ALGEBRA PH.D. QUALIFYING EXAM SUMMER 2022

Answer FIVE of the following eight questions correctly. When using a theorem from class, be sure to cite the hypotheses needed to apply it and state what the resulting conclusion is. When giving an example, be sure to give a full justification as to why the example works.

All rings have identity.
Question 1. Consider the action of the symmetric group S_{4} on the set of polynomials $\mathbb{Z}\left[X_{1}, X_{2}, X_{3}, X_{4}\right]$ defined by permuting the indices of each polynomial, i.e.,

$$
f^{\sigma}\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=f\left(X_{\sigma(1)}, X_{\sigma(2)}, X_{\sigma(3)}, X_{\sigma(4)}\right), \quad \text { for } \sigma \in S_{4} \text { and } f \in \mathbb{Z}\left[X_{1}, X_{2}, X_{3}, X_{4}\right]
$$

(a) Explicitly describe the elements in the orbit of the polynomial $\left(X_{1}+X_{2}\right)\left(X_{3}+X_{4}\right)$.
(b) Explicitly describe the elements in the stabilizer of the polynomial $\left(X_{1}+X_{2}\right)\left(X_{3}+X_{4}\right)$.

Justify your answers!
Question 2. Show there exists a non-abelian group of order 55.
Question 3. Let $p \in \mathbb{Z}$ be a prime with $p \equiv 1 \bmod 4$. Show that $\mathbb{Z}[\sqrt{p}]=\{a+b \sqrt{p}: a, b \in \mathbb{Z}\}$ is not a unique factorization domain.

Question 4. Let R be a commutative ring and let $I \subset R$ be a proper ideal. Show that there exists a prime ideal $P \subset R$ that contains I which is minimal (by inclusion) among all prime ideals containing I.

Question 5. Let R be a commutative ring. Show that $\operatorname{Hom}_{R}(R, R) \cong R$ (both as R-modules and rings).
Question 6. Let

$$
0 \rightarrow \mathbb{Q} / \mathbb{Z} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0
$$

be a short exact sequence of \mathbb{Z}-modules. Show there exists a short exact sequence of \mathbb{Z}-modules

$$
0 \rightarrow M^{\prime \prime} \rightarrow M \rightarrow \mathbb{Q} / \mathbb{Z} \rightarrow 0
$$

Question 7. Let

$$
\begin{aligned}
& f(X)=X^{11}+15 X^{10}+45 X^{9}+75 X^{2} \in \mathbb{Q}[X] \quad \text { and } \\
& g(X)=X^{10}+14 X^{9}+30 X^{8}-45 x^{7}+75 X-75 \in \mathbb{Q}[X]
\end{aligned}
$$

Let α be a root of $f(X)$ and let β be a root of $g(X)$. What are the possibilities for $|\mathbb{Q}(\alpha): \mathbb{Q}|$? What are the possibilities for $|\mathbb{Q}(\beta): \mathbb{Q}|$? Justify your answers!

Question 8. Let K / \mathbf{k} be a Galois field extension with $|K: \mathbf{k}|=95$, and let E be an intermediary field. Show that E / \mathbf{k} is normal.

