Master's Exam: Basic Areas

March 13th 2004

Answer any **five** questions. Show all working; State clearly all theorems that you apply.

- 1. Define a sequence (x_n) by $x_0 = 1$, $x_{n+1} = (x_n/2) + \sqrt{x_n}$. Prove that the sequence (x_n) is convergent and identify the limit.
- 2. (a) State and prove the comparison test for convergence of series.
 - (b) Prove that the series

$$\sum_{n=2}^{\infty} \frac{n+5\sqrt{n}}{n^{5/2}-1}$$

is convergent.

- 3. Define for x > 0, $L(x) = \int_1^x \frac{1}{t} dt$. Without assuming any properties of logarithms, show that
 - (a) L(x) is a strictly increasing function, i.e., $x_1 < x_2$ implies $L(x_1) < L(x_2)$.
 - (b) L(xy) = L(x) + L(y) for x, y > 0.
 - (c) L(x) tends to ∞ as $x \to \infty$.
- 4. (a) Define what it means for a subset of a metric space to be compact.
 - (b) Show that the image of a continuous function on a compact set is compact.
 - (c) If C is a compact subset of a metric space X, show that for any point $x \in X$ there is a point $y \in C$ such that the distance d(x, y) is minimal, i.e., $d(x, y) \leq d(x, z)$ for all $z \in C$.

- 5. Let U_i be subspaces of a finite dimensional vector space V.
 - (a) Show that $\dim(U_1 + U_2) + \dim(U_1 \cap U_2) = \dim(U_1) + \dim(U_2).$
 - (b) Give an example that shows that $\dim(U_1 + U_2 + U_3) + \dim(U_1 \cap U_2 \cap U_3)$ need not be equal to $\dim(U_1) + \dim(U_2) + \dim(U_3)$ in general.
- 6. The normalizer N_H of a subgroup H of a group G is defined as $\{g \in G : gH = Hg\}$.
 - (a) Prove that H is a normal subgroup of N_H .
 - (b) By considering a suitable subgroup of the dihedral group with 6 elements, show that N_H need not be a normal subgroup of G.
- 7. (a) Suppose G is a group in which $x^5 = 1$ for all $x \in G$. Show that either $G = \{1\}$ or the order of G is divisible by 5.
 - (b) Give an example of a group $G \neq \{1\}$ in which $x^6 = 1$ for all $x \in G$, but the order of G is not divisible by 6.