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A B S T R A C T   

The laser-powder bed fusion (L-PBF) technique is employed to print cylindrical rods of near-α Ti-6Al-2Sn-4Zr- 
2Mo-0.08Si (Ti6242) alloy. The parts are printed using four scan speeds; 1000, 1200, 1400, and 1600 mm/s. 
Since the 1200 mm/s sample possesses the highest strength in the as-built condition, it is selected as the 
benchmark sample for heat treatment development. The kinetics of α to β phase transformation is employed in 
designing a two-step sub-transus heat treatment recipe. The mechanical properties and microstructure of both as- 
built and heat-treated parts are studied to elaborate on the process-microstructure-properties relationship and 
the effectiveness of the heat treatment recipe. In the next step, this recipe is applied to the other samples. The 
formulated heat treatment works effectively for all conditions and makes the final properties more uniform. This 
study shows the effectiveness of developing a heat treatment for one printing condition and extending it to other 
printing conditions.   

1. Introduction 

Titanium and its alloys have applications in a wide range of in
dustries including aerospace, defense, transportation, biomedical, etc. 
[1]. Ti-6Al-4V (Ti64) is the most common α+β titanium alloy [2] with a 
good strength-ductility synergy at room and elevated temperatures up to 
400 ◦C [3]. For temperatures above 400 ◦C, Ti64 exhibits a significant 
strength loss which limits its application. Therefore, high-strength 
near-α titanium alloys are considered for these conditions [4]. 
Ti-6Al-2Sn-4Zr-2Mo-0.08Si (Ti6242) is a near-α titanium alloy that re
tains its strength at high temperatures up to 540 ◦C [5]. The fabrication 
of Ti6242 components through conventional manufacturing processes 
has a long history [6]; however, few studies are available on the 
laser-powder bed fusion (L-PBF) of this alloy [5,7–13]. The ultrahigh 
cooling rates associated with the L-PBF process, in the range of 103–108 

K/s [14], result in the evolution of an ultrafine α’ martensitic structure, 
featured by pre-existing dislocation networks and nanotwins [5,9,13]. 
These ultrafine microstructural characteristics significantly enhance the 
strength of the L-PBF-Ti6242 parts; however, the resulting ductility is 
very low [8,12]. Therefore, post-process heat treatment recipes have 
been developed to enhance the ductility of the L-PBF-Ti6242 [9,10,12]. 

The common practice in developing the heat treatments for L-PBF- 

Ti6242 is to print the sample using one set of process parameters, heat 
treat the sample, and characterize the resulting mechanical properties 
and microstructure. This is also a common practice for other alloying 
systems including Ti64 [15], aluminum alloys [16], and steels [17]. It is 
well-established that the microstructure of L-PBF alloys is dependent on 
the process parameters [18]. Changing the process parameters will alter 
the thermal boundaries and cooling conditions which then alter the 
resulting microstructure [19]. Therefore, both physical and mechanical 
properties will change. As a result, a concern is raised; if a heat treat
ment is developed for a set of L-PBF process parameters, is it effectively 
applicable to samples printed by other process parameters? 

In the current study, we aim to address the above-mentioned ques
tion. To do so, cylindrical rods of Ti6242 are printed using four sets of L- 
PBF process parameters. One sample is selected as the benchmark and a 
two-step heat treatment recipe is developed considering the kinetics of 
phase transformation in the sample. The microstructure and mechanical 
properties of the heat-treated benchmark sample are studied to elabo
rate on the strengthening and toughening mechanism. The formulated 
heat treatment recipe is then applied to the other samples to investigate 
its applicability. 
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2. Materials and methods 

Cylindrical rods of Ti6242 with the nominal composition of Ti-6Al- 
2Sn-4Zr-2Mo-0.08Si (wt.%) were printed using an EOS-M290 system. 
The rods were printed vertically with dimensions of 8 mm (diameter) ×
70 mm (height). Since EOS has not developed the process parameters for 
the Ti6242 system, the available parameters for Ti64 were employed 
[20]. The main L-PBF process parameters that determine the energy 
density include laser power (P in W), scan speed (v in mm/s), hatch 
distance (l in μm), and layer thickness (h in μm). These parameters were 
set to P = 280 W, l = 140 μm, and h = 30 μm. To vary the energy density, 
the samples were printed using four scan speeds; v = 1000, 1200, 1400, 
and 1600 mm/s. The samples are designated as 1000, 1200, 1400, and 
1600, respectively. All samples were printed under Ar protective at
mosphere, using the stripe scanning strategy. 

The relative density of the samples was measured using the Archi
medes method following ASTM B311-22 standard [21]. The relative 
density of 1000, 1200, 1400, and 1600 samples was determined as 
99.4%, 99.6%, 99.3%, and 99.3%, respectively. As seen all samples were 
printed with the least defects. 

