Statistics Masters Comprehensive Exam

November 2, 2002

Student Name: _____

1. Answer 8 out of 12 problems. Mark the problems you selected in the following table.

1	2	3	4	5	6	7	8	9	10	11	12

- 2. Write your answer right after each problem selected, attach more pages if necessary.
- 3. Assemble your work in right order and in the original problem order.

- 1. Let X_1 and X_2 be independently and identically distributed normal variables with mean 0 and variance 1. Put $Y_1 = a_1X_1 + a_2X_2$ and $Y_2 = b_1X_1 + b_2X_2$.
 - (a) Obtain a set of constants $\{a_i, b_i, i = 1, 2\}$ for which Y_1 and Y_2 are independently distributed of each other.
 - (b) Suppose that Y_1 and Y_2 are uncorrelated with each other and suppose that $a_1^2 + a_2^2 = b_1^2 + b_2^2$. Obtain the pdf (probability density function) of $Z = \frac{Y_1^2}{Y_1^2 + Y_2^2}$. (Be sure to give the support of Z.)

- 2. Let $\{X_1, \ldots, X_n\}$ be a random sample from the density $f(x; \theta) = e^{-\theta} \theta^x / x!, x = 0, 1, \ldots, \infty$. Put $\phi(\theta) = \theta^2 e^{-\theta} / 2$.
 - (a) Derive the MLE (Maximum Likelihood Estimator) of $\phi(\theta)$.
 - (b) Derive the UMVUE (Uniformly Minimum Varianced Unbiased Estimator) of $\phi(\theta)$.

- 3. Let $\{X_1, \ldots, X_n\}$ be a random sample from the density $f(x, \theta) = \theta^2 x^{\theta^2 1}, 0 < x < 1; f(x, \theta) = 0$, if $x \leq 0$ or $x \geq 1$.
 - (a) Derive the size α UMP (Uniformly Most Powerful) test for testing $H_0: \theta = 1$ vs $H_1: \theta > 1$.
 - (b) Derive the power function of your test.
 - (c) Does the size α UMP test for testing $H_0: \theta = 1$ vs $H_2: \theta \neq 1$ exist ? Why ?

- 4. Let X and Y be jointly distributed random variables. If $X|Y = y \sim Poisson(y)$, and $Y \sim Exponential(\lambda)$
 - (a) Find the marginal distribution of X
 - (b) Find P(Y > a | X = 1)

5. It is hypothesized that in Collierville Tennessee, 10% of all households have 3PC's, 20% have 2PC's, 40% have 1PC, and 30% have no PC's. In a survey of the households in Collierville, a sample of 100 households is randomly selected. Assuming that the hypothesis is true, what is the probability that the **average number** of PC's among the selected households is less than 1.5?

- 6. Let X_1, \ldots, X_n be a random sample from a Uniform $(\theta, 2)$ distribution.
 - (a) find the maximum likelihood estimator of θ .
 - (b) Is the MLE of θ a sufficient statistic for θ ?
 - (c) If n = 400 and $\theta = 1$, find an approximate value of a such that $P(\sum_{i=1}^{n} X_i > a) = 0.2$.

- 7. For a class of 30 students, the homework scores x_i 's and the final scores y_i 's were summarized as follows: $\sum_{i=1}^{30} x_i = 323$, $\sum_{i=1}^{30} y_i = 2282$, $\sum_{i=1}^{30} x_i^2 = 3650$, $\sum_{i=1}^{30} y_i^2 = 171460$ and $\sum_{i=1}^{30} x_i y_i = 24466$.
 - (a) Find the estimated regression line of Y on X: $y = \hat{\alpha} + \hat{\beta}x$.
 - (b) If a student in a similar situation in the future obtained a homework score of 11,(i) predict his final score and (ii) illustrate how to obtain a range of his final score with 95% confidence level.

- 8. Suppose that $\{X_1, X_2\}$ is a random sample from the normal distribution $N(0, \sigma^2)$.
 - (a) Let $Y = a_1 X_1 + a_2 X_2$ with constants a_1, a_2 . (i) Give the distribution of Y and (ii) choose a_1, a_2 such that $Y \sim N(0, 1)$.
 - (b) (i) Show both $Z_1 = \frac{1}{2} \{X_1^2 + X_2^2\}$ and $Z_2 = X_1^2 + X_2$ are unbiased estimators for σ^2 . (ii) Which of the two estimators do you recommend to use? Explain.

- 9. Let $Y_i \sim N(\beta x_i, \sigma^2)$ independently for i = 1, ..., n, where x_i 's are the values of a non-random covariate.
 - (a) Derive the maximum likelihood estimators for β and $\sigma^2.$
 - (b) Let $\hat{\beta}$ be the maximum likelihood estimator of β , respectively. Show that

$$\sum_{i=1}^{n} (Y_i - \hat{\beta} x_i) x_i = 0.$$

10. Let X_1 and X_2 be independently and identically distributed from a geometric distribution with probability mass function given by

 $P(X = x) = p(1 - p)^{x-1}$, where $x = 1, 2, 3, \dots$

- (a) Find the UMVUE for p.
- (b) Find the UMVUE for p^2 .

11. Let X and Y be two random variables with joint density

$$f(x,y) = \begin{cases} 1, & 0 < x < 1, 0 < y < 1 \\ 0, & \text{otherwise} \end{cases}$$

Define U = X + Y, V = X/(X + Y).

- (a) Find the the joint density of U and V.
- (b) Find the the marginal density of U.
- (c) Find the the marginal density of V.

12. Let X_1, \ldots, X_n be a random sample of size *n* from a population with density

$$f(x|\theta) = \theta(1+x)^{-(\theta+1)}, \quad x > 0, \theta > 0.$$

Suppose that θ has been drawn according to a prior distribution which is exponential with a known mean μ .

- (a) Find the posterior distribution of θ .
- (b) Find the Bayes estimator of θ under the squared error loss function.