

Using ImageJ to Improve Fluorescence Microscopy Images David Adaway, Chinonso Okoli, and Dr. Chrysanthe Preza Computational Imaging Research Laboratory Department of Electrical and Computer Engineering, The University of Memphis

Introduction

We use microscopy to make the invisible visible – that is, to see great detail in tiny three-dimensional objects. However, the process of capturing images from a microscope is imperfect, so we use various computer programs to improve microcopy output.

Datasets

form) [1]

				1	
	6	San I	W		
-	/				

Methodology & Results

Deconvolution

- **Convolution** microscopy images are blurred according to a point-spread function (PSF)
- **DeconvolutionLab2** plugin that attempts to mitigate the effects of convolution [6]

Input

	•	DeconvolutionLab	2
Decon	volution	Advanced Scripting About	
►	Image	Data-CY3-Z051.tif	Choose - Check
-image	file /Users/	davidadaway/Documents/VIP/Datasets/CElegans/CElega	ans-CY3/Data-CY3-Z051.tif
	γ		
►	PSF	PSF-CY3-Z051.tif	Choose - Check
	<u></u>	PSF-CY3-Z051.tif vidadaway/Documents/VIP/Datasets/CElegans/PSF-CEle	

References

[1] "C. elegans embryo." Accessed: Jan. 27, 2024. [Online]. Available: https://bigwww.epfl.ch/deconvolutio n/bio/

[2] "Image Processing Toolbox." Accessed: Jan. 27, 2024. [Online]. Available: https://www.mathworks.com/produc ts/image.html

[3] C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, "NIH Image to ImageJ: 25 years of image analysis," Nat Methods, vol. 9, no. 7, pp. 671–675, Jul. 2012, doi: 10.1038/nmeth.2089.

cameraman.tif – *C. elegans* embryo – 8-bit grayscale three channels image [2] (shown here in RGB

Tools

Fiji – distribution ImageJ – openof ImageJ with source scientific image processing software [3] updater [4]

built-in plugins and

► Path Fiji.app Defa	Default	Path Fiji.app	▶ Path

PSF Noising/Denoising

- **Noise** corruption of image from microscope
- **RandomJ** plugin that adds noise to images [7]
- **PureDenoise** and **DnCNN** two plugins that attempt to remove noise from images [8][9]
- **CLIJ2** plugin that calculates the mean squared error of two images [10]

Modulatory Poisson noise

PureDenoise

DnCNN

Restored output

[4] J. Schindelin et al., "Fiji: an opensource platform for biological-image analysis," Nat Methods, vol. 9, no. 7, pp. 676–682, Jul. 2012, doi: 10.1038/nmeth.2019.

[5] J. Broeke, J. M. Mateos Pérez, and J. Pascau, Image processing with ImageJ: extract and analyze data from complex images with ImageJ, the world's leading image processing tool, Second edition. in Community experience distilled. Birmingham Mumbai: Packt Publishing open source, 2015.

[6] D. Sage et al.,

"DeconvolutionLab2: An open-source software for deconvolution microscopy," Methods, vol. 115, pp. 28–41, Feb. 2017, doi: 10.1016/j.ymeth.2016.12.015.

[7] "RandomJ." Accessed: Jan. 27, 2024. [Online]. Available: https://imagescience.org/meijering/s oftware/randomj/

- **Plugins** additional programs that can be installed into ImageJ and provide additional functionality
- **Macros** Java scripts that execute ImageJ functions in sequence [5]

Conclusion

We have learned about the use of computational imaging tools to recreate the microscopic imaging process and improve output images. However, the project is still a work-in-progress; we have not yet recreated the process from start to finish with our own dataset or with different microscope settings.

Acknowledgements

We would like to thank the other members of our Vertically Integrated

 $MSE = rac{1}{n} \sum (Y_i - \hat{Y}_i)^2$

Calculation of MSE – square the difference in each pixel, sum the squares, and divide by the number of pixels

Cropping/Stitching

- **Cropping** splitting an image into smaller pieces
- MosiacJ plugin that stitches cropped pieces back together [11]

MosaicJ canvas

MSE = 73.623

	crop_into_squares_macro.ijm
i	nto_squares_macro.ijm
	// Crops a selected image to equal squares, each having a side length of k pixels
	<pre>macro "Crop into squares" { save_dir = "/Users/davidadaway/Documents/VIP/Poster/squares/"; // Images get saved here k = 64; // The side length of each square q1 = Math.floor(getHeight()/k); // The number of squares that fit vertically q2 = Math.floor(getWidth()/k); // The number of squares that fit horizontally for (i = 1; i <= q1; i++) { // Loop through each column and row, saving selctions to the ROI Manager for (j = 1; j <= q2; j++) { makeRectangle(i * k - k, j * k - k, k, k); roiManager("add"); } } } </pre>
	}

roiManager("deselect"); // Further operations will apply to all ROIs
RoiManager.multiCrop(save_dir, "save"); // Save ROIs to separate files
roiManager("delete"); // Delete ROIs from the ROI Manager

Stitched output

[8] F. Luisier, C. Vonesch, T. Blu, and M. Unser, "Fast interscale wavelet denoising of Poisson-corrupted images," Signal Processing, vol. 90, no. 2, pp. 415–427, Feb. 2010, doi: 10.1016/j.sigpro.2009.07.009.

[9] V. Mannam et al., "Real-time image denoising of mixed Poisson-Gaussian noise in fluorescence microscopy images using ImageJ," Optica, vol. 9, no. 4, p. 335, Apr. 2022, doi: 10.1364/OPTICA.448287.

[10] R. Haase et al., "CLIJ: GPUaccelerated image processing for everyone," Nat Methods, vol. 17, no. 1, pp. 5–6, Jan. 2020, doi: 10.1038/s41592-019-0650-1.

[11] P. Thévenaz and M. Unser, "User-friendly semiautomated assembly of accurate image mosaics in microscopy," Microscopy Res &

