C ∈ [low_limit, upper_limit], it is wise for a
stealthy attacker to design a similar kind of pseudorandom attack that intersects with the
range of C. Pseudorandom number PRN (low_limit, up_limit, rep) fluctuates between lower
and upper bound, and repeating rep times serve the purpose. Similarly, c is the average of
the upper and lower limit of the C. After finding the sets of optimal ζ, Finally, the attacker
algebraically combines the attack signal Ea with the critical parameter set C as per (4).

attack_signal = C ± Ea subjected to ζ (4)

We pragmatically chose the ζ and CF of the attack for this case as in Table 1 after the
repeated experimentation. Both Type I and Type II attacks are carefully engineered APT
attacks with domain expertise. The Type I attack imposes the low-frequency attack on the
duty cycles, while the Type II attack imposes the constant duty cycle attack.

Table 1. Parameters for attack modeling.

Parameters Value

Nc 3
Ta 2 s
Sa {sim, di f f } × {τ1, τ2}
C {DPV ,DBES,DEV}

CF
Observed normalcy or stability of the process

variables such as power, bus voltage, BES, and
EV voltages and currents

τ1 PRN (0, 1, 10)
τ2 0.5

Type I attack = C ± Ea s.t. ζ(.τ1) {DPV + τ1,DBES − τ1,DEV − τ1}
Type I I attack = C ± Ea s.t. ζ(.τ2) {DPV − τ2,DBES − τ2,DEV − τ2}

3.2. Detection Technique

The threshold-based detection engine is a good choice for simplicity and speed as it
makes the online decision after implementing rule-based logic. This detection engine is
founded on point anomaly detection that continuously oversees whether the control signal
and controlled signal are within the predefined threshold range. If these signals fall outside
the predefined thresholds, the engine decides it as an anomaly or attack. The detection
logic at each controller can be defined as follows.

If
(

Up perThreshold < D(.) < Lower Threshold
)

&&
(

Up perThreshold < CF(.) < Lower Threshold )
Continue with Legacy controllers, i.e., duty = D(.);

Else
Correct the duty cycle with TD3 agent, i.e., duty = D(corrected);

End
The complete information of thresholds for respective controllers are presented in

Sections 4.3–4.5, along with the agent design.

4. Proposed Mitigation Approach

The data-driven digital clones for the physical controllers employing a DRL-based
TD3 algorithms are trained and deployed in each critical controller that controls a dynamic
system’s critical functionality. Moreover, the clones employing TD3 agents are compared
with the benchmark DDPG algorithm. Upon the threat incidence or operational anomaly,
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the rule-based or DL-based detection engine deploys the corrected control signal from
the clones. It takes over the legacy controllers until the threat has been eliminated. The
RL-based autonomous defense agent is employed for each controller whose primary pur-
pose is to generate the corrected control signal upon incidences of cyberattacks and system
anomalies. These controllers are designed for the mere to extreme adversarial setups such
as APT or malware that could freeze/control the legacy controllers.

4.1. Twin Delayed Deep Deterministic Policy Gradient (TD3)

Actor-critic RL learns both value function (as in value-based RL) and policy (as in
policy-based RL) and is proven to have better convergence properties, ability to learn
stochastic policy, and efficacy in hyperdimensional or continuous action space. The func-
tion approximation error in actor-critic RL leads to overestimated value estimates and
suboptimal policies [25]. TD3 is the off-policy actor-critic RL designed for continuous
action space to minimize the impact of overestimation bias on both actor-critic networks
by implementing three tasks. The first one is clipped double—Q Learning, where TD3
uses a minimum of two Q-values to form the target. The second one is the delayed policy
updates of the target network. And the third one is the target policy smoothing, where
TD3 adds noise to the target action so that the target policy could not exploit Q function
error by smoothing out Q along the gradient of action. Algorithm 1 is the TD3 algorithm
implemented for the controller agents.

Algorithm 1: TD3 Algorithm.

