PHD QUALIFYING EXAMINATION FOR ALGEBRA (FALL 2014)

Answer 5 of the following questions correctly.

Question 1. Determine the group defined by the following generators and relations:

$$\langle a, b : a^8 = e, b^2 a^4 = e, bab^{-1} a = e \rangle.$$

Question 2. Answer the following.

- 1. Define the composition series of a group G.
- 2. Determine the composition series of the group S_4 .
- 3. Determine the composition series of the group S_5 .

Question 3. Let $\theta: R \to S$ be an ring epimorphism from R into S with kernel K.

- 1. Prove each of the following:
 - (i) If P is a prime ideal of R containing K, then $\theta(P)$ is a prime ideal of S.
 - (ii) If Q is a prime ideal of S, then $\theta^{-1}(Q)$ is a prime ideal of R containing K.
 - (iii) Prove that there is a one-to-one correspondence between the prime ideals of R containing K and the prime ideals of S.
- 2. If I is an ideal of R, determine the ideal $\theta^{-1}(\theta(I))$ of R.

Question 4. Let R be a commutative ring with identity and let $f(X) = \sum_{i=0}^{n} a_i X^i$ be a polynomial in R[X]. Prove that f(X) is a unit in R[X] if and only if a_0 is a unit and each a_i is nilpotent for $1 \le i \le n$.

Question 5. Let $f_1(X) = X^3 - 2X + 7$, $f_2(X) = X^4 + 3X^3 - 3X - 2$ and $f_3(X) = X^7 + 7X^3 + 6$ be polynomials in $\mathbb{Z}[X]$. Let α_i be a root of $f_i(X)$ for i = 1, 2, 3.

- 1. What is the degree of the field extension $\mathbb{Q}(\alpha_1, \alpha_2, \alpha_3)$ over \mathbb{Q} (i.e, what is $[\mathbb{Q}(\alpha_1, \alpha_2, \alpha_3), \mathbb{Q}]$ equal to)?
- 2. Let K_1 be the splitting field of $f_1(X)$ over \mathbb{Q} . Determine $[K_1:\mathbb{Q}]$.
- 3. Determine the Galois group of K_1/\mathbb{Q} .
- 4. Is $\mathbb{Q}(\alpha_1)/\mathbb{Q}$ separable? Is it normal? Is it Galois?

For all parts, include a full justification for your answer. Simply writing down the correct group, number or response is not sufficient.

Question 6. Let K/\mathbf{k} be a field extension of degree 2, so $[K : \mathbf{k}] = 2$.

- 1. If the characteristic of **k** is not 2, show that K/\mathbf{k} is Galois.
- 2. Let \mathbb{F}_2 be the finite field of two elements and let $\mathbf{k} = \mathbb{F}_2(t)$ be a transcendental field extension of \mathbb{F}_2 (i.e., t is not algebraic over \mathbb{F}_2). Give an example of a field extension K/\mathbf{k} such that $[K:\mathbf{k}]=2$ but K/\mathbf{k} is not Galois. Include all details showing why the example has the stated properties.

1

Question 7. Let R be a commutative ring with identity and let

$$0 \to M' \xrightarrow{f} M \xrightarrow{g} M'' \to 0$$

be a short exact sequence of R-modules.

1. Show that

$$0 \to R \otimes_R M' \overset{1 \otimes f}{\to} R \otimes_R M \overset{1 \otimes g}{\to} R \otimes_R M'' \to 0$$

is a short exact sequence of R-modules.

2. Let F be a free R-module. Show that

$$0 \to F \otimes_R M' \stackrel{1 \otimes f}{\to} F \otimes_R M \stackrel{1 \otimes g}{\to} F \otimes_R M'' \to 0$$

is a short exact sequence of R-modules.

Question 8. Let R be a commutative ring with identity, let $\mathbf{m} \subseteq R$ be a maximal ideal, and let $A = (R/\mathbf{m})[X]$ be the polynomial ring over R/\mathbf{m} . If M is a projective A-module, what can M be isomorphic to? Justify your answer.