Utilizing GPS Truck Data in Transportation Planning and Engineering

Mihalis M. Golias
Department of Civil Eng. and Intermodal Freight Transportation Institute

6th Annual Intermodal Conference
Memphis, TN
October 30, 2012
Introduction

• Multi-Institutional Research Project
 - University of Memphis (M. Golias, J. Karafa, Z. Johnson)
 - American Transportation Research Institute (J. Short)
 - Vanderbilt University (J. Dobbins)
Goals of Analysis

• Test capabilities of data
 - Facility MOEs and turn time model
 - Determine truck stops and rest area demand
 - Validate bridge restrictions
 - Truck flow analysis
 • MOEs for LTRP and Operational Analysis
Facility Turn Time Model Development

- Analyzed four types of truck facilities in the Memphis area
 - Intermodal
 - Distribution
 - Public Warehouses
 - Private Warehouse
Turn Times

Weekly Average

<table>
<thead>
<tr>
<th>Turn Time (min)</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>15%</td>
</tr>
<tr>
<td>30</td>
<td>30%</td>
</tr>
<tr>
<td>45</td>
<td>45%</td>
</tr>
<tr>
<td>60</td>
<td>60%</td>
</tr>
<tr>
<td>75</td>
<td>75%</td>
</tr>
<tr>
<td>90</td>
<td>90%</td>
</tr>
<tr>
<td>105</td>
<td>105%</td>
</tr>
<tr>
<td>120</td>
<td>120%</td>
</tr>
<tr>
<td>135</td>
<td>135%</td>
</tr>
<tr>
<td>150</td>
<td>150%</td>
</tr>
<tr>
<td>165</td>
<td>165%</td>
</tr>
<tr>
<td>180</td>
<td>180%</td>
</tr>
<tr>
<td>195</td>
<td>195%</td>
</tr>
<tr>
<td>210</td>
<td>210%</td>
</tr>
<tr>
<td>225</td>
<td>225%</td>
</tr>
<tr>
<td>240</td>
<td>240%</td>
</tr>
<tr>
<td>255</td>
<td>255%</td>
</tr>
<tr>
<td>270</td>
<td>270%</td>
</tr>
<tr>
<td>285</td>
<td>285%</td>
</tr>
<tr>
<td>300</td>
<td>300%</td>
</tr>
<tr>
<td>300+</td>
<td>300+%</td>
</tr>
</tbody>
</table>

Legend:
- Warehouse
- Private Warehouse
- Distribution
- Intermodal
Turn Times Model

Intermodal Facilities (R²=0.24)

\[Y = 20 + 275x_1 + (-390)x_2 \]

Distribution Facilities (R²=0.18)

\[Y = 11 + 993x_1 + (-576)x_2 \]

Private Warehouse Facilities (R²=0.01)

\[Y = 137 + 1x_1 + (-259)x_2 \]

Public Warehouse Facilities (R²=0.06)

\[Y = 52 + (-155)x_1 + 1266x_2 \]

Y = turn time

\(x_1 = \% \text{ daily volume per 15 min. interval} \)

\(x_2 = \% \text{ daily entrance volume per 15 min. interval} \)

Cross-validation with a 10 hold out sample was used to calculate accuracy of models

Data not adequate to develop turn times model
Truck Stop and Rest Area Demand

- Procedures were developed using ATRI GPS data to analyze the truck rest areas.
- This data was compiled to determine rest area demand patterns.
Truck Stop and Rest Area Demand
Number of truck stops

By start and end times

Common pattern:
Rest starts: 8pm-11pm
Rest ends: 9am-12pm
Validation of Truck-prohibitive Geometrics: Bridges

- Analyzed 64 low clearance bridges categorized as impassable by truck TDOT (vertical clearances of less than 14ft).
- Based on truck movement the vertical clearance should be 13ft and 4 inches.
Departure Time Effects on Travel Time
Departure Time Effects on Travel Time
Destination by Zip Code

Truck Trip Destinations - September/October 2011

Number of Destinations Recorded
- 0
- 1 - 10
- 11 - 35
- 36 - 60
- 61 - 140
- 141 - 272
- 273 - 432
- 433 - 589
- 590 - 892
- 893 - 1376
- 1380 - 10000
- 10000+
Truck flows from Shelby and Davidson
Truck Routes
MOES: Average Speed

Shelby County

Davidson County
Number of trips (by direction & by time of day)

Shelby County

Davidson County
Further Research

• Establish methodology for accurate turn times with partial data
• Establish a guidebook of how the data and procedures can be incorporated into LRTP and Operations Planning
Utilizing GPS Truck Data in Transportation Planning and Engineering

Mihalis Golias
Department of Civil Eng. and Intermodal Freight Transportation Institute

6th Annual Intermodal Conference
Memphis, TN
October 30, 2012