Each proposed standalone control agent for EVCS follows the strict training protocol as follows.
Initialize critic networks Q =

[
Qθ1 , Qθ2

]
and actor-network πφ with random parameters θ1, θ2

and φ

Initialize target networks θ′1 ←− θ1, θ′2 ←− θ2, φ′ ←− φ

Initialize replay buffer B
for t = 1 to T do

Select action with exploration noise a ∼ πφ(s) + ε where ε ∼ N (0, σ)
Store transition tuple 〈s, a, r, s′, d〉 into B where d is the signal to indicate s′ is the terminal state.
If s′ is the terminal state, reset environment state.
Else randomly sample mini batch of N transitions 〈s, a, r, s′, d〉 from B
Compute the target actions and compute targets:

a′(s′) = clip
(

µφ′ (s′) + clip(ε,−c, c), alow, ahigh

)
, ε ∼ N (0, 1)

y(r, s′, d) = r + γ(1− d)min
i=1,2

Qθ′ i(s′, a′(s′))

Update critics Q-function by using one step of gradient descent:
θi ←− argminθi

∇
θi

1
|B|∑〈s,a,r,s′ ,d〉∈B (Q θi

(s, a)− y(r, s′, d))2

If t mod policy_delay, then
Update φ by the deterministic policy gradient:
∇φ J(φ) = 1

|B|∑∇aQθ i(s, a) | a=µφ(s)∇φπφ(s)
Update target networks:

θ′i ←− τθi + (1− τ)θ′i
φ′ ←− τφ + (1− τ)φ′

End If
End for.

4.2. Graphical Representation of TD3 Algorithm

TD3 uses twin critic networks (critic 1 and critic 2) inspired from DRL with clipped
Double Q-Learning, where it takes the smallest Q-value of two critic networks to remove the
overestimation bias in Qθ i(s, a). The concept of target networks was introduced to stabilize
the agent training. The target network provides a stable objective and greater coverage of
the training data as DNN requires multiple gradient updates to converge [25]. Without the
fixed target, the accumulated residual errors after each update produce divergent values
when paired with a policy maximizing the value estimate. Therefore, TD3 uses delayed
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updates of actor-network (policy update) compared to critic network (value update),
resulting in more stable training.

The replay buffer stores the history of agent experience and randomly fetches the
data in mini batches to update actor and critic networks. There are six neural networks
in TD3: two critic networks, two target networks for two critics, an actor-network, and a
corresponding target network for the actor. Figure 2 summarizes the graphical abstract of a
TD3 agent.
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4.3. PV Agent

The design goal of the PV agent is to take over the infected MPPT controller and
implement the optimized control policy to generate the duty cycle DPV(t) needed by the
boost converter to have the least impact on the system. A PV agent continuously monitors
the error eP(t)and integrated errors eint_P(t)between the PV output power PPV(t)and
reference power Pre f (t) as in (5) and (6). The objective of the PV agent is to find the optimal
policy for the duty cycle that correctly transforms observation space to action space by
maximizing the cumulative scalar reward.

The output or action of the PV agent is the duty cycle with a linear quadratic regulator
(LQR) as the instantaneous reward or cost function rPV(t) as in (7). The α = 0.01 and β = 1
on r(t) represent the negative penalty terms imposed on error and action, respectively. TS is
the sampling time and is same for each agent and is set to 0.1 s meaning the agent samples
and updates the errors every 0.1 s throughout the operation.

eP(t) = Pre f (t)− PPV(t) (5)

eint_P(t) = ∑Ts
eP(t) (6)

rPV(t) = αeP(t)
2 + βDPV(t)

2 (7)

The rule/threshold-based detection engine derived pragmatically for PV agent will
determine the attack event if observed power falls beyond the range (1020, 1045) Watts and
the duty of MPPT falls beyond the range (0.200, 0.201).

