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Abstract
Data-driven ground motion models (GMMs) for the average horizontal component
from shallow crustal continental earthquakes in active tectonic regions are derived
using a subset of the Next Generation Attenuation (NGA)-West2 data set, including
14,518 recordings out of 285 earthquakes recorded at 2347 different stations. We
use four different nonparametric supervised machine learning (ML) algorithms includ-
ing Artificial Neural Network (ANN), Kernel-Ridge Regressor (KRR), Random
Forest Regressor (RFR), and Support Vector Regressor (SVR) to construct four indi-
vidual models. Then, we use a weighted average ensemble approach to combine
these four models into a robust model to predict various ground motion intensity
measures such as peak ground displacement (PGD), peak ground velocity (PGV),
peak ground acceleration (PGA), and 5%-damped pseudo-spectral acceleration
(PSA). The model input parameters are moment magnitude, rupture distance, VS30,
and ZTOR. The ensemble modeling attempts to remove the drawbacks or deficiencies
of different ML algorithms while capturing their advantages and accounts for episte-
mic uncertainty. Although no functional form is provided, the model can capture sali-
ent features observed in ground motions such as saturation as well as geometrical
spreading, anelastic attenuation, and nonlinear site amplification. The response spec-
tra and the magnitude, distance, VS30, and ZTOR scaling trends are consistent and com-
parable with the NGA-West2 GMMs including several additional input parameters.
We used a mixed-effects regression analysis to split the total aleatory uncertainty
into between-event, within-station, and event-site–corrected components. The
model is applicable to magnitudes from 3.0 to 8.0, rupture distances up to 300 km,
and spectral periods of 0 to 10 s.
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Introduction

Within active tectonic regions, there is ongoing deformation and movement of the Earth’s
crust because of tectonic activities that can result in earthquakes or volcanic eruptions.
The movement of tectonic plates leads to the accumulation of stress along fault lines that
can produce shallow crustal earthquakes, generally with hypocentral depths of less than
25 km. Because these areas are prone to suffer from large devastating earthquakes, under-
standing the pattern and characteristics of earthquakes and predicting the expected level
of shaking for a future event can significantly mitigate earthquake-related risks.

Ground motion models (GMMs) predict the expected level of ground motion shaking
as a function of predictor variables such as earthquake magnitude, site-to-source distance,
and site parameters. Thus, GMMs are widely used for seismic hazard analysis and risk
assessment. Hundreds of GMMs have been developed for different regions and based on
various data sets (Douglas, 2003, 2011). Conventional empirical GMMs are derived from
observed ground motion recordings and have a closed-form functional form that estimates
various ground motion intensity measures (GMIMs) such as peak ground acceleration
(PGA) and 5%-damped elastic pseudo-spectral acceleration (PSA) at different periods as
well as peak ground velocity and displacement (PGV and PGD). The development of tra-
ditional empirical GMMs is not a simple curve fitting, but it is a model building that uses
recorded ground motions as well as results from seismological and geotechnical numerical
simulations such as the hanging wall scaling, large magnitude scaling, and nonlinear site
response scaling (Collins et al., 2006; Donahue and Abrahamson, 2014; Kamai et al.,
2014). Developed GMMs such as the Next Generation Attenuation (NGA)-West2 GMMs
(Abrahamson et al., 2014; Boore et al., 2014; Campbell and Bozorgnia, 2014; Chiou and
Youngs, 2014; Idriss, 2014) are complex compared to other developed GMMs including
complicated combinations of explanatory variables. These complicated combinations of
explanatory variables, in addition to several constraints corresponding to numerical simu-
lations, such as nonlinear site effects, hanging wall–footwall source effects, and basin-
related site amplifications, may result in overfitting, limiting the predictive power of
GMMs for future events (Bindi, 2017). Thus, the development process occurs in a series of
steps within which model components are progressively constrained and/or smoothed to
account for meaningful trends in the data as well as to avoid trade-offs in model coeffi-
cients (Parker et al., 2022).

Recently, machine learning (ML) approaches have been getting much attention as the
size of databases for developing GMMs is increasing, particularly for tectonically active
areas such as California, where plenty of strong ground motion data is available. These
fully data-driven ML techniques can learn complex linear and/or nonlinear trends in high-
dimensional data. ML is a part of artificial intelligence that enables computers to learn
relationships and patterns in data without requiring any predefined functional form.
Generally, ML algorithms are classified as supervised learning and unsupervised learning
in which the outputs are labeled/known and unlabeled/unknown, respectively. Regression
is considered a supervised ML class where the output is known as continuous numerical
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values. In this study, we use four well-known supervised nonparametric ML algorithms,
including Artificial Neural Network (ANN), Kernel-Ridge Regressor (KRR), Random
Forest Regressor (RFR), and Support Vector Regressor (SVR) as an alternative to classi-
cal regression techniques. In the following sections, we describe the data set selected for
the analysis and provide some background about individual models. A grid search is per-
formed to determine the best set of each model’s hyperparameters. Then, we use ensemble
modeling to combine individual models into a final model to improve the accuracy and
robustness of estimations for future events. The model is trained using a subset of the
NGA-West2 data set to estimate PGD, PGV, PGA, and 5%-damped PSA values at 21
spectral periods from 0.01 to 10 s. The global GMMs developed in this study can capture
significant features of earthquake phenomena such as magnitude and distance scaling,
saturation effects, geometrical spreading, anelastic attenuation, and nonlinear site effects
without defining any functional form. We compare our models with the NGA-West2
GMMs and show consistent magnitude, distance, VS30, and ZTOR-dependence relations.
We then use a mixed-effects regression analysis to determine the between-event, site-to-
site, and event-site–corrected components that are required for performing site-specific
probabilistic seismic hazard assessment (PSHA).

It should be noted that the goal of developing a new set of GMMs for a given region or
a given data set is not to develop the best model to reject or supersede the other models
but to propose another correct view and at the same time, different than the other GMMs
developed for that data set. In this way, we can account for uncertainty in the model
development process because of limited knowledge and the randomness of earthquake
phenomena. For instance, the United States Geological Survey (USGS) uses a logic tree
considering all five NGA-West2 GMMs with an assigned weight for each branch to cap-
ture the uncertainty in ground motion estimation. Different GMM ranking schemes (e.g.
Kale and Akkar, 2013; Mak et al., 2017; Scherbaum et al., 2009) indicate that none of the
developed GMMs is perfect in the entire range of magnitude, distance, and period for
future earthquakes. In other words, some GMMs perform better in some periods, whereas
others may perform better in other periods. Even sometimes, some GMMs perform better
for a range of M-R; while for another M-R range, they may not provide the best estima-
tion. Comparing the distance scaling curves with the observed ground motions from the
2019 M7.1 Ridgecrest and the 2023 M7.8 Turkey earthquakes, we show that our GMMs
outperform for the mid-range period (;1 s) for active shallow earthquakes. In addition,
although our proposed GMMs have fewer explanatory variables included compared to
NGA-West2 GMMs, the results are comparable and, in some periods, better match with
the observed data compared to the NGA-West2 GMMs. This is useful for quick estima-
tion of GMIMs (e.g. ShakeMap) after an earthquake where obtaining Z1.0 (or Z2.5 for
basin depth), dip angle, the width of the fault, being a hanging wall site or not, and rake
angle (for Rx and Ry0 estimation) are more challenging than obtaining M, ZTOR, VS30,
and distance.

