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Introduction

We use microscopy to make the invisible 
visible – that is, to see great detail in tiny 
three-dimensional objects. However, the 
process of capturing images from a 
microscope is imperfect, so we use 
various computer programs to improve 
microcopy output.

Tools

Datasets

• Plugins – additional programs that can 
be installed into ImageJ and provide 
additional functionality

• Macros – Java scripts that execute 
ImageJ functions in sequence [5]

C. elegans embryo – 
three channels 
(shown here in RGB 
form) [1]

Conclusion
We have learned about the use of 
computational imaging tools to recreate 
the microscopic imaging process and 
improve output images. However, the 
project is still a work-in-progress; we have 
not yet recreated the process from start to 
finish with our own dataset or with 
different microscope settings. 
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Noising/Denoising
• Noise – corruption of image from microscope
• RandomJ – plugin that adds noise to images [7]
• PureDenoise and DnCNN – two plugins that attempt to 

remove noise from images [8][9]
• CLIJ2 – plugin that calculates the mean squared error of 

two images [10]

Methodology & Results
Deconvolution
• Convolution – microscopy images are blurred according to 

a point-spread function (PSF)
• DeconvolutionLab2 – plugin that attempts to mitigate the 

effects of convolution [6]

Cropping/Stitching
• Cropping – splitting an image 

into smaller pieces
• MosiacJ – plugin that 

stitches cropped pieces back 
together [11]

ImageJ – open-
source scientific 
image processing 
software [3]

Fiji – distribution 
of ImageJ with 
built-in plugins and 
updater [4]

Modulatory 
Poisson noise

PureDenoise DnCNN
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cameraman.tif – 
8-bit grayscale 
image [2]

Calculation of MSE – square 
the difference in each pixel, 
sum the squares, and divide 
by the number of pixels

Restored output

Input

PSF

MSE = 34.670 MSE = 73.623

MosaicJ canvas Stitched output
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