4.4. BES Agent

The design goal of the BES agent is to generate the corrected duty cycle DBES(t) for
the buck-boost converter under the threat incidence. Similar to the PV agent, the BES agent
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observes the states of the error eV(t)and integrated errors eint_V(t) between the desired
reference bus voltage Vbus_re f (t)and the bus voltage Vbus(t) as in (8) and (9). The optimal
control policy that maps the observation space to action space is found by minimizing the
expected value of the cost function rBES(t), which is the linear quadratic regulator function.
The α = 0.01 and β = 1 on rBES(t) represent the negative penalty terms imposed on error
and action, respectively as in (10).

eV(t) = Vbus_re f (t)−Vbus(t) (8)

eint_V = ∑Ts
eV(t) (9)

rBES(t) = αeV(t)
2 + βDBES(t)

2 (10)

The rule/threshold-based detection engine derived pragmatically for the BES agent
will determine the attack event if observed power falls beyond the range (1020, 1045) and
the PI controller’s duty falls beyond the range (0.7, 0.71).

4.5. EV Agent

The design goal of the EV agent is to generate the corrected duty cycle DEV(t) for a
buck converter if the legacy EV charger got infected. Similar to the previous agent, the EV
agent observes the states of the error eVEV(t)and integrated errors eint_VEV(t) between the
desired reference battery voltage Vbatt_re f (t) and the bus voltage Vbatt(t) as in (11) and (12).
The optimal control policy that maps the observation space to action space is found by
minimizing the expected value of the cost function rEV(t), which is the linear quadratic
regulator function. The α = 0.01 and β = 1 on rEV(t) represent the negative penalty terms
imposed on error and action, respectively as in (13).

eVEV(t) = Vbatt_re f (t)−Vbatt(t) (11)

eint_VEV = ∑Ts
eVEV(t) (12)

rEV(t) = αeVEV(t)
2 + βDEV(t)

2 (13)

The rule/threshold-based detection engine derived pragmatically for the EV agent
will determine the attack event if observed power falls beyond the range (1020, 1045) and
the PI controller’s duty falls beyond the operating range (0.54, 0.55).Table 2 summarizes
the observations, reward, and action information of multiple TD3 agents.

Table 2. Summary of multiple independent agents.

Agents Observations (S) Reward (R) Action (A)

PV Agent { eP, eint_P} {rPV} {D PV}
BES Agent { eV , eint_V} {rBES} {D BES}
EV Agent {e VEV , eint_VEV} {r EV} {D EV}

5. Benchmark Deep Deterministic Policy Gradient (DDPG)

Deep Q Network (DQN) is a proven RL method capable of solving complex problems
on par with human-level performance, as proven in Atari video games. However, DQN only
solves the problem with high dimensional observation space and low dimensional discrete
action space. For the continuous control problem that requires an iterative optimization
process at every step to find the action that maximizes the action-value function, DQN
cannot be applied straightforwardly. The DDPG is a model-free, online, off-policy actor-
critic algorithm that can learn the optimal policies to maximize the expected cumulative
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rewards in high dimensional continuous action spaces as in Algorithm 2. While training,
a DDPG agent updates the critic and actor parameters at each time step. It stores past
experiences in the circular experience buffer, and the agent updates the critic and actor
parameters using mini batches of experiences selected randomly from the buffer. After
that, in each time step, the action chosen by the policy with a stochastic noise model is
perturbed.

Algorithm 2: DDPG Algorithm.

Initialize critic networks Q
(
s, a

∣∣θQ)
and actor-network µ(s|φµ) with random

parameters θ and φ

Initialize target networks Q′andµ′ with θ′ ←− θ, φ′ ←− φ

Initialize replay buffer B
for t = 1 to T, do

Select action with exploration noise a ∼ πφ(s) + ε where ε ∼ N (0, σ) and execute a in the
EVCS environment.