Ground motion database

The NGA-West2 database is an extension of the NGA-West1 database that includes a set
of small-to-moderate magnitude earthquakes in California between 1998 and 2011 and
worldwide strong ground motion data in active tectonic regimes post-2000 recorded from
shallow crustal earthquakes (Ancheta et al., 2014). This database has been compiled by
Pacific Earthquake Engineering Research Center (PEER) NGA to collect uniformly pro-
cessed time series and response spectral ordinates for developing GMMs for shallow
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crustal earthquakes in active regions (Bozorgnia et al., 2014). This database collects
instrument-corrected median orientation-independent horizontal component (RotD50, the
50th percentile of the response spectra over all nonredundant rotation angles; Boore,
2010) GMIMs with the corresponding earthquake and site condition characteristics within
several active regions such as California, China, Greece, Iran, Italy, Japan, New Zealand,
Taiwan, and Turkey. The updated flatfile released in 2015 (see section ‘‘Data and
resources’’) includes 21,540 recordings from 607 earthquakes. The following criteria are
applied to the full data set to select a subset for use in the development of GMMs in this
study:

� Remove recordings with unknown/missing key metadata (magnitude, distance,
ZTOR, VS30, and PGA/PSA);

� Remove ground motions with magnitudes less than 3.0 and rupture distances more
than 300 km;

� Remove ground motions with the multiple-event flag equal to 1;
� Remove recordings with late P-trigger;
� Remove aftershocks within a cut-off distance of 5 km from the main shock due to

having below-average short-period amplitudes (Wooddell and Abrahamson, 2014);
� Remove a few records that in the initial analysis are recognized as clear outliers

(residuals in log scale larger than 4);
� Finally, events with at least five recordings per event are kept in the final data set.

The final selected subset consists of 14,518 recordings from 285 events recorded at 2347
stations. Figure 1 shows the histogram distributions of magnitude, rupture distance, VS30,
and ZTOR, as well as the magnitude–distance distribution. There is good coverage for
magnitude and distance; however, the majority of the data have magnitudes less than 5
and distances less than 100 km. Also, although VS30 values vary from 106 to 2016 m/s, the
number of stations with VS30 less than 150 m/s or more than 1500 is very small. Figure 2
illustrates the distance scaling of the recorded ground motions for PGA, PSA at 0.2 and
1.0 s, and PGV. It is clear that PGA, PSA, and PGV strongly correlate with magnitude
and distance.

Data preparation

We use moment magnitude (M, unitless), rupture distance (closest three-dimensional dis-
tance to the rupture plane Rrup, in km), depth to the top of the rupture plane (ZTOR, in
km), and time-averaged shear wave velocity in the upper 30 m (VS30, m/s) as input para-
meters to the ML models. These parameters account for the magnitude, distance, depth,
and site response scaling, respectively. The outputs or target values are defined as the nat-
ural logarithm of the RotD50 horizontal component of PGA (in units of g), 5%-damped
PSA (in g) at different periods, PGV (cm/s), and PGD (cm). An initial explanatory data
analysis of the recorded ground motions shows that the logarithm of GMIMs can be
captured better with the logarithm of Rrup and VS30. Due to this observation and the high
positive skewness of these input variables, Rrup and VS30 are transformed using a natural
logarithmic function. The following equations represent the input and output matrices X
and Y, respectively:

X = M ln Rrup

� �
ZTOR ln VS30ð Þ

� �
ð1Þ
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Y = ln PGAð Þ ln PSA0:01 sð Þ . . . ln PGVð Þ ln PGDð Þ½ � ð2Þ

Input parameters are continuous and therefore are considered numerical features. ML
algorithms, except for tree-based models, are sensitive to unscaled numerical features, and
the process of training can be extremely slow if unscaled data are fed to these algorithms.
Furthermore, many gradient-based estimators are designed to work with normalized or
standardized data with values close to 0; therefore, using unscaled data can prevent conver-
gence (Brownlee, 2016a). In this regard, we normalize each input parameter to the range of
[0,1] to be fed to the ML algorithm without changing the distribution of the features. The
normalization process for a given value in the input vector can be done by subtracting the
minimum value from that given value and dividing the result by the difference between the
maximum and minimum values.

Note that ‘‘region’’ is one of the additional explanatory variables in the NGA-West2
GMMs (except for Idriss, 2014) to allow for regionalization of the VS30 scaling and the
anelastic attenuation (i.e. Q-term). The final data set includes 285 earthquakes, 265 of
which occurred in California, 2 in Alaska, 1 in Nevada, 2 in Iran, 5 in Italy, 3 in Japan, 2
in New Zealand, 1 in Taiwan, 2 in Turkey, 1 in Georgia, and 1 in Montenegro. Including
adjustment factors for the path and site terms in the functional form is straightforward.
However, the inclusion of region as an explanatory variable (a categorical feature) in ML
algorithms results in dividing the data set into various parts, and since more than 90% of
earthquakes are from California, the final model will not be robust for other regions.
Thus, the proposed GMMs are global, and the user based on the region of interest may

Figure 1. Distribution of the data used in terms of M, Rrup, VS30, and ZTOR.
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require performing some post-processing steps to account for systematic differences in site
and path effects, such as the hybrid empirical approach of Campbell (2003) and Pezeshk
et al. (2018) or the referenced empirical approach of Atkinson (2008, 2010) based on the
use of residual analysis. Another explanatory variable in the NGA-West2 GMMs is sedi-
ment thickness via Z1.0 or Z2.5 value, the depth to the 1 or 2.5 km/s shear wave velocity
horizon beneath the site, respectively, to account for the de/amplification of deep sediment
sites. This information is available through measurements or simulations for Japan and
several California sites (Ancheta et al., 2014). Sediment depth is a numerical feature, and
it is required to fix unknown values before feeding the numerical feature into ML algo-
rithms. In this regard, all the earthquakes in other countries and also some California
earthquakes with an unknown sediment depth should be removed, or the sediment depth
should be imputed from other methods, such as using a median or mean value. There are
some equations to evaluate the sediment depth using VS30 for Japan and California
(Campbell and Bozorgnia, 2014; Chiou and Youngs, 2014). However, using these equa-
tions to compute the unknown sediment depths causes multicollinearity in ML algorithms.
Therefore, we have not included the basin depth as an input parameter. We also chose to
drop the style-of-faulting term from the explanatory variables list. In the final data set, the
number of earthquakes with strike-slip, normal, and reverse mechanisms are 198, 25, and
62, respectively. All NGA-West2 GMMs include the style-of-faulting terms in their func-
tion form. However, the final regression results of Boore et al. (2014), Abrahamson et al.
(2014), and Campbell and Bozorgnia (2014) GMMs are such that there is no scaling

