PH.D. QUALIFYING EXAM: REAL ANALYSIS

January, 2025

Solve five of the seven problems. Show all steps and formulate theorems cited.

- 1. Let $L^1[0,1]$ and $L^2[0,1]$ be endowed with their respective norm topologies. m is Lebesgue measure. Prove the following:
 - (a) $\{f \in L^1[0,1]: \int |f|^2 dm \leq 1\}$ is closed in $L^1[0,1]$ and has empty interior.
 - (b) The inclusion map $L^2[0,1] \to L^1[0,1]$ is continuous and not surjective.
- 2. Let $\{f_n\}$ be a sequence in $L^1(0,\infty)$. Suppose that $f_n(x) \to f(x)$ for a.e. $x \in (0,\infty)$. Is f(x) necessarily integrable? Prove or give a counterexample.
 - 3. Let $a, b \in \mathbf{R}$ with a < b, and let $f : [a, b] \to \mathbf{R}$.
 - (a) What does it mean for f to be absolutely continuous? Give a definition.
- (b) Suppose f is absolutely continuous and $f(x) \ge \epsilon > 0$ for every $x \in [a, b]$. Prove that $g = \frac{1}{f}$ is absolutely continuous.
- 4. Let X and Y be Banach spaces, and suppose that $x_n \to x$ weakly in X. Recall that $\{||x_n||\}$ is necessarily bounded. Let $T: X \to Y$ be a bounded operator.
 - (a) Prove that $Tx_n \to Tx$ weakly.
 - (b) Prove that if T is a compact operator then $Tx_n \to Tx$ in the norm topology.
- 5. Let f be an integrable function defined on a measurable set E in a measure space (X, \mathcal{A}, μ) .
 - (a) Prove that the set $A = \{x \in E : f(x) \neq 0\}$ is σ -finite.
- (b) Suppose that g is another integrable function defined on E, both f and g are real-valued, and that $f^2 + g^2$ is integrable. Prove that fg is integrable.
- 6. Let m denote Lebesgue measure on \mathbf{R} . Recall that for any measurable set $E \subset \mathbf{R}$ with m(E) > 0, and any $\epsilon > 0$, there exists a finite interval $I \subset \mathbf{R}$ such that $m(I \cap E) > (1 \epsilon)m(I)$. Use this to prove that if $E, F \subset \mathbf{R}$ with m(E) > 0 and m(F) > 0 then the set

$$E - F = \{x - y : x \in E, y \in F\}$$

contains a nontrivial interval.

7. Prove that a linear functional f on a normed linear space X is bounded if and only if the kernel of f, i.e.

$$\ker f = \{ x \in X : f(x) = 0 \},\$$

is closed.