Store transition tuple 〈s, a, r, s′, d〉 into B where d is the signal to indicate s′ is the terminal state.
If s′ is the terminal state, reset environment state.
Else randomly sample mini batch of N transitions 〈s, a, r, s′, d〉 from B
Compute the target:

y(r, s′, d) = r + γ(1− d)Q′(s′, µ′(s′))
Update critic Q-function by using one step of gradient descent:

θ←− argminθ∇ θi

1
|B|∑〈s,a,r,s′ ,d〉∈B (Q θi

(s, a)− y(r, s′, d))2

Update the actor policy φ by the deterministic policy gradient:
∇φ J(φ) = 1

|B|∑∇aQθ i(s, a) | a=µφ(s)∇φπφ(s)
Update target networks:
θ′ ←− τθ + (1− τ)θ′
φ′ ←− τφ + (1− τ)φ′

End for

6. Experimental Setups for the TD3-Based Method

The TD3-based agents were built with specific neural architectures for critics and
actor neural networks with similar architecture for the target neural network. Then, the
layerwise actors’ and critics’ neural networks with their targets were properly engineered
and parameterized with desired activation functions and appropriate initial weights and
biases. Finally, the hyperparameters were carefully selected to train the agents optimally
after the series of training up to 500 episodes. Similarly, all the hyperparameters and neural
architectures were kept the same in the DDPG agents for accurate comparison.

6.1. Configurations of TD3 Critic Networks

A TD3 critic estimates the optimal Q-value based on the observations and actions
received by the parameterized DNN. Figure 3 depicts the structure of a single critic network
we have created. Before concatenating those features, the state and action information goes
through some local neural network transformations. After concatenation, it goes through
another set of neural networks to produce the Q-value function. The network that takes
state information has three fully connected hidden layers with respective hidden units
of 64, 32, 16, and the ReLU activation layer between them. After the concatenation, the
transformed state and action info pass-through two fully connected hidden layers with
64 and 32 hidden units, respectively, with ReLU layer in between to produce the Q-value.
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6.2. Configurations of TD3 Actor Networks

The actor-network in the TD3 agent decided which action to take based on the obser-
vations, i.e., policy mapping. We have created a DNN with three fully connected hidden
layers with respective hidden units of 64, 32, and units equal to the number of actions,
i.e., 1 in our case with relu layers in between. In addition, a sigmoid layer was added since
the output of the action ranges from 0 to 1 for duty cycle in our case. Finally, the scaling
layer scaled the output from the sigmoid layer with a scale of 1 and a bias of 0.5. The scale
was set to the range of action signal, and the bias was set to within half a range. We then
created the actor representation using specified neural networks and options as in Figure 4.
Table 3 presents the options of actor-network, critic network as well as training of agent.
Table 4 presents the hyperparameters setting to administer the training.

Table 3. Actor-Critic Network parameters.

Optimizer Learning Rate Gradient Threshold L2 Regularization Factor

Critic Adam 0.001 1 0.0001
Actor Adam 0.001 1 0.00001

Table 4. Training parameters setting.

Discount factor 0.99
Experience buffer length 106

Mini-batch size 128
Number of steps to look ahead 10

Target smooth factor 5× 10−3

Target update frequency 2
Exploration variance 0.01

Target policy smooth variance 0.2
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6.3. Training an Agent

The agent trained by randomly selecting mini batches of size 128 with a discount
factor of 0.99 towards the long-term reward from the replay buffer or experience buffer
with a maximum capacity of 1 × 106. The target critics and actors were time-delayed
clones of the critics and actor network with a smoothing factor of 0.005 that updated every
two agent steps during training. The agent used a Gaussian action noise model with a
specified noise variance and decay rate to explore the action space during training. The
agent also smoothed the target policy updates using the specified Gaussian noise model.
Each training consisted of 500 episodes, with each episode consisting of nearly 170 steps.
The agent training was terminated when the agent receives an average cumulative reward
of more than 800 over 100 consecutive episodes.

6.4. Computational Performance Comparison of DDPG and TD3

The proposed digital clones with DRL agents: the PV agent, BES agent, and EV agent,
trained individually as the agents should learn to act independently employing both DDPG
and TD3 algorithms. The motive behind designing the independent agents was that they
should be able to work with legacy controllers (in case only a few controllers got infected)
and other trained RL agents (all legacy controllers got infected). We train the agents as
configured in Sections 4.3–4.5 independently for both DDPG and TD3 algorithms.