Figure 2. Magnitude and distance dependence of PGA, PSA at 0.2 s, PSA at 1.0 s, and PGV.
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between strike-slip and reverse events. Abrahamson et al. (2014) explained that the ZTOR

term instead accounts for the scaling of reverse events due to the correlation between
style-of-faulting and ZTOR in the NGA-West2 data set. Chiou and Youngs (2014) also
mentioned that the style-of-faulting effect is weaker for M \ 6 earthquakes. We initially
included this term in our analysis but found the term statistically insignificant, and thus,
in the final version of the model, we dropped the style-of-faulting term. Similar trends
have been observed in other regions, such as Europe and the Middle East (Kotha et al.,
2016, 2020) and Iran (Sedaghati and Pezeshk, 2017).

Each ML algorithm, in addition to explanatory variables, has several input parameters,
known as hyperparameters, that control the learning process. These hyperparameters are
chosen by the user and are fixed during the training process and are passed as arguments
to the constructor of the estimator. Note that hyperparameters are different from the regu-
lar parameters of ML methods, such as weights or coefficients that are derived from train-
ing. The process of selecting a set of optimal hyperparameters for an ML algorithm is
called hyperparameter optimization or tuning. Grid search is a traditional way of the
hyperparameters tuning process, which is an exhaustive search through a predefined sub-
set of the ML method’s hyperparameters space. After defining the range of feasible values
for all hyperparameters, we build a model for each possible combination of all hyperpara-
meter values provided and measure the model’s performance using the loss function.
Hyperparameter tuning finds a set of hyperparameters that results in an optimal model
which minimizes a predefined loss function on a given test data set.

Note that if we use the same training data for evaluating the selected model, there is a
chance of overfitting, and then the model can be failed and results in high errors for unseen
data because ML algorithms are able to memorize the data instead of learning a general-
ized pattern if a bad set of hyperparameters are chosen (Brownlee, 2016b; Kuhn and
Johnson, 2013). To perform the hyperparameter tuning process, we use a standard proce-
dure called k-fold cross-validation (CV) (Brownlee, 2018; Kuhn and Johnson, 2013; Stone,
1974). In this regard, we first separate a test set from the selected final data set to use for
the final evaluation of our models. The remaining data are then split into k number of
folds (subsets). The CV process iterates through the k 2 1 subsets and uses the hold-out
subset at each iteration for validation. This process is repeated until every subset has been
used as a validation set. Then, the average loss value is reported as the performance metric.
A single run of the k-fold CV approach may lead to a noisy prediction of the model perfor-
mance since different splits of the data result in various results. One solution to decrease
the noise in the model performance is to increase the k-value. This will reduce the bias in
the model performance; however, it will increase the variance.

An alternative method is to repeat the k-fold CV process multiple times and report the
mean performance over all subsets and all repeats. This approach is referred to as repeated
k-fold CV (Brownlee, 2020; Kuhn and Johnson, 2013). We partitioned the final subset into
two different sets, 80% for training and validation using a tenfold CV procedure with three
repetitions and 20% for testing to evaluate the performances of different models in estimat-
ing GMIMs using unseen test data. We use a stratified split method to keep the distributions
of explanatory variables in the training and testing data sets the same as the entire data set.

Individual ML models

The GMIM estimation is treated as a regression problem, and the GMM can be expressed
as
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ln GMIMð Þ= f M , ln Rrup

� �
, ZTOR, ln VS30ð Þ

� �
+ e ð3Þ

in which ln(GMIM) is the natural logarithm of the RotD50 horizontal GMIM of interest
(PGD in cm, PGV in cm/s, and PGA and 5%-damped PSAs in g unit), function f gives
the estimated GMIMs in natural log units, and e is the residual (aleatory variability) repre-
senting the random variability of data relative to the model. A positive residual indicates
that the model underpredicts the observation and a negative residual indicates that the
model overestimates the observation. To perform a fully data-driven modeling process, we
use four well-established supervised nonparametric ML algorithms, including ANN,
KRR, RFR, and SVR to construct predictive GMMs. There are several researchers who
have used ANN (Ahumada et al., 2015; Alavi and Gandomi, 2011; Derras et al., 2012,
2014; Dhanya and Raghukanth, 2018; Garcı́a et al., 2007; Gök and Kaftan, 2022; Güllü,
2012; Khosravikia and Clayton, 2021; Khosravikia et al., 2019; Sedaghati et al., 2009;
Sreenath et al., 2023; Vemula et al., 2023) or RFR (Khosravikia and Clayton, 2021; Kong
et al., 2019; Kubo et al., 2020; Sreenath et al., 2023), or SVR (Hu and Zhang, 2022;
Khosravikia and Clayton, 2021; Sreenath et al., 2023; Tezcan and Cheng, 2012) to develop
GMMs for different regions; however, our study is the first to use a KRR approach to
develop GMMs.

The detailed process of model construction and hyperparameters’ tuning can be found
in the Supplementary material. The final selected ANN has two layers having eight and
four nodes in the first and second layers, respectively, and tanh as the activation function
in hidden layers and a linear activation function for the output layer. We used the Adam
optimizer with a batch size of 128. The KRR model has a Gaussian kernel with alpha and
gamma equal to 1 as the regularization strength and radial basis function (RBF) para-
meters, respectively. The selected RFR model uses a bootstrap resampling using 90% of
the total training data and the minimum number of samples required at the leaf node and
the minimum number of samples for a split at each node are set to 6 and 10, respectively.
The final SVR model has a Gaussian kernel and C, gamma, and epsilon values indicating
regularization parameter which controls the trade-off between maximizing the margin and
minimizing the error, kernel coefficient, and penalty distance threshold, respectively, are
set to 15, 0.01, and 0.1, respectively.

