Statistics Ph.D. Qualifying Exam: Part II

 August 15, 2014Student Name: \qquad
Student UID: \qquad

1. Answer 8 out of 12 problems. Mark the problems you selected in the following table.

Problem	1	2	3	4	5	6	7	8	9	10	11
Selected											
Scores											

2. Write your answer right after each problem selected, attach more pages if necessary. Do not write your answers on the back.
3. Assemble your work in right order and in the original problem order. (Including the ones that you do not select)
4. You can use the $\mathrm{N}(0,1)$ distribution table as attached.
5. Let $Y_{i j},\left(i=1,2 ; j=1,2,3\right.$ be independent random variables such that $Y_{i j} \sim N\left(\mu_{i}, i^{2} \sigma^{2}\right)$, for $j=1,2,3$.
(a) Find the least squares estimators of μ_{1} and μ_{2}.
(b) Find the Maximum Likelihood estimators of μ_{1}, μ_{2}, and σ^{2}.
(c) Find an unbiased estimator of σ^{2}.
(d) Construct a test statistic for testing $H_{0}:\left(\mu_{1}, \mu_{2}\right)=\left(a_{1} \mu, a_{2} \mu\right)$ versus H_{1} : $\left(\mu_{1}, \mu_{2}\right) \neq\left(a_{1} \mu, a_{2} \mu\right)$ where a_{1}, a_{2} are known constants.
6. Suppose that X_{1}, \ldots, X_{n} is a random sample from a population with density

$$
f(x \mid \theta)=\frac{\theta e^{\theta x}}{e^{\theta}-1}, \quad 0<x<1
$$

where $\theta>0$.
(a) Construct a uniformly most powerful test of size α for testing

$$
H_{0}: \theta \leq 1 \text { versus } H_{1}: \theta>1
$$

(b) Using the Central Limit Theorem, find an approximate rejection region for the UMP test at size $\alpha=0.05$, and hence approximate the power function of the UMP test.
3. Suppose that $X \mid n, \theta$ has a binomial distribution with parameter θ. Suppose we put independent prior distributions on n and θ, with n having Poisson (λ) prior and θ having a $\operatorname{Beta}(\alpha, \beta)$ prior, where α and β are known hyperparameters.
(a) Prove that the posterior density of θ given $X=x$ and n is $\operatorname{Beta}(x+\alpha, n-x+\beta)$.
(b) Prove that the posterior probability function of $n+X$ given $X=x$ and θ is Poisson [(1- $\theta) \lambda]$.
(c) Suppose $\alpha=\beta=1$ and $X=10$, explain in details how you can obtained 100 samples of n 's from the posterior distribution of n given $X=10$.
4. Let X and Y be random variables such that $Y \mid X=x \sim \operatorname{Poisson}(\lambda x)$, and X has density

$$
f_{X}(x)=\frac{\theta^{\theta} x^{\theta-1} e^{-\theta x}}{\Gamma(\theta)}, \quad x \geq 0
$$

(a) Prove that
i. $E(Y)=\lambda$ and $\operatorname{Var}(Y)=\lambda+\theta \lambda^{2}$.
ii. Y has density

$$
f_{Y}(y ; \lambda)=\frac{\Gamma(\theta+y) \lambda^{y} \theta^{\theta}}{\Gamma(\theta) y!(\theta+\lambda)^{\theta+y}}, \quad y=0,1,2, \ldots
$$

(b) Now suppose that Y_{1}, \ldots, Y_{n} are independent random variables from the distribution given above, with Y_{i} having mean λ_{i}, and $\log \left(\lambda_{i}\right)=\beta z_{i}$, where z_{i} 's are known covariates, $i=1, \ldots, n$., and assume that $\theta=1$. Write a Fisher scoring algorithm for computing the MLE of β, and discuss its properties.
5. Let $X_{1}, X_{2}, \ldots, X_{n}$ be iid from