All the computations and simulations were performed in MATLAB 2022 b and
Simulink 10.6 model version 5.6 in Dell XPS 15 7590 machine with i7-9750H CPU @2.6 GHz
and 16 GB RAM. Each agent took approximately 6.68 h of training for the 500 episodes
under DDPG and TD3. The TD3 training progress in terms of average rewards is shown
in Figure 5 with stabilized reward within 99 episodes for PV agent, 136 episodes for BES
agent, and 101 episodes for EV agent. However, the clones trained with DDPG exhibit poor
convergence stability due to their higher sensitivity towards the hyperparameter settings
though they were trained with the same hyperparameters and observation spaces as in
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TD3. The optimal episodes for training DDPG agents are 398 for PV agent, 22 for BES
agent, and 348 for EV agent after analyzing the rewards; Q-values as in Figures 5–7. The
incremental bias and suboptimal policy seen in DDPG training was due to the overestima-
tion of Q-values as they updated the Q-value as in DQN as evident in episode rewards of
Figure 5 and the estimated Q-values in Figure 6. That is the reason the DDPG has myriads
of suboptimal overshoots till the end of training progression. Therefore, the near optimal
policy under DDPG training can be found in 398 epochs for PV agent, 22 episodes for BES,
and 351 episodes for EV agent under the horizon of 500 episodes.
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7. Simulation Results and Discussion
7.1. Type I and Type II Attacks

Figure 7 summarizes the Type I and Type II attacks launched at different controllers
at the same time and at different times. The Type I attack is the low-frequency attack at
the duty cycles of the controllers, while Type II is the constant attack. The BES duty cycle
was found to be more vulnerable to both kinds of attacks than the duty cycles of other
controllers. The Type I attack has an irreversible impact on the BES controller as opposed
to the Type II attack on the BES controller and both attacks on other controllers.

7.2. Type I Attack on Different Times and Mitigation Analysis

The Type I attack was launched in three different controllers PV controller at 5–7 s, BES
controller from 9–11 s, and EV controller from 13–15 s, as shown in Figure 8. Tables 5–10
present the corresponding statistics of important electrical parameters. The Type I attack
impacted all the critical electrical parameters. It forced the power to have approx. 2.99k
times the normal range, 7.5k times the normal interquartile range (IQR), and median less
than 18.4 Watt to the median at regular operation. The proposed mitigation restored the
power with approximate errors of 0.002 watts in the median, 0.0001 watts in IQR, and
−2.44 watts in range with the one at normal operations, as evident in Table 5.

Table 5. PV power statistics in Watt during normal, attack and mitigation.

Range IQR Median

Normal [1043.59, 1044.60] [1043.593, 1043.599] 1043.5996
Attack [1768.23, 1255.32] [998.97, 1043.71] 1025.1726

Mitigation [1040.15, 1043.60] [1043.594, 1043.5998] 1043.5969
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Table 6. DC bus voltage statistics in Volts during normal, attack and mitigation.

Range IQR Median

Normal [52.7593, 52.761] [52.7596, 52.7607] 52.7605
Attack [−0.23051, 157.502] [52.2102, 53.8464] 52.7553

Mitigation [52.608, 53.1379] [52.7596, 52.7608] 52.7605

Table 7. BES current statistics in Ampere during normal, attack and mitigation.

Range IQR Median

Normal [−6.947, −6.9435] [−6.9435, −6.944] −6.9452
Attack [−193.294, 489.396] [−8.816, −6.358] −6.8273

Mitigation [−9.143, −6.723] [−6.9456, −6.944] −6.945

Table 8. BES voltage statistics in Volts during normal, attack and mitigation.

Range IQR Median

Normal [52.0586, 52.0588] [52.0586, 52.0588] 52.0587
Attack [47.9982, 52.3418] [51.5319, 52.1066] 51.9673

Mitigation [52.0586, 52.0839] [52.0586, 52.069] 52.0587
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Table 9. EV current statistics in Ampere during normal, attack and mitigation.

Range IQR Median

Normal [−18.674, −18.668] [−18.674, −18.669] −18.6713

Attack [−241.298, 5.26 ×
10−5] [−19.531, −11.488] −16.5862

Mitigation [−18.9473, −14.887] [−18.674, −18.671] −18.6716

Table 10. EV voltage statistics in Volts during normal, attack and mitigation.