It should be noted that ANN natively supports multitarget regression; however, KRR,
RFR, and SVR can predict a single target only at a time; thus, the regressor should be
fitted separately for each period. An initial analysis of ANN showed us that the multitar-
get regression results in biased residuals for different periods since the network is fitted for
all periods at once, mixing the correlation between different periods. Thus, even for the
ANN model, we use one target at a time to solve for the weights and biases of the net-
work. We use the MultiOutputRegressor strategy in Python from the ‘‘sklearn’’ package
to feed the entire target variables mentioned in Equation 2 into the model and solve the
regression by fitting one regressor per target. Because we use a repeated tenfold CV proce-
dure with three repetitions, for each set of hyperparameters, 30 different models are fitted
and evaluated. A mean squared error (MSE) is considered the model performance metric
(score), and the best set of hyperparameters is the one having the lowest MSE. When sev-
eral hyperparameter combinations result in nearly similar MSE values, the model with the
lowest Bayesian information criterion, BIC value (Schwarz, 1978), is selected, which can
be obtained from
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BIC= log
SSE

n� k

� �
+

k

n

� �
log nð Þ ð4Þ

where k is the number of training parameters, n is the available training samples, and SSE
is the sum of squared errors for the training.

MSE, mean absolute error (MAE), and coefficient of determination (R2) using the dif-
ference between the test data and the predicted values (in ln scale) are used to evaluate the
model performance. Generally, lower MSE and MAE values indicate better performance
and lower variance. A higher R2 value suggests a stronger correlation between independent
and dependent variables with a maximum of R2 = 1 in the case of a linear relationship.
Table 1 lists the MSE, MAE, and R2 values obtained from the test data using different
ML algorithms with their optimal hyperparameters selected using a grid search and perfor-
mance comparison using a tenfold CV procedure with three repetitions.

Ensemble model (weighted average)

Now, the question is how to select the best model among these models. The answer is that
it is very subjective, and the results can be changed based on a given unseen data set. In
addition, each method has several benefits while having some drawbacks. For instance,
RFRs cannot extrapolate beyond the training data set, while ANNs can often perform
well in the case of extrapolation. Of course, it is not guaranteed that ANN extrapolation
follows precisely what we expect, but based on the trend in the training data, it can try to
extrapolate for values outside the range of the training data. Note that RFRs report con-
stant values similar to the boundary for values outside the training range. SVRs work well
with high-dimensional data, and KRRs can perform better when there is multicollinearity
in data compared to other approaches. In addition, the prediction from RFR is jagged,
and the prediction from ANN is smooth.

To keep all advantages and remove the disadvantages of individual models, we can
combine the outputs of several ML algorithms without the need to choose a model specifi-
cally. This process is called ensemble modeling (Raschka, 2018). The performance of the
ensemble model is usually close to the best model for the training data, and sometimes it
can outperform the performance of each model for unseen data. In the final data set, the
data are sparse for the close distance range (less than 10 km), and even though the hyper-
parameters are selected to avoid overfitting, we may still observe large deviations among
predictions from different ML models. By ensemble modeling for future events, we can
effectively reduce the risk of an unfortunate selection of one poor model and improve pre-
dictions. Since we have selected the optimal hyperparameters for each regressor using a

Table 1. Performance of the different models on the testing data

Models MSE MAE R2

ANN 0.6350 0.6297 0.8799
KRR 0.6439 0.6328 0.8768
RFR 0.5247 0.5599 0.9026
SVR 0.6472 0.6351 0.8759
Ensemble 0.5818 0.5994 0.8891

MSE: mean squared error; MAE: mean absolute error; ANN: artificial neural network; KRR: kernel-ridge regressor;

RFR: random forest regressor; SVR: support vector regressor.
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repeated tenfold CV technique, we train each model using the entire data set with the
selected hyperparameters. Then, the results from all four supervised ML models are aver-
aged using equal weights (1/4) to compute the final output. Hence, the contribution of
each ML model to the ensemble model is equal (25%) for all ranges of explanatory vari-
ables. This is similar to using a logic tree approach in USGS national seismic hazard maps
(Petersen et al., 2015). Furthermore, by weighted average ensemble modeling, the model-
to-model epistemic uncertainty associated with the predictions due to the limitation of
individual models is captured (Sreenath et al., 2023). A similar approach has been used by
Sreenath et al. (2023), in which they developed ensemble GMMs for the Pan-European
strong motion data set using five nonparametric ML models: shallow neural network,
deep neural network, gated recurrent unit, support vector, and random forest regression.
Based on the performance of individual ML models, all models have similar performance
metrics; therefore, it is reasonable to use equal weights. All individual models are provided
as Supplementary material, and definitely, one can change the weights within different
magnitude–distance ranges based on additional criteria.

Figure 3 compares the distance scaling for PGA determined from the weighted average
ensemble model with the individual ML algorithms for M4.5 and M7.5 events with a
ZTOR = 5 km and VS30 = 400 m/s. There is a significant variation between different ML
algorithms for the distance range of less than 10 km; however, the number of records
increases with increasing distance, resulting in more robust ML models with less variation.
Moreover, as explained, RFR results in jagged curves and cannot extrapolate beyond the
training input parameters range, particularly for M4.5, where there are no data with dis-
tances less than 8 km. This justifies using equal weights for different ML models even
though the RFR model has the lowest MSE on the test data set. Figure 4 compares the
response spectra predicted from the ensemble model with the individual ML algorithms
for an M6.5 with a ZTOR = 10 km and VS30 = 400 m/s at rupture distances of 35 and
100 km. As can be seen, the average curve is smooth in the middle of all estimators. At a
rupture distance of 35 km, the ensemble model is very similar to the ANN model; how-
ever, at a rupture distance of 100 km, the ANN model predicts larger amplitudes com-
pared to other models and the ensemble model is closer to KRR and SVR models. In
both cases, the RFR curve is lower compared to other regressors.

Figure 3. PGA distance scaling obtained from the individual ML algorithms versus the ensemble model
for M4.5 (left) and M7.5 (right) events with a ZTOR = 5 km and VS30 = 400 m/s.
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As listed in Table 1, the performance of the weighted average ensemble model is better
than ANN, KRR, and SVR. Although the performance of the weighted average ensemble
model does not beat RFR, the predictions are not jagged like RFR (see Figures 3 and 4).
A lower performance metric does not necessarily mean that the model is the best for pre-
dicting new data, specifically where no or limited data were available for training. Note
that these values are obtained using the test data set, and in the following section, we will
show that for some recently recorded ground motions, the performance of those ML mod-
els compared to the ensemble model can change for unseen data. This indicates that until
the data are limited in some ranges of the magnitude–distance space, ensemble modeling
of ML models outperforms individual ML models for the entire range of magnitude,
distance, and period.