$$
f_{X}(x ; \theta)=\theta(1+x)^{-(1+\theta)} \quad x>0 \quad \theta>0
$$

(a) Estimate θ by the method of moments assuming $\theta>1$.
(b) Find the maximum likelihood estimator (mle) of $\frac{1}{\theta}$.
(c) Find a complete sufficient statistic for θ
(d) Find the Cramer-Rao lower bound for unbiased esimates of $\frac{1}{\theta}$.
(e) Find the UMVUE of $\frac{1}{\theta}$.
6. Let X_{1}, \ldots, X_{n} be iid from $f\left(x ; \theta_{1}\right)=\theta_{1} x^{\theta_{1}-1}$ for $0<x<1$ and Y_{1}, \ldots, Y_{m} be iid from $f\left(y ; \theta_{2}\right)=\theta_{2} y^{\theta_{2}-1}$ for $0<y<1$. Find the likelihood ratio test for testing $H_{0}: \theta_{1}=\theta_{2}$ versus $H_{1}: \theta_{1} \neq \theta_{2}$.
7. Let $X_{1}, X_{2}, \ldots, X_{n}$ be iid Poisson (λ). Let \bar{X} and S^{2} be the sample mean and sample variance respectively.
(a) Prove that \bar{X} is the UMVUE of λ.
(b) Prove that $E\left(S^{2} \mid \bar{X}\right)=\bar{X}$ and use this to show that $\operatorname{Var}\left(S^{2}\right)>\operatorname{Var}(\bar{X})$
8. Suppose that Y_{i} 's are i.i.d random variables with density

$$
\begin{equation*}
f(y)=\lambda e^{-\lambda(y-\mu)} I_{(y>\mu)} \tag{1}
\end{equation*}
$$

for $y>0$, where $\lambda>0, \mu>0$ are unknown parameters.
(a) Find the minimal sufficient statistics for (μ, λ). And prove these are complete for $n=2$.
(b) Suppose that you observe a sample of $n=2$ variables Y_{i}, and that you are told that $\mu<10$. Find a UMVUE for $e^{-\lambda(10-\mu)}$.
9. Let X_{1}, \cdots, X_{n} be i.i.d with a common uniform distribution on $[-\theta, \theta]$.
(a) Find $\hat{\theta}$, the maximum likelihood estimator of θ.
(b) Prove that $\hat{\theta}$ is consistent.
10. Let $X_{1}, \cdots, X_{m}, Y_{1}, \cdots, Y_{n}$ be independent normal random variables, let $E\left(X_{i}\right)=\mu_{1}$, $\operatorname{Var}\left(X_{i}\right)=\sigma_{1}^{2}, E\left(Y_{j}\right)=\mu_{2}$ and $\operatorname{Var}\left(Y_{j}\right)=\sigma_{2}^{2}, i=1,2, \cdots, m, j=1,2, \cdots, n$. Assume that both m and n are large.
(a) Find a confidence interval for $\delta=\mu_{1}-\mu_{2}$, with approximate coverage probability $1-\alpha$, assuming that the variances are unknown but equal.
(b) Redo part (a) by assuming that the variances are unknown and possibly unequal.
11. Let X_{1} and X_{2} be two independent random variables following chi-square distributions with degrees of freedom v_{1} and v_{2}, respectively. Define $Y=\frac{X_{1} / v_{1}}{X_{2} / v_{2}}$.
(a) Derive the p.d.f. of Y.
(b) Derive the mean of Y.
12. For each of the following pdfs, let $X_{1}, X_{2}, \cdots, X_{n}$ be a random sample from that distribution. In each case, find the UMVUE of θ^{r}, where $r<n$ is an integer.
(a) $f(x ; \theta)=\frac{1}{\theta}, 0<x<\theta$.
(b) $f(x ; \theta)=e^{-(x-\theta)}, \theta<x$.