Range IQR Median

Normal [26.312, 26.313] [26.312, 26.313] 26.3126
Attack [26.056, 27.465] [26.199, 26.344] 26.2524

Mitigation [26.265, 26.313] [26.293, 26.313] 26.3122

Similarly, the Type I attack has an inverse impact on bus voltage with a range elevation
of approximately 158 V, IQR elevation of 1.63 V, and median reduction by 0.0052 V compared
to the base operating conditions. The proposed mitigation can restore the bus voltage with
approximate errors of 0 V in the median, 0.0001 V in IQR, and 0.5288 V in the range with
the one at normal operations as per Table 6.

Also, as per Table 7, the Type I attack has an inverse impact on BES current with a
range elevation of approximately 683 A, IQR elevation of 14 A, and median increment by
0.1 A compared to the base operating conditions. The proposed mitigation can restore
the BES current with approximate errors of 0.0001 A in the median, 0.0013 A in IQR, and
2.4159 A in the range with the one at normal operations.

Likewise, the Type I attack has an inverse impact on BES voltage with a range elevation
of approximately 4.3434 V, IQR elevation of 0.5747 V, and median decrement by 0.0914 V
compared to the base operating conditions. The proposed mitigation can restore the BES
current with approximate errors of 0.000 V in the median, 0.0102 V in IQR, and 0.0251 V in
the range with the one at normal operations evident from Table 8.

Table 9 shows that the Type I attack has an inverse impact on EV current with a range
elevation of approximately 241.2919 A, IQR elevation of 8.0385 A, and median increment by
2.0851 A compared to the base operating conditions. The proposed mitigation can restore
the EV current with approximate errors of 3 × 10−4 V in the median, 0.0015 A in IQR, and
4.0534 A in the range with the one at normal operations.

Table 10 implies that the Type I attack has an inverse impact on EV voltage with the
range elevation of approximately 1.4074 V, IQR elevation of 0.1438 V, and median decrement
by 0.0602 V compared to the base operating conditions. The proposed mitigation can restore
the BES current with approximate errors of 4.0000 × 10−0.4 V in the median, 0.0193 V in
IQR, and 0.0472 V in the range with the one at normal operations.

7.3. Type I Attack Simultaneously on All Controllers and Mitigation Analysis

The Type I attack was launched simultaneously in three different controllers at 5–7 s
as shown in Figure 9. The Type II attack that launches at different times impacted all the
critical electrical parameters.
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7.4. Type II Attack on Different Times and Mitigation Analysis

The Type II attack was launched in three different controllers PV controller at 5–7 s,
BES controller from 9–11 s, and EV controller from 13–15 s, as shown in Figure 10.
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7.5. Type II Attack Simultaneously on All Controllers and Mitigation Analysis

The Type II attack was launched simultaneously in three different controllers at 5–7 s
as shown in Figure 11.
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7.6. Performance Comparison of Various Proposed Methods

Figure 12 depicts the control actions, i.e., duty cycles of the legacy controllers employed
in the EVCS, trained clones with DDPG and TD3 algorithms. Under the normal operation,
the legacy MPPT controller at PV stabilizes the duty cycle to 0.2 around 4.8 s. In contrast,
the digital clone trained with DDPG and TD3 settles at a duty cycle of 0.4 and 0.495,
respectively from the beginning as in Figure 12a. Figure 12b clearly shows the superior
control action of TD3 duty cycle converged to 0.99 from the beginning as compared to
DDPG BES clone converged to same after 4.2 s. The digital clone of EV controller trained
with DDPG and TD3 has produce the same control action, i.e., duty cycle of 0.5. The legacy
controllers are a manually tuned heuristic-based control that stabilizes the EVCS operation.
However, it takes some time to stabilize the duty cycles. Contrastingly, the control actions
taken by DDPG and TD3 are data driven as they optimize the control policy based on
maximizing the expected long-term rewards. Therefore, clones are given freedom to choose
the duty cycles that perfectly drive the normal operation of the EVCS.