Figure 5 shows the decay rate (attenuation) of the predicated spectral accelerations at
different periods of 0, 0.2, and 1.0 s and PGV with distance for events with a
ZTOR = 0 km and VS30 = 760 m/s. Although the ensemble model is obtained from
entirely data-driven ML algorithms, the model can capture the saturation effects, and for
distances less than 10 km, M6.5, and M7.5 curves merge and result in similar GMIMs. In
addition, the effect of geometrical spreading at shorter distances and anelastic attenuation
at longer distances can be observed particularly for higher magnitudes. Moreover, the
magnitude-dependent hinge point at which the slope of the decay rate is changed can be
captured by ML algorithms. One interesting point from the distance scaling curves is the
existence of oversaturation resulting in GMIM decreases with increasing M at very close
distances. We observed that GMIMs from M7.5 at distances less than 5 km can be 3%–
7% less than GMIMs from M6.5 at short periods up to 0.3 s. This pattern is seen in the
NGA-West2 GMMs. Abrahamson et al. (2014) (see Figure 8) explained that the crossing
of the M7.0 and M8.0 curves is due to the ZTOR scaling. In fact, it is expected to have
larger ZTOR values with decreasing M; thus, M8 with ZTOR = 0 can be compared with
M7 with ZTOR larger than 0; however, in our plot, we used a constant ZTOR of 0 km for
all magnitudes.

Figure 4. Response spectra predicted from the individual ML algorithms versus the ensemble model for
an M6.5 event with a ZTOR = 10 km and VS30 = 400 m/s at rupture distances of 35 and 100 km.
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Boore et al. (2014) (see Figure 6) mentioned that, unlike their previous version of
GMMs, they did not constrain the oversaturation term because some simulations support
oversaturation (Schmedes and Archuleta, 2008). Our suite of GMMs is purely data-driven
with no constraints; therefore, as can be suggested from observed ground motions in
Figure 2, oversaturation can occur. It is worth mentioning that the NGA-West2 GMMs
consider an additional parameter, fictitious depth obtained during the regression process,
to calculate the effective distance; however, our GMMs do not have any fictitious depth
defined. As Boore (2009) and Tavakoli et al. (2018) discussed, although larger magnitude
earthquakes have higher energy, they have larger finite-fault dimensions resulting contri-
bution of energy from grid cells on the fault that are much further away. Therefore, they
suggest using effective distance from the fault instead of regular distance metrics such as
rupture distance to account for the fault dimension. Calculation of the effective distance
for a given earthquake requires detailed information of the fault and the source-to-site
direction (Tavakoli et al., 2018), which is beyond the scope of this article.

Figure 6 illustrates the variation of estimates of response spectra versus spectral period
for events with a ZTOR = 0 km and VS30 = 400 m/s at rupture distances of 35 and
100 km. As can be seen, the gap between curves is decreased by increasing the magnitude,
and for shorter distances, this reduction is more, and M7 and M8 at a rupture distance of
35 are close, indicating the saturation effects. Furthermore, it can be observed that the

Figure 5. Distance scaling characteristics of the developed ensemble GMMs for events with a
ZTOR = 0 km and VS30 = 760 m/s for PGA, PSA at 0.2 s, PSA at 1.0 s, and PGV.
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period corresponding to the maximum amplitude shifts toward higher periods with an
increasing magnitude which Boore et al. (2014) call the M-dependence of the predominant
period. These observations are similar to the NGA-West2 GMMs (Abrahamson et al.,
2014; Boore et al., 2014; Campbell and Bozorgnia, 2014; Chiou and Youngs, 2014; Idriss,
2014).

Epistemic uncertainty

Epistemic uncertainty refers to the uncertainty arising from a lack of knowledge or under-
standing of a phenomenon or process due to sparse data, limitations in the mathematical
equations or ML algorithm used to model ground motion, and/or differences in assump-
tions and interpretations of the available data. For instance, GMMs are constructed based
on the data available, and if the data are sparse, the predictions made by the model may
not be entirely accurate. To capture this epistemic uncertainty, known as model-to-model
variability, we will compute the deviation in all four models from the ensemble model
(Atik and Youngs, 2014; Sreenath and Raghukanth, 2023; Sreenath et al., 2023).

Figure 7 depicts the epistemic uncertainty for the distance scaling of PGA and PGD for
M5 and M7 events with a ZTOR = 5 km and VS30 = 400 m/s. The band represents the
model-to-model variability as mean 6 sigma, defined as the deviation in all four models
from the weighted average ensemble model. Furthermore, the observed ground motions
are plotted for comparison. The comparison of the model-to-model variability with the
observed ground motions shows that magnitude–distance ranges with a large number of
recorded data have lower epistemic uncertainty indicating all four ML models predict simi-
lar GMIMs. However, magnitude–distance ranges with inadequate or no data, particularly
for distances less than 10 km, have higher epistemic uncertainty meaning that using just
one ML algorithm can be unreliable in predicting GMIMs for a future event while using
an ensemble model can avoid this. Sreenath et al. (2023) had a similar observation

Figure 6. Variation of estimates of response spectra versus spectral period for events with a
ZTOR = 0 km and VS30 = 400 m/s at rupture distances of 35 and 100 km.
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developing ensemble GMMs for the Pan-European strong motion data set using five non-
parametric ML models.

Aleatory uncertainty

The total residual can be partitioned into between-event, between-station, and event-site–
corrected residuals (Atik and Abrahamson, 2010) using different techniques such as two-
stage regression or mixed-effects regression methods (Kotha et al., 2016; Rodriguez-Marek
et al., 2014; Sedaghati and Pezeshk, 2016; Stafford, 2014). The between-event, between-
station (site-to-site), and event-site–corrected residuals are assumed to be independent,
normally distributed with a zero mean and standard deviation of t, fS2S, and fSS , respec-
tively (Atik and Abrahamson, 2010). To perform site-specific PSHA, the single station
standard deviation can be defined as

sSS =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 + fSS

2

q
ð5Þ

For traditional PSHA with ergodic assumptions, all residual components are used to
obtain the total aleatory variability as

Figure 7. Epistemic uncertainty for the distance scaling of PGA and PGD for M5 and M7 events with a
ZTOR = 5 km and VS30 = 400 m/s. The band represents the model-to-model variability as mean 6 sigma
defined as the deviation in all four models from the ensemble model.
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s =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 + fSS

2 + fS2S
2

q
ð6Þ

Since the selected data set has 1098 single-recorded stations and 477 stations with only
2 recordings, the inclusion of the between-station uncertainty lacks a logical and statistical
basis and results in a biased estimation. Therefore, we compute the standard deviations in
two stages. In the first stage, we use all recordings in the data set to split the total residuals
into between-event and within-event components using a mixed-effects regression. Then,
we remove stations with less than or equal to four records per station and create another
data set with 11,513 recordings. This data set has recordings captured by at least five sta-
tions and stations recorded at least five earthquakes. The reduced data set is used to split
the within-event residuals into between-station and event-site–corrected components in the
second stage using another mixed-effects regression. The distribution of between-event
residuals versus moment magnitude and the distribution of event-site–corrected and site-
to-site residuals versus rupture distance and VS30 for PGA and PSA at 0.2 and 1.0 s is
shown in Figure 8. The ideal residual value is zero, indicating that the model accurately
estimates the target value. Overall, the residuals are centered around zero with no trends
and no obvious biases, with M, Rrup, and VS30 indicating good agreement between the
proposed model and observed ground motions.

