Statistics Ph.D. Qualifying Exam: Part II

 August 14, 2015Student Name: \qquad

1. Answer 8 out of 12 problems. Mark the problems you selected in the following table.

Problem	1	2	3	4	5	6	7	8	9	10	11
Selected											
Scores											

2. Write your answer right after each problem selected, attach more pages if necessary. Do not write your answers on the back.
3. Assemble your work in right order and in the original problem order. (Including the ones that you do not select)
4. You can use the $\mathrm{N}(0,1)$ distribution table as attached.
5. Let X_{1}, \ldots, X_{n} be a random sample from $f(x ; \theta)=\frac{1}{\theta} \quad 0<x<\theta$, for $\theta>0$.
(a) Does the family of densities $f(x ; \theta)$ have a monotone-likelihood ratio? If so find the corresponding test statistic $T(\boldsymbol{X})$.
(b) Find a Uniformly Most Powerful (UMP) test of $H_{0}: \theta \leq \theta_{0}$ versus $H_{1}: \theta>\theta_{0}$
(c) Find the value of the constant in the rejection region that makes the UMP test a size α test.
6. Suppose that the discrete random variable X_{n} has a geometric distribution given by

$$
f_{X_{n}}\left(x_{n}\right)=p_{n}\left(1-p_{n}\right)^{x_{n}} \quad x_{n}=0,1, \ldots
$$

where $p_{n}=\frac{\lambda}{n}$. Find the limiting value of the moment generating function of $Y_{n}=X_{n} / n$ as $n \rightarrow \infty$ and use this result to determine the asymptotic distribution of Y_{n}.
3. Let Z_{1}, Z_{2} be a random sample of size 2 from a standard normal distribution.
(a) Find the distribution of \bar{Z}, the sample mean.
(b) Find the distribution of $\sum_{i=1}^{2}\left(Z_{i}-\bar{Z}\right)^{2}$.
(c) Show that \bar{Z} and $\sum_{i=1}^{2}\left(Z_{i}-\bar{Z}\right)^{2}$ are independent.
4. Let $X_{1}, X_{2}, \cdots, X_{n_{1}}$ constitute a random sample of size $n_{1}(>2)$ from a normal parent population with mean 0 and variance θ. Also, let $Y_{1}, Y_{2}, \cdots, Y_{n_{2}}$ constitute a random sample of size $n_{2}(>2)$ from a normal parent population with mean 0 and variance θ^{-1}. The set of random variables $\left\{X_{1}, X_{2}, \cdots, X_{n_{1}}\right\}$ is independent of the set of random variables $\left\{Y_{1}, Y_{2}, \cdots, Y_{n_{2}}\right\}$, and $\theta(>0)$ is an unknown parameter.
(a) Derive an explicit expression for $E(\sqrt{L})$ when $L=\sum_{i=1}^{n_{1}} X_{i}^{2}$.
(b) Using all $\left(n_{1}+n_{2}\right)$ available observations, derive an explicit expression for an exact $100(1-\alpha) \%$ CI for the unknown parameter θ. If $n_{1}=8, n_{2}=5, \sum_{i=1}^{8} x_{i}^{2}=30$, and $\sum_{i=1}^{5} y_{i}^{2}=15$, compute a 95% confidence interval for θ.
5. Let $Y_{1}, Y_{2}, \cdots, Y_{n}$ constitute a random sample of size n from a $N\left(0, \sigma^{2}\right)$ population. Develop the structure of the rejection region for a uniformly most powerful (UMP) test of $H_{0}: \sigma^{2}=1$ versus $H_{1}: \sigma^{2}>1$. Then, use this result to find a reasonable value for the smallest sample size (say, n^{*}) that is needed to provide a power of at least 0.8 for rejecting H_{0} in favor of H_{1} when $\alpha=0.05$ and when the actual value of σ^{2} is no smaller than 2.0 in value.
6. Consider a sample of size n from Uniform $(\theta, \theta+1), \theta \in(-\infty, \infty)$. Find the minimal sufficient statistic and prove your assertion.
7. Let $X_{i}, i=1,2, \cdots, n$ be a random sample from from the pdf

