
Using ImageJ to Improve Fluorescence Microscopy Images
David Adaway, Chinonso Okoli, and Dr. Chrysanthe Preza

Computational Imaging Research Laboratory
Department of Electrical and Computer Engineering, The University of Memphis

Introduction

We use microscopy to make the invisible 
visible – that is, to see great detail in tiny 
three-dimensional objects. However, the 
process of capturing images from a 
microscope is imperfect, so we use 
various computer programs to improve 
microcopy output.

Tools

Datasets

• Plugins – additional programs that can 
be installed into ImageJ and provide 
additional functionality

• Macros – Java scripts that execute 
ImageJ functions in sequence [5]

C. elegans embryo – 
three channels 
(shown here in RGB 
form) [1]

Conclusion
We have learned about the use of 
computational imaging tools to recreate 
the microscopic imaging process and 
improve output images. However, the 
project is still a work-in-progress; we have 
not yet recreated the process from start to 
finish with our own dataset or with 
different microscope settings. 

Acknowledgements
We would like to thank the other 
members of our Vertically Integrated 
Projects (VIP) team – Rosalia Nwaobi, 
Haleigh Sisson, and Arash Atibi – for their 
assistance throughout the development 
of our project.

Noising/Denoising
• Noise – corruption of image from microscope
• RandomJ – plugin that adds noise to images [7]
• PureDenoise and DnCNN – two plugins that attempt to 

remove noise from images [8][9]
• CLIJ2 – plugin that calculates the mean squared error of 

two images [10]

Methodology & Results
Deconvolution
• Convolution – microscopy images are blurred according to 

a point-spread function (PSF)
• DeconvolutionLab2 – plugin that attempts to mitigate the 

effects of convolution [6]

Cropping/Stitching
• Cropping – splitting an image 

into smaller pieces
• MosiacJ – plugin that 

stitches cropped pieces back 
together [11]

ImageJ – open-
source scientific 
image processing 
software [3]

Fiji – distribution 
of ImageJ with 
built-in plugins and 
updater [4]

Modulatory 
Poisson noise

PureDenoise DnCNN

[1] “C. elegans embryo.” Accessed: 
Jan. 27, 2024. [Online]. Available: 
https://bigwww.epfl.ch/deconvolutio
n/bio/

[2] “Image Processing Toolbox.” 
Accessed: Jan. 27, 2024. [Online]. 
Available: 
https://www.mathworks.com/produc
ts/image.html

[3] C. A. Schneider, W. S. Rasband, and 
K. W. Eliceiri, “NIH Image to ImageJ: 
25 years of image analysis,” Nat 
Methods, vol. 9, no. 7, pp. 671–675, 
Jul. 2012, doi: 10.1038/nmeth.2089.

[4] J. Schindelin et al., “Fiji: an open-
source platform for biological-image 
analysis,” Nat Methods, vol. 9, no. 7, 
pp. 676–682, Jul. 2012, doi: 
10.1038/nmeth.2019.

[5] J. Broeke, J. M. Mateos Pérez, and 
J. Pascau, Image processing with 
ImageJ: extract and analyze data from 
complex images with ImageJ, the 
world’s leading image processing tool, 
Second edition. in Community 
experience distilled. Birmingham 
Mumbai: Packt Publishing open 
source, 2015.

[6] D. Sage et al., 
“DeconvolutionLab2: An open-source 
software for deconvolution 
microscopy,” Methods, vol. 115, pp. 
28–41, Feb. 2017, doi: 
10.1016/j.ymeth.2016.12.015.

[7] “RandomJ.” Accessed: Jan. 27, 
2024. [Online]. Available: 
https://imagescience.org/meijering/s
oftware/randomj/

[8] F. Luisier, C. Vonesch, T. Blu, and 
M. Unser, “Fast interscale wavelet 
denoising of Poisson-corrupted 
images,” Signal Processing, vol. 90, 
no. 2, pp. 415–427, Feb. 2010, doi: 
10.1016/j.sigpro.2009.07.009.

[9] V. Mannam et al., “Real-time 
image denoising of mixed Poisson–
Gaussian noise in fluorescence 
microscopy images using ImageJ,” 
Optica, vol. 9, no. 4, p. 335, Apr. 2022, 
doi: 10.1364/OPTICA.448287.

[10] R. Haase et al., “CLIJ: GPU-
accelerated image processing for 
everyone,” Nat Methods, vol. 17, no. 
1, pp. 5–6, Jan. 2020, doi: 
10.1038/s41592-019-0650-1.

[11] P. Thévenaz and M. Unser, 
“User‐friendly semiautomated 
assembly of accurate image mosaics 
in microscopy,” Microscopy Res & 
Technique, vol. 70, no. 2, pp. 135–
146, Feb. 2007, doi: 
10.1002/jemt.20393.

References

cameraman.tif – 
8-bit grayscale 
image [2]

Calculation of MSE – square 
the difference in each pixel, 
sum the squares, and divide 
by the number of pixels

Restored output

Input

PSF

MSE = 34.670 MSE = 73.623

MosaicJ canvas Stitched output


	Slide Number 1