The variations of t, f, fS2S , fSS , and s versus period are presented in Table 2 and
depicted in Figure 9. As can be seen, there is a bump near 0.075 s in both within-station
and total standard deviations. This bump has been seen in some of the NGA-West2 mod-
els. Boore et al. (2014) suggested that two processes can contribute to this bump: (1) varia-
tion in the source stress parameter for small earthquakes particularly and (2) variation in
k0 (near-source attenuation defined by the decay slope of the spectrum at high frequencies
at near-source distances, Boore, 2003) for larger earthquakes.

Comparison with previous models developed for active shallow
crustal regions

In this section, the final developed GMMs are compared with all five NGA-West2 GMMs:
Abrahamson et al. (2014), Boore et al. (2014), Campbell and Bozorgnia (2014), Chiou and
Youngs (2014), and Idriss (2014) referred to as ASK14, BSSA14, CB14, CY14, and I14,
respectively.

Figure 10 compares response spectra from our ensemble GMMs, SP23, with ASK14,
BSSA14, CB14, CY14, and I14 GMMs. As can be seen, response spectra from our model
are in good agreement with the NGA-West2 GMMs. We use a ZTOR = 5 km and
VS30 = 760 m/s for M5 and M7 events with rupture distances of 10 and 35 km. For lower
magnitudes and shorter distances, our curve matches the CY14 model in the entire period
range. For longer distances and lower magnitudes, SP23 is very close to the CY14 model
in the shorter period range, while it is closer to the BSSA14 curve at the mid and longer
period range. For the larger magnitudes, our GMMs predict slightly higher values, partic-
ularly in the mid-period range. We investigated this difference and found out that with
decreasing ZTOR for an M7 event, the gap between our ensemble model and the NGA-
West2 GMMs in the middle period range becomes smaller. Overall, at short distances for
larger magnitudes, our curve is very close to the CB14 model for the shorter period range,
whereas, for long distances, it matches the ASK14 model in the shorter period range. For
M7 and longer period range, our curve is in between the other NGA-West2 model.
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Figure 11 compares the magnitude scaling of our proposed GMMs, SP23, with ASK14,
BSSA14, CB14, CY14, and I14 GMMs for PGA and PSA at 0.2, 1.0, and 5.0 s. We use a
ZTOR = 0 km and VS30 = 260 m/s for a rupture distance of 50 km. Some curves start at
a larger magnitude since the applicable magnitude range for the CY14 and CB14 models is
M4+ , and for the I14 model is M5+ . Generally, the magnitude scaling of our GMMs is
consistent with the other NGA-West2 GMMs, and the curve is pretty close to CY14 for
PGA and to ASK14 and BSSA14 for PSA at 0.2 s. For longer periods, all models result in
a similar trend. As can be seen, the saturation effect from our GMMs is significant and
comparable with the CB14 model, particularly for PGA and PSA at 0.2 s, while for longer
periods, all models are similar.

Figure 12 depicts the comparison of the VS30 scaling of our proposed GMMs, SP23,
with ASK14, BSSA14, CB14, CY14, and I14 GMMs for PGA and PSA at 0.2 and 3 s. We
use a ZTOR = 1 km and M7 for rupture distances of 10 and 100 km. All GMMs are
defined as a function VS30. Note that the I14 model should be used for VS30 ø 450 m/s.

Figure 8. Distribution of between-event, between-station (site-to-site), and event-site–corrected
residuals (in natural logarithm units) for PGA and PSA at spectral periods of 0.2 and 1.0 s. Error bars
represent the mean and standard deviation of the binned residuals.
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Figure 9. Variation of different aleatory standard deviations versus spectral period.

Table 2. Associated standard deviations of the ensemble GMMs in natural logarithm units

Periods s t f fS2S fSS

PGA 0.7276 0.3022 0.6509 0.4365 0.4828
0.01 0.7290 0.3032 0.6520 0.4378 0.4831
0.02 0.7318 0.3048 0.6543 0.4404 0.4840
0.03 0.7448 0.3141 0.6641 0.4522 0.4863
0.05 0.7827 0.3396 0.6934 0.4903 0.4902
0.075 0.8015 0.3499 0.7089 0.5101 0.4923
0.1 0.7970 0.3439 0.7070 0.4997 0.5000
0.15 0.7826 0.3203 0.7022 0.4928 0.5003
0.2 0.7673 0.3068 0.6918 0.4799 0.4983
0.25 0.7460 0.2947 0.6742 0.4530 0.4994
0.3 0.7311 0.2856 0.6622 0.4363 0.4981
0.4 0.7058 0.2828 0.6363 0.4179 0.4798
0.5 0.6969 0.2919 0.6225 0.4044 0.4733
0.75 0.6820 0.3140 0.5952 0.3921 0.4479
1 0.6850 0.3408 0.5840 0.3907 0.4340
1.5 0.6812 0.3554 0.5709 0.3767 0.4290
2 0.6753 0.3588 0.5621 0.3575 0.4337
3 0.6793 0.3632 0.5640 0.3401 0.4499
4 0.6772 0.3571 0.5653 0.3254 0.4623
5 0.6822 0.3583 0.5703 0.3186 0.4729
7.5 0.6918 0.3705 0.5739 0.3074 0.4846
10 0.6789 0.3651 0.5622 0.3016 0.4745
PGV 0.6439 0.2715 0.5744 0.3418 0.4616
PGD 0.6863 0.3727 0.5661 0.3072 0.4754

PGA: peak ground acceleration; PGV: peak ground velocity; PGD: peak ground displacement; GMM: ground motion

model.
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For the shorter-distance 10 km case, we can observe the curvature indicating the nonlinear
site effects resulting in de-amplification. The nonlinear site effects are stronger for PSA at
0.2 s compared to PGA. The site amplification for the 100 km case is nearly linear with
VS30 using all models. For PSA at 3 s, we can observe that all models have similar linear
trend with VS30. Overall, the site response results are similar between the NGAWest2 mod-
els and our proposed GMMs, particularly in the range where there are a large amount of
observed data. Based on this comparison, it is evident that the ML models can capture the
linear and nonlinear site effects using VS30. It should be noted that the SP23 VS30 scaling
curves are generally more jagged compared to the smooth NGA-West2 models because we
have not used any simulated data and no prior function to perform curve fitting. This pat-
tern is just observed by data and may be biased when there are not sufficient recorded
ground motions for training.