Table of $P(Z<z), Z \sim N(0,1)$

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	9
0.0	0.50000	0.50399	0.50798	0.51197	0.51595	0.51994	0.52392	0.52790	0.53188	0.53586
0.1	0.53983	0.54380	0.54776	0.55172	0.55567	0.55962	0.56356	0.56749	0.57142	0.57535
0.2	0.57926	0.58317	0.58706	0.59095	0.59483	0.59871	0.60257	0.60642	0.61026	0.61409
0.3	0.61791	0.62172	0.62552	0.62930	0.63307	0.63683	0.64058	0.64431	0.64803	0.65173
0.4	0.65542	0.65910	0.66276	0.66640	0.67003	0.67364	0.67724	0.68082	0.68439	0.68793
0.5	0.69146	0.69497	0.69847	0.70194	0.70540	0.70884	0.71226	0.71566	0.71904	0.72240
0.6	0.72575	0.72907	0.73237	0.73565	0.73891	0.74215	0.74537	0.74857	0.75175	0.75490
0.7	0.75804	0.76115	0.76424	0.76730	0.77035	0.77337	0.77637	0.77935	0.78230	0.78524
0.8	0.7881	0.7910	0.7938	0.79673	0.79955	0.80234	0.80511	0.80785	0.81057	0.81327
0.9	0.81594	0.81859	0.82121	0.82381	0.82639	0.82894	0.83147	0.83398	0.83646	0.83891
1.0	0.84134	0.84375	0.84614	0.84849	0.85083	0.85314	0.85543	0.85769	0.85993	0.86214
1.1	0.86433	0.86650	0.86864	0.87076	0.87286	0.87493	0.87698	0.87900	0.88100	0.88298
1.2	0.88493	0.88686	0.88877	0.89065	0.89251	0.89435	0.89617	0.89796	0.89973	0.90147
1.3	0.90320	0.90490	0.9065	0.90824	0.90988	0.91149	0.91309	0.91466	0.91621	0.91774
1.	0.91924	0.9207	0.9222	0.9236	0.9250	0.92647	0.92785	0.92922	0.93056	0.93189
1.5	0.93319	0.93448	0.9357	0.9369	0.9382	0.9394	0.94062	0.94179	0.94295	0.94
1.6	0.94520	0.94630	0.94738	0.94845	0.94950	0.9505	0.95154	0.95254	0.95352	0.95449
1.7	0.95543	0.95637	0.95728	0.95818	0.95907	0.95994	0.96080	0.96164	0.96246	0.96327
1.8	0.96407	0.96485	0.96562	0.96638	0.96712	0.96784	0.96856	0.96926	0.96995	0.97062
1.9	0.97128	0.97193	0.97257	0.97320	0.97381	0.97441	0.97500	0.97558	0.97615	0.97670
2.0	0.97725	0.97778	0.97831	0.97882	0.97932	0.97982	0.98030	0.98077	0.98124	0.98169
2.1	0.98214	0.98257	0.98300	0.98341	0.98382	0.98422	0.98461	0.98500	0.98537	0.98574
2.2	0.98610	0.98645	0.98679	0.98713	0.98745	0.98778	0.98809	0.98840	0.98870	0.98899
2.3	0.98928	0.98956	0.98983	0.99010	0.99036	0.99061	0.99086	0.99111	0.99134	0.99158
2.4	0.99180	0.99202	0.9922	0.99245	0.99266	0.9928	0.99305	0.99324	0.99343	0.99361
2.5	0.99379	0.99396	0.99413	0.99430	0.99446	0.99461	0.99477	0.99492	0.99506	0.99520
2.6	0.99534	0.99547	0.99560	0.99573	0.99585	0.99598	0.99609	0.99621	0.99632	0.99643
2.7	0.99653	0.99664	0.99674	0.99683	0.99693	0.99702	0.99711	0.99720	0.99728	0.99736
2.8	0.99744	0.99752	0.99760	0.99767	0.99774	0.99781	0.99788	0.99795	0.99801	0.99807
2.9	0.99813	0.99819	0.99825	0.99831	0.99836	0.99841	0.99846	0.99851	0.99856	0.99861
3.0	0.99865	0.99869	0.99874	0.99878	0.99882	0.99886	0.99889	0.99893	0.99896	0.99900
3.1	0.99903	0.99906	0.99910	0.99913	0.99916	0.99918	0.99921	0.99924	0.99926	0.99929
3.2	0.99931	0.99934	0.99936	0.99938	0.99940	0.99942	0.99944	0.99946	0.99948	0.99950
3.3	0.99952	0.99953	0.99955	0.99957	0.99958	0.99960	0.99961	0.99962	0.99964	0.99965
3.4	0.99966	0.99968	0.99969	0.99970	0.99971	0.99972	0.99973	0.99974	0.99975	0.99976
3.5	0.99977	0.99978	0.99978	0.99979	0.99980	0.99981	0.99981	0.99982	0.99983	0.99983
3.6	0.99984	0.99985	0.99985	0.99986	0.99986	0.99987	0.99987	0.99988	0.99988	0.99989
3.7	0.99989	0.99990	0.99990	0.99990	0.99991	0.99991	0.99992	0.99992	0.99992	0.99992
3.8	0.99993	0.99993	0.99993	0.99994	0.99994	0.99994	0.99994	0.99995	0.99995	0.99995
3.9	0.99995	0.99995	0.99996	0.99996	0.99996	0.99996	0.99996	0.99996	0.99997	0.99997
4.0	0.99997	0.99997	0.99997	0.99997	0.99997	0.99997	0.99998	0.99998	0.99998	0.99998
4.1	0.99998	0.99998	0.99998	0.99998	0.99998	0.99998	0.99998	0.99998	0.99999	0.99999