The cylindrical rods were heat treated in a Lindberg Blue M furnace 
by Thermo Scientific. Tensile testings were carried out following the 
ASTM E8/E8M-21. Dogbone samples with a gauge length of 16 mm and 

a diameter of 4 mm were pulled using a Shimadzu Autograph AGS-X 
(Shimadzu, Kyoto, Japan) universal testing system, with a constant 
strain rate of 0.5%/min. The tensile samples were machined from the 
rods, therefore, the effect of surface roughness was not taken into ac
count. Each tensile test for the as-built samples was repeated three times. 
The mean values and standard deviation analysis showed that the error 
is less than 1.2% for strength and 5% for ductility. Due to the consistency 
of the results, the rest of the tensile tests (for the heat-treated samples) 
were not repeated, unless any inconsistencies or outliers were observed. 

The hardness of the samples was measured using the Rockwell C 
hardness (HRC) technique by applying a 150 kgf load using a Wilson 
instrument (an Instron Company). The measurements were repeated five 
times for each sample and the average value is reported. 

The microstructure was studied using the transmission electron mi
croscopy (TEM) technique by employing a Thermo Scientific Talos 200X 
equipped with an X-FEG source and an adjustable high tension between 
80 and 200 kV. The sample preparation was completed through ion 
milling and the TEM images were taken along the building direction. 
Both TEM and scanning TEM (STEM) modes were used for imaging. All 
images were taken in the bright-field (BF) mode. 

3. Results and discussion 

The tensile properties of as-built (AB) L-PBF-Ti6242 are shown in 
Fig. 1. Some variations in strength and ductility are observed, which 
stem from applying different energy densities in printing the parts. The 
yield strength (σy), tensile strength (σTS), and strain at fracture (εf ) of the 
AB rods are summarized in the inset. Samples 1200 and 1600 possess the 
highest and lowest strengths, respectively. The difference between the 
lowest and highest σy and σTS are 136 MPa and 118 MPa, respectively. 
The level of εf is almost the same for 1200, 1400, and 1600 samples. 
Sample 1000 possesses the lowest εf , which brings the difference be
tween the highest and lowest εf to 1.9%. Considering the relative density 
of the AB samples (99.3–99.6%), it appears that the defects may not 
dominate the ductility of the material. Rather, the microstructure gov
erns the quasi-static mechanical properties, including both strength and 
ductility. In fact, different strengthening/toughening mechanisms are 
active in different length scales due to the complex and hierarchical 
microstructure developed during the rapid solidification [19]. To elab
orate on the role of each microstructural feature (and/or defects) on the 
ductility of the material, more in-depth analysis is required. Considering 
the synergy of strength and ductility, sample 1200 appears to be printed 
using the optimum conditions (among those selected for the current 
study). Therefore, this sample was selected to investigate the kinetics of 
α to β phase transformation in our previous study [22]. 

The basis for the design of heat treatment recipes for Ti6242 is the 
controlled nucleation and growth of the β phase to achieve synergistic 
strength and ductility [10]. In the current study, another factor was 
taken into account; preserving the hierarchical and ultrafine charac
teristics of the microstructure, with an emphasis on the nanotwins and 
dislocations. Therefore, long exposure to high temperatures should be 
avoided. Instead, a two-step sub-transus heat treatment was designed 
which comprised a short exposure to a high temperature close to the 
β-transus, followed by a long exposure to a moderate temperature below 
the annihilation temperature of the nanotwins. The annihilation of 
nanotwins occurs at ~500–600 ◦C [22]. The first step results in the 
nucleation and the second step results in the growth of the β phase. 
Therefore, to formulate the heat treatment recipe for the L-PBF-Ti6242, 
the isothermal α to β phase transformation kinetics was considered as 
follows [23], 

f = 1 − exp [− (kt)n
] (1)  

where f is the fraction of the transformed β at a given time (t) after the 
transformation starts, n is the Avrami exponent, and k is the 
temperature-dependent rate constant which is determined as follows 

Fig. 1. Tensile properties of AB-L-PBF-Ti6242.  

Fig. 2. The hardness of sample 1200 in the AB, ST, and STA conditions.  
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[24], 

k(T)= k0 exp
(

−
Ea

RT

)

(2)  

where Ea is the activation energy for transformation, T is temperature, R 
is the universal gas constant, and k0 is the pre-exponential factor. For the 
1200 sample, the parameters in Eqs. (1) and (2) were determined as n =
0.75, k0 = 2.55 × 1038, and Ea = 973.73 kJ/mol [22]. By employing the 
kinetics model, it was determined that if the sample is held at 900 ◦C for 
10 min, about 2% β will form. Therefore, the first step of the heat 
treatment was holding at 900 ◦C for 10 min followed by water 
quenching. This step is designated as the sub-transus (ST) stage. In the 
next step, the sample was aged at 300 ◦C for 12–72 hours, since at 300 ◦C 
both dislocations and nanotwins are preserved. The sample after the 
aging treatment is designated as ST aged (STA). The hardness values of 
AB, ST, and STA samples were measured and reported in Fig. 2. The 
highest hardness belongs to the AB-L-PBF-Ti-6242. ST treatment sub
stantially reduced the hardness. Following the aging step, the hardness 

was enhanced; however, some fluctuations are observed in the hardness 
values. By comparing the hardness of the aged samples, 48 hours of 
holding was identified as the desired aging time since it resulted in the 
maximum hardness. 