The ZTOR scaling of our proposed GMMs, SP23, with the NGA-West2 GMMs is com-
pared in Figure 13. ZTOR is not an input parameter for BSSA14 and I14. Also, default

Figure 10. Comparison of the period-dependence of 5%-damped pseudo-spectral accelerations derived
from the present model with the NGA-West2 GMMs for events with a ZTOR = 5 km and VS30 = 760 m/s.
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values used for other input parameters used in CB14 do not activate the ZTOR scaling of
the CB14 model. However, for comparison purposes, we plotted all NGA-West2 GMMs.
We plotted ZTOR up to 15 km for both M5 and M7 for visual purposes, but it should be
noted that ZTOR should be narrowing with increasing M (Abrahamson et al., 2014; Chiou
and Youngs, 2014; Gregor et al., 2014). For the M5 case, the ZTOR scaling of the ensemble
model has a similar slope to ASK14 and CY14. It is interesting to note that the ZTOR scal-
ing of our GMMs and CY14 crosses the BSSA14 and CB14 ZTOR scaling at ZTOR of 5–
7 km, which is the average depth to the rupture of M5 earthquakes in the NGA-West2
data set (Gregor et al., 2014). According to the equations provided by Abrahamson et al.
(2014) and Campbell and Bozorgnia (2014), a bilinear function is used to determine the
depth scaling factor. The hinge points for the depth scaling function are set at 10 and
16.66 km, respectively, for ASK14 and CB14. In this study, the ensemble GMMs exhibit

Figure 11. Comparison of the magnitude scaling of the estimated PSA values from the GMMs proposed
in this study with the NGA-West2 GMMs at PGA as well as PSA at 0.2, 1.0, and 5.0 s at a rupture
distance of 50 km for events with a ZTOR = 0 km and VS30 = 260 m/s.
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more sudden changes in PGA and PSA. This could be attributed to a reduction in the
number of events at greater depths or an increase in energy release for faults located deeper
underground.

For M7 case, SP23, CY14, and ASK14 have a similar slope of the ZTOR scaling. All
ground motion values cross at ZTOR of 0–2 km, which is the average depth to the rupture
of M7 earthquakes in the NGA-West2 data set (Gregor et al., 2014). The ground motion
value increases with increasing ZTOR, confirming that buried ruptures are, on average,
more energetic than events that rupture to the surface (Abrahamson et al., 2014).

Figure 14 compares the period dependence of the aleatory variability of the NGA-
West2 GMMs with the ensemble GMMs. The NGA-West2 aleatory variability models
are magnitude and distance-dependent, while we developed a magnitude and distance-
independent aleatory variability. We plotted aleatory variability curves for a rupture dis-
tance of 50 km for M4, M5, M6, and M7. Generally, the shape of the total standard
deviation of our model is similar to BSSA14 and CB14 aleatory variability models with a
bump around 0.05–0.1 s and lower values at longer periods. For M4 and M5 cases, the
total standard deviation from our model is lower compared to the total standard deviation
values from the NGA-West2 models, whereas for M6 and M7, the total standard devia-
tion of the model is larger for shorter periods (less than 1 s) and lower for longer periods
(ø 1 s) compared to the total standard deviation of the NGA-West2 models.

Finally, for a true assessment of the predictive performance of the proposed GMMs in
this study compared to the NGA-West2 GMM, we collect observed ground motions from
two recent large earthquakes not included in the NGA-West2 database, the 2019 M7.1

Figure 12. Comparison of the VS30 scaling of the estimated PSA values from the GMMs proposed in
this study with the NGA-West2 GMMs at PGA and PSA at 0.2 at rupture distance of 10 (top) and 100
(bottom) km for events with M7 and a ZTOR = 1 km.
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Ridgecrest, California, and the 2023 M7.8 Turkey earthquakes. The details of these earth-
quakes and the recorded ground motions can be found on the USGS website (see section
‘‘Data and resources’’). For the Ridgecrest earthquake, the RotD50 GMIMs are provided
by Rekoske et al. (2019) and presented in detail in Rekoske et al. (2020) (see section ‘‘Data
resources’’). For the Turkey earthquake, we used the geometric mean of the two horizontal
earthquakes, and we acknowledge that the results may change if the RotD50 GMIMs are
used. The collected data set includes 250 and 763 observed ground motion recordings for
the 2023 M7.8 Turkey and the 2019 M7.1 Ridgecrest earthquakes, respectively. The data
set provides PGA and PSA at 0.3, 1, and 3 s. Figure 15 demonstrates the distance scaling
of the ensemble and the NGA-West2 GMMs compared with observed ground motions for
the 2023 M7.8 Turkey earthquake for PGA and PSA at 0.3, 1, and 3 s. For PGA, all
NGA-West2 except for I14 have a similar performance. Note that all GMMs are applica-
ble for rupture distances up to 300 (except for BSSA, which is applicable for distances up
to 400 km), but we plotted the distance scaling up to 500 km to compare the extrapolation
capability as well. We see some differences for PSA at 0.3, and our model has a similar
trend to CB14 and BSSA14. For PSA at 1 s, all NGA-West2 models slightly underpredict
at short distances, while our model predicts larger values than the NGA-West2 models.
This trend can also be explained by the gap observed in Figure 10 between our ensemble
model with the NGA-West2 GMMs. For PSA at 3 s, we can observe some differences at

Figure 13. Comparison of the ZTOR scaling of the estimated PSA values from the GMMs proposed in
this study with the NGA-West2 GMMs at PGA and PSA at 0.2 at a rupture distance of 30 km for events
with M5 and M7 and a VS30 = 400 m/s.
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longer distances with slight underestimation from our model. Figure 16 illustrates the dis-
tance scaling of the ensemble and the NGA-West2 GMMs compared with observed
ground motions for the 2019 M7.1 Ridgecrest earthquake for PGA and PSA at 0.3, 1, and
3 s. For PGA and PSA at 0.3 s, all models have reasonable and comparable performance.
However, for PSA at 1 s, GMMs have a gap within the first 10 km, while this gap
decreases with increasing distances. For PSA at 3 s, all models have a similar trend for dis-
tances larger than 10, while there is a significant variation for distances less than 10 km.
This emphasizes that all GMMs with different functional forms or ML-based GMMs have
comparable results for data-rich magnitude–distance ranges, whereas predications from
various GMMs have considerable differences for magnitude–distance ranges with no or
inadequate observed ground motions. We use MSE to numerically test the predictive
power of the above-mentioned GMMs against the collected database. The resultant MSE
values are tabulated in Table 3. For this analysis, we removed data with rupture distances
greater than 300 km to have only data within the applicable range of all GMMs. Note that
the full comparison of the performance of GMMs needs to use several popular approaches,
such as the loglikelihood (LLH) method of Scherbaum et al. (2009) and its natural exten-
sion, known as the multivariate logarithmic score of Mak et al. (2017) or the Euclidean
Distance–Based Ranking (EDR) of Kale and Akkar (2013). As presented in Table 3, the
BSSA14 model is the best model with the lowest MSE for PGA for both earthquakes. For