Energies 2023, 16, 7296 18 of 20Energies 2023, 16, x FOR PEER REVIEW 20 of 22 
 

 

 

Figure 12. Control actions of Legacy, DDPG, and TD3 mitigations. 

Table 11 presents the features of the proposed mitigation methods with respect to 

other related works. Our proposed air-gapped TD3-based mitigation has surpassed the 

various state-of-the-art methods in attack detection with online mitigation with embedded 

intelligence. 

Table 11. Comparison between the proposed and the STATE-OF-THE-ART algorithms. 

Solution 
Attack 

Detection 

Coordinated 

Attacks 

Online 

Mitigation 

Embedded 

Intelligence 
Air Gapped 

TD3 (our work) √√ √√ √√ √√ √√ 

DDPG 

(Benchmark) 
√√ √√ √√ X √√ 

HIDS for EVCS [9] √√ √√ X √√ √√ 

NIDS for EVCS [7] √√ √√ X X X 

Weighted attack 

defense tree [15] 
√√ √√ X X X 

√√: Present; X: Absent. 

8. Conclusions 

This work devised a concept of data driven software clones implementing the state-

of-the-art DRL (TD3) algorithm to mitigate the adverse effects of cyberattacks on the 

controllers of EVCS. The performance of the proposed TD3 based clones has been 

compared with that of the benchmark DDPG clones. The case studies uncover the 

following findings: 

• The repetitive low-frequency attack (Type-I) on all controllers, at different times or 

simultaneously, has adverse impacts on critical functionalities of all controllers with 

the tendency to damage the EVCS with an upsurge/down surge in electrical signals. 

Figure 12. Control actions of Legacy, DDPG, and TD3 mitigations.

Table 11 presents the features of the proposed mitigation methods with respect to other
related works. Our proposed air-gapped TD3-based mitigation has surpassed the various
state-of-the-art methods in attack detection with online mitigation with embedded intelligence.

Table 11. Comparison between the proposed and the STATE-OF-THE-ART algorithms.

Solution Attack
Detection

Coordinated
Attacks

Online
Mitigation

Embedded
Intelligence Air Gapped

TD3 (our work)
√√ √√ √√ √√ √√

DDPG (Benchmark)
√√ √√ √√

X
√√

HIDS for EVCS [9]
√√ √√

X
√√ √√

NIDS for EVCS [7]
√√ √√

X X X
Weighted attack
defense tree [15]

√√ √√
X X X

√√
: Present; X: Absent.

8. Conclusions

This work devised a concept of data driven software clones implementing the state-of-
the-art DRL (TD3) algorithm to mitigate the adverse effects of cyberattacks on the controllers
of EVCS. The performance of the proposed TD3 based clones has been compared with that
of the benchmark DDPG clones. The case studies uncover the following findings:

• The repetitive low-frequency attack (Type-I) on all controllers, at different times or
simultaneously, has adverse impacts on critical functionalities of all controllers with
the tendency to damage the EVCS with an upsurge/down surge in electrical signals.
The agents successfully restore the EVCS operation by correcting the control signals of
legacy controllers.
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• The constant attack (Type-II) on controllers at different times or simultaneously tends
to corrupt and damage the electrical components related to the legacy control actions.
The proposed agents attempt to correct the control signals with the least error.

• The proposed TD3 based software clones are capable of taking over the legacy con-
trollers under the APT attacks or even under the anomalous behavior.

• The TD3 based clones are found to be superior to DDPG based clones in terms of
convergence, stability, hyperparameter sensitivity and mitigation actions.

Future research will focus on exploring other novel methods for detection and miti-
gation of cyberattacks on the EVCS controllers, and their performance will be compared
with those in this work. Moreover, the new data driven control algorithm will be explored
under the collaborative and adversarial setups to tackle the extreme cyber-physical attacks
at EVCS. Also, 5G-based communication applications [9] in EVCS and related cybersecurity
issues will be analyzed. Moreover, various game theoretic and dynamic programming
approaches [26] along with powerful machine learning algorithms can be explored to
develop optimal cyberattack-defense strategy in EVCS.
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