Algebra Qualifying Exam

Winter 2023

Answer FIVE of the following eight questions correctly. When using a theorem from class, be sure to cite the hypotheses needed to apply it and state what the resulting conclusion is. When giving an example, be sure to give a full justification as to why the example works. All rings have identity.

1. Give an example (with proof) of a group G and subgroup $H \leq G$ such that the normalizer $N_{G}(H)$ of H is not normal in G.
2. Show that a group of order $3^{4} \cdot 5^{20}$ is solvable. (partial progress was sufficient)
3. Consider the ideal $I=\left(2 x, y^{3}\right)$ in the ring $\mathbb{Z}[x, y]$. Determine (with proof) all prime ideals $P \subseteq \mathbb{Z}[x, y]$ such that $I \subseteq P$ but there does not exist another prime ideal P^{\prime} with $I \subseteq P^{\prime} \subset P$.
4. Let $R=\mathbb{Z}+x \mathbb{Q}[x] \subseteq \mathbb{Q}[x]$ be the ring of polynomials with rational coefficients whose constant term is an integer. Show that the element $x \in R$ cannot be written as a finite product of irreducible elements from R.
5. Is $\mathbb{Z} / 4 \mathbb{Z}$ a $\mathbb{Z} / 2 \mathbb{Z}$-module? If yes, identify with a proof $\mathbb{Z} / 4 \mathbb{Z} \otimes_{\mathbb{Z} / 2 \mathbb{Z}}(\mathbb{Z} / 2 \mathbb{Z})[x]$.

Is $\mathbb{Z} / 2 \mathbb{Z}$ a $\mathbb{Z} / 4 \mathbb{Z}$-module? If yes, identify with a proof $\mathbb{Z} / 4 \mathbb{Z} \otimes_{\mathbb{Z} / 4 \mathbb{Z}}(\mathbb{Z} / 2 \mathbb{Z})[x]$.
6. Let $R=\mathbb{Z}[i]$ be the ring of Gaussian integers. Let $R^{\prime}=\operatorname{Hom}_{R}(R /(2), R /(3+3 i))$ be the R-module of R-module homomorphisms between the quotient modules $R /(2)$ and $R /(3+3 i)$, where $i=\sqrt{-1}$. Prove that R^{\prime} is isomorphic to the R-module $R /(1+i)$.
7. A polynomial with integer coefficients can be interpreted over any field. Give an example (with proof) of three fields F_{1}, F_{2} and F_{3}, and a single polynomial f with integer coefficients, such that the three Galois groups of f, over the fields F_{1}, F_{2} and F_{3}, are all non-isomorphic. Recall here that the Galois group of a separable polynomial $f \in F[x]$ is the Galois group of the splitting field K for f, so $\operatorname{Gal}(K / F)$.
8. If K is a finite field extension of \mathbb{R}, then what are the possibilities for $|K: \mathbb{R}|$? Justify your answer with a proof.

