Algebra Qualifying Exam

Winter 2023

Answer FIVE of the following eight questions correctly. When using a theorem from class, be sure to cite the hypotheses needed to apply it and state what the resulting conclusion is. When giving an example, be sure to give a full justification as to why the example works. All rings have identity.

- 1. Give an example (with proof) of a group G and subgroup $H \leq G$ such that the normalizer $N_G(H)$ of H is not normal in G.
- 2. Show that a group of order $3^4 \cdot 5^{20}$ is solvable. (partial progress was sufficient)
- 3. Consider the ideal $I = (2x, y^3)$ in the ring $\mathbb{Z}[x, y]$. Determine (with proof) all prime ideals $P \subseteq \mathbb{Z}[x, y]$ such that $I \subseteq P$ but there does not exist another prime ideal P' with $I \subseteq P' \subset P$.
- 4. Let $R = \mathbb{Z} + x\mathbb{Q}[x] \subseteq \mathbb{Q}[x]$ be the ring of polynomials with rational coefficients whose constant term is an integer. Show that the element $x \in R$ cannot be written as a finite product of irreducible elements from R.
- 5. Is $\mathbb{Z}/4\mathbb{Z}$ a $\mathbb{Z}/2\mathbb{Z}$ -module? If yes, identify with a proof $\mathbb{Z}/4\mathbb{Z} \otimes_{\mathbb{Z}/2\mathbb{Z}} (\mathbb{Z}/2\mathbb{Z})[x]$. Is $\mathbb{Z}/2\mathbb{Z}$ a $\mathbb{Z}/4\mathbb{Z}$ -module? If yes, identify with a proof $\mathbb{Z}/4\mathbb{Z} \otimes_{\mathbb{Z}/4\mathbb{Z}} (\mathbb{Z}/2\mathbb{Z})[x]$.
- 6. Let $R = \mathbb{Z}[i]$ be the ring of Gaussian integers. Let $R' = \text{Hom}_R(R/(2), R/(3+3i))$ be the *R*-module of *R*-module homomorphisms between the quotient modules R/(2) and R/(3+3i), where $i = \sqrt{-1}$. Prove that R' is isomorphic to the *R*-module R/(1+i).
- 7. A polynomial with integer coefficients can be interpreted over any field. Give an example (with proof) of three fields F_1 , F_2 and F_3 , and a single polynomial f with integer coefficients, such that the three Galois groups of f, over the fields F_1 , F_2 and F_3 , are all non-isomorphic. Recall here that the Galois group of a separable polynomial $f \in F[x]$ is the Galois group of the splitting field K for f, so $\mathsf{Gal}(K/F)$.
- 8. If K is a finite field extension of \mathbb{R} , then what are the possibilities for $|K : \mathbb{R}|$? Justify your answer with a proof.