Figure 14. Comparison of the standard deviation from the GMMs proposed in this study with the
NGA-West2 GMMs for events with magnitude 4, 5, 6, and 7 at a rupture distance of 50 km with a
VS30 = 400 m/s.
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PSA at 0.3, 1, and 3 s, the SP23 model (weighted average ensemble model) outperforms
the Turkey earthquakes, whereas the CY14 results in the lowest MSE for the Ridgecrest
earthquake. This indicates that some models performed better in certain periods than oth-
ers, and not a single model performed the best over the entire period range. Comparing the
ensemble model with the individual ML models, we can recognize that ANN is the best
model against the Turkey earthquake for PGA, SVR is the best model against the
Ridgecrest earthquake for PGA, RFR has the lowest MSE against the Turkey earthquakes
for PSA at 0.3 s, and for the rest of the cases, KRR outperforms the other ML models.
KRR had not been used in the context of GMM development, and based on our study,
this ML algorithm can be used to predict GMIMs for future earthquakes. Another inter-
esting point is that even though RFR had the best performance on the test data set, the
performance of this algorithm is not perfect on the collected data set, and at some periods,
its MSE is twice the other ML models’ MSE values. Furthermore, it can be observed that
the weighted average ensemble model beats all ML models against the Turkey earthquake
for PSA at 0.3, 1, and 3 s and against the Ridgecrest earthquake for PGA and PSA at
0.3 s. This emphasizes that the weighted average ensemble model performs better over the
entire range of M, Rrup, and period compared to the individual ML models. In addition to
MSE values, MAE values, which are less sensitive to outliers, are provided in Table 3. A
comparison of MAE values indicates that generally the SP23 (weighted average ensemble)
model and CY14 perform better for all periods for Turkey and Ridgecrest earthquakes.

Figure 15. Assessing the predictive capability of NGA-West2 GMMs compared to the weighted
average ensemble GMMs for the 2023 M7.8 Turkey earthquake.
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Finally, it is worth mentioning that the suite of the CY14 GMM is a complex model com-
pared to the other NGA-West2 GMMs with several input parameters and using many
nonlinear functions inside its functional form, and our set of ML-based GMMs with only
four input parameters without defining of any functional form can have a comparable per-
formance. Note that since all models have been provided as the Supplementary material to
this article, interested readers can use different GMM ranking schemes to assign different
weight to each ML model using a given data set.

Summary and conclusion

This study attempts to develop a new suite of global GMMs to predict different GMIMs
for shallow crustal earthquakes in active regions having the key features of ground motions
such as moment magnitude, Rrup, ZTOR, and VS30 to include the source, path, depth, and
site effects. In this regard, we use a subset of the NGA-West2 database, including 14,518
ground motion recordings out of 285 earthquakes. With growing interest in using ML
techniques and increasing the size of the data set and number of recordings, we built four
different data-driven nonparametric ML models to perform regression analysis. We used a
repeated tenfold CV procedure to find the best hyperparameters for each estimator. The
final ensemble model averages individual models’ outputs to compute the horizontal com-
ponent of RotD50 PGA, 5%-damped PSA at different spectral periods, PGV, and PGD.

Figure 16. Assessing the predictive capability of NGA-West2 GMMs compared to the weighted
average ensemble GMMs for the 2019 M7.1 Ridgecrest earthquake.
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Ensemble modeling aims to capture all benefits from individual models, increase accuracy,
and improve predictions for future events. With no assumptions about the functional form,
the developed ensemble GMMs can account for salient features of earthquake ground
motions such as magnitude and distance scaling, saturation effect, magnitude-dependent
hinge point, and linear and nonlinear site effects. A mixed-effects regression is used to par-
tition the total residuals into between- and within-event components. Then, a smaller sub-
set of the selected data is used to perform another mixed-effects regression to split the
within-event variability into within-station and event-site–corrected residuals for site-
specific applications. Finally, ensemble GMMs were compared and validated with the pre-
dicted PGA and PSA values from GMMs developed for the NGA-West2 database.
Generally, there is good agreement between expected GMIMs from our GMMs using
fewer explanatory variables with the NGA-West2 GMMs, including complex terms and
results from simulations. The proposed GMMs generally have slightly lower standard
deviations at longer periods and outperform the NGA-west2 GMMs in the mid-range
period compared with observed ground motions from two recent large earthquakes. This
new set of GMMs does not reject or supersede any other GMMs developed using the
NGA-West2 data set, but it creates another predictive model that can help capture the
uncertainty for seismic hazard analysis.

The ensemble GMMs for shallow crustal earthquakes in active regions are generally
applicable for events with moment magnitudes ranging from 3 to 8, rupture distances up
to 300 km, depth to the top of rupture less than 20 km, and VS30 between 150 and 1500 m/
s. The proposed GMMs are global, and the user based on the region of interest may
require performing some post-processing steps such as analysis of residuals and addition of
regional path and site terms to account for systemic differences in those terms. It should be
noted that the conventional regression method is still a better tool where limited data are
available; however, the enriched NGA-West2 data set allows us to use the ML algorithms.

Data and resources

The Python computational platform and the scikit-learn package were used in our study
to train all models. We used the PGA and response spectra of shallow crustal ground
motion recordings and related metadata that were compiled and processed by the NGA-
West2 project and provided to us by a flatfile publicly available at https://peer.berke-
ley.edu/research/data-sciences/databases.

The ‘‘Updated_NGA_West2_Flatfile_RotD50_d050_public_version.xlsx’’ file includes
all the data. The ‘‘NGAW2_GMPE_Spreadsheets_v5.7_041415_ProtectedLocked.xlsm’’
file as well as the MATLAB codes provided by Jack Backer on GitHub (https://github.
com/bakerjw/GMMs/tree/master/gmms) was used for comparison with other NGA-West2
GMMs.

The information for the 2019 M7.1 Ridgecrest and 2023 M7.8 Turkey earthquakes can
be found at https://earthquake.usgs.gov/earthquakes/eventpage/ci38457511/executive and
https://earthquake.usgs.gov/earthquakes/eventpage/us6000jllz/executive. The RotD50
GMIMs for the Ridgecrest earthquake are available on https://www.strongmotioncenter.
org/specialstudies/rekoske_2019ridgecrest/. The showcase code and the saved models can
be downloaded from the following GitHub repository. Since a pipeline framework has
been used in Python, there is no need to process/normalize the input data for prediction
and the saved models using pipeline take care of this step. The example in the showcase
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code is self-explanatory and can be accessed at https://github.com/farhadseda/ML-Based-
GMMs-for-NGA-West2.
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