The mechanical properties of the ST sample were σy = 883 MPa, σTS 
= 1102 MPa, and εf = 17.5%. 10 min of holding at 900 ◦C significantly 
improved the ductility at the expense of strength. On the other hand, the 
aging treatment changed the properties of the STA sample to σy = 1055 
MPa, σTS = 1147 MPa, and εf = 14.7%. As seen, the aging treatment 
increased the strength with some extent of ductility loss. 

The microstructures of AB, ST, and STA samples were studied in the 
scanning mode of TEM (STEM) and the bright field (BF) images are 
shown in Fig. 3. As seen, the microstructure of AB-L-PBF-Ti6242 consists 
of fine α′ martensite lath with a width of less than 1 μm. The pre-existing 
dislocation networks and nanotwins developed within the martensite 
lath as a result of rapid solidification [5,25]. Fine α’ laths with a dis
torted crystal structure and dense dislocations (i.e., networks of tangled 
dislocations with high density) are the main strengthening mechanisms 

Fig. 3. STEM-BF micrograph of sample 1200 in the (a) AB, (b) ST, and (c) STA conditions, (d) TEM-BF micrograph of STA sample showing the details of rearranged 
dislocations. 
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in the AB sample [7]. Nanotwins mainly contribute to ductility as they 
increase the dislocation storage capacity of the material [26]. The short 
hold at 900 ◦C resulted in the nucleation of the β phase with a bcc crystal 
structure [12]. The evolution of the β phase in the ST sample contributes 
to ductility improvement [12]. The dislocations within the martensite 
laths are still observed in the ST sample, due to the short holding time. 

After the aging step, the dislocations rearranged their configuration 
in the martensite lath and developed dislocation arrays, as observed in 
Fig. 3 (c). The details of rearranged dislocations were studied in the TEM 
mode, as shown in Fig. 3 (d). These arrays act as barriers against 
dislocation motion and enhance the strength of the STA sample. The 
governing mechanism is the reduction of the mean effective slip length 
of the dislocations. In other words, a Hall-Petch-like mechanism is 
activating in the STA-L-PBF-Ti-6242 by developing the dislocation ar
rays [27]. 

The heat treatment recipe was formulated by employing the kinetics 
model developed specifically for the sample printed with v = 1200 mm/ 
s. By changing the scan speed, the cooling conditions will change which 
then alters the microstructure. Therefore, the physical properties and 
consequently the kinetics of α to β phase transformation will be different 
in 1000, 1400, and 1600 samples. To assess the applicability of the 
formulated heat treatment recipe to the other samples, 1000, 1400, and 

1600 rods were heat treated using the same recipe, and the tensile 
properties are shown in Fig. 4. The key mechanical properties of the 
heat-treated samples are summarized in the insets. 

As seen in the stress-strain curves of the samples, the ST heat treat
ment enhanced the ductility of all samples accompanied by strength 
loss. The level of ductility improvement was not the same in all samples. 
Moreover, the level of strength reduction was not consistent in all 
samples. The difference between the lowest and highest σy, σTS, and εf in 
the ST samples are 83 MPa, 25 MPa, and 4.3%, respectively. The aging 
step increased the yield strength of all samples between 172 MPa and 
215 MPa. A slight increase in the tensile strength and a slight reduction 
in the ductility is observed. The difference between the lowest and 
highest σy, σTS, and εf in the STA samples are 45 MPa, 53 MPa, and 1.7%, 
respectively. Therefore, the STA heat treatment not only worked effec
tively for all conditions but also made the final properties more uniform 
(compared to the as-built condition). 

4. Conclusions 

The near-α Ti6242 alloy was printed using the L-PBF process with 
four different energy densities by varying the scan speed between 1000 
and 1600 mm/s. The mechanical properties of the as-built samples 
showed that a scan speed of 1200 mm/s resulted in the highest strength 
(i.e., σy =1296 MPa and σTS = 1420 MPa). Therefore, this sample was 
selected as the benchmark for the design of a heat treatment recipe. The 
kinetics of α to β phase transformation in this sample was employed to 
formulate a two-step sub-transus heat treatment consisting of a sub- 
transus (ST) holding at 900 ◦C for 10 min followed by aging at 300 ◦C 
for 48 hours (STA). The STA heat treatment effectively enhanced the 
ductility of the sample from 9% to 14.7%. The yield and tensile strengths 
of the STA sample were also 1055 MPa and 1147 MPa, respectively. To 
assess the applicability of the designed heat treatment to the other 
printing conditions, 1000, 1400, and 1600 samples were heat treated 
using the same recipe. The STA heat treatment effectively and consis
tently improved the ductility of all samples and meanwhile made the 
strengths of all samples more uniform. While the difference between the 
lowest and highest σy and σTS in the as-built samples were 136 MPa and 
118 MPa, respectively, the associated differences were 45 MPa and 53 
MPa in the STA samples. Therefore, this study shows that if a heat 
treatment recipe is developed for one printing condition, it can be 
applied effectively to the other printing conditions. 
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