PH.D. QUALIFYING EXAM: REAL ANALYSIS

Fall 2025

Solve all seven problems. Show all steps and formulate theorems cited.

1. Suppose that $a \leq a_n < b_n \leq b$, $1 \leq n \leq k$. Suppose also that

$$\#\{n: x \in [a_n, b_n]\} \ge s$$

for every $x \in [a, b]$. Prove that there exists n such that $b_n - a_n \ge \frac{(b-a)s}{k}$.

2. For $n \in \mathbb{N}$ and $x \in [0,1]$ let $f_n(x) = \frac{2n^2x}{e^{n^2x}}$. Find the limit function,

$$f(x) = \lim_{n \to \infty} f_n(x).$$

Prove or disprove that the convergence of f_n to f is uniform on [0,1].

- 3. (a) State the Radon-Nikodym theorem.
- (b) Let μ be a Borel measure on [0,1] that is absolutely continuous with respect to Lebesgue measure m, i.e. $\mu << m$. Let $C = \sup\{\mu(E) : m(E) = \frac{1}{2}\}$ and suppose that $C < \infty$. Show that there is a Borel set E with $m(E) = \frac{1}{2}$ and $\mu(E) = C$.
- 4. Prove that C([0,1]), the space of continuous real valued functions on [0,1], when equipped with the uniform metric $d(f,g) = \max\{|f-g|\}$, is separable.
- 5. Let \mathcal{X} and \mathcal{Y} be normed linear vector spaces over \mathbf{R} , and let $A \subset \mathcal{X}$ with the linear span of A dense in \mathcal{X} . Let $T_n : \mathcal{X} \to \mathcal{Y}$ be bounded linear maps such that

$$\sup\{||T_n||: n \in \mathbf{N}\} = B < \infty.$$

Suppose that $\lim_{n\to\infty} ||T_n a|| = 0$ for every $a \in A$. Prove that $\lim_{n\to\infty} ||T_n x|| = 0$ for every $x \in \mathcal{X}$.

6. Let C[0,1] be the space of continuous, real valued functions on the unit interval. Prove or disprove that C[0,1] is a Banach space when equipped with the norm

$$||f|| = \left(\int_0^1 f^2 dm\right)^{\frac{1}{2}}.$$

7. Define a measure μ on the set of natural numbers **N** by

$$\mu(A) = \sum_{n \in A} \frac{1}{n^2}.$$

1

- (a) Prove or disprove: $L^1(\mu) \subset L^2(\mu)$.
- (b) Prove or disprove: $L^2(\mu) \subset L^1(\mu)$.