$$
f(x ; \theta)=c \theta^{2} x^{-3}, \quad 0<\theta<x<\infty,
$$

where c is a constant to be determined.
(a) Find the constant c.
(b) Find the maximum likelihood estimator of θ.
(c) Find the method of moments estimator of θ.
(d) Find the uniformly minimum variance unbiased estimator of θ.
8. Let $X_{i}, i=1,2, \cdots, n$ be iid random variables with $N(\theta, \theta)$ distribution, where $\theta>$ is an unknown parameter.
(a) Find the MLE of $\theta, \hat{\theta}$.
(b) Find the asymptotic distribution of the MLE $\hat{\theta}$.
9. Let $X_{i}, i=1,2, \cdots, n$ be iid random variables with $N(\theta, 1)$ distribution, where θ is an unknown parameter. Consider testing $H_{0}: \theta \leq \theta_{0}$ vs. $H_{1}: \theta>\theta_{0}$, where θ_{0} is a known fixed constant.
(a) Derive the maximum likelihood estimator for θ under $H_{0}: \theta \leq \theta_{0}$.
(b) Show that the likelihood ratio test for $H_{0}: \theta \leq \theta_{0}$ vs. $H_{1}: \theta>\theta_{0}$ is to reject H_{0} when

$$
\bar{X}>k
$$

for some constant k.
(c) Find the constant k above so that likelihood ratio test is of size α.
(d) Show that the above likelihood ratio test is a UMP test.
10. Let Y_{1}, \ldots, Y_{n} be independent random variables with $Y_{i} \sim \mathcal{P}_{o}\left(e^{\beta_{0}+\beta_{1} x_{i}}\right)$, where $-\infty<$ $\beta_{0}, \beta_{1}<\infty$, and x_{1}, \ldots, x_{n} are fixed covariates.
(a) Derive the likelihood equations for calculating the $M L E$'s of β_{0} and β_{1}.
(b) Fully describe how you will actually use these equations to compute these MLE's.
11. Suppose that $X \mid n, \theta$ has a binomial distribution with parameter θ. Suppose we put independent prior distributions on n and θ, with n having Poisson (λ) prior and θ having a $\operatorname{Beta}(\alpha, \beta)$ prior, where α and β are known hyper parameters.
(a) Prove that the posterior density of θ given $X=x$ and n is $\operatorname{Beta}(x+\alpha, n-x+\beta)$.
(b) Prove that the posterior probability function of $n+X$ given $X=x$ and θ is Poisson [(1- $\theta) \lambda]$.
(c) Suppose $\alpha=\beta=1$ and $X=10$, explain in details how you can obtained 100 samples of n 's from the posterior distribution of n given $X=10$.
12. Let X and Y be random variables such that $Y \mid X=x \sim \operatorname{Poisson}(\lambda x)$, and X has density

$$
f_{X}(x)=\frac{\theta^{\theta} x^{\theta-1} e^{-\theta x}}{\Gamma(\theta)}, \quad x \geq 0
$$

(a) Prove that
i. $E(Y)=\lambda$ and $\operatorname{Var}(Y)=\lambda+\theta \lambda^{2}$.
ii. Y has density

$$
f_{Y}(y ; \lambda)=\frac{\Gamma(\theta+y) \lambda^{y} \theta^{\theta}}{\Gamma(\theta) y!(\theta+\lambda)^{\theta+y}}, \quad y=0,1,2, \ldots
$$

(b) Now suppose that Y_{1}, \ldots, Y_{n} are independent random variables from the distribution given above, with Y_{i} having mean λ_{i}, and $\log \left(\lambda_{i}\right)=\beta z_{i}$, where z_{i} 's are known covariates, $i=1, \ldots, n$., and assume that $\theta=1$. Write a Fisher scoring algorithm for computing the MLE of β, and discuss its properties.

Table of $P(Z<z), Z \sim N(0,1)$

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	9
0.0	0.50000	0.50399	0.50798	0.51197	0.51595	0.51994	0.52392	0.52790	0.53188	0.53586
0.1	0.53983	0.54380	0.54776	0.55172	0.55567	0.55962	0.56356	0.56749	0.57142	0.57535
0.2	0.57926	0.58317	0.58706	0.59095	0.59483	0.59871	0.60257	0.60642	0.61026	0.61409
0.3	0.61791	0.62172	0.62552	0.62930	0.63307	0.63683	0.64058	0.64431	0.64803	0.65173
0.4	0.65542	0.65910	0.66276	0.66640	0.67003	0.67364	0.67724	0.68082	0.68439	0.68793
0.5	0.69146	0.69497	0.69847	0.70194	0.70540	0.70884	0.71226	0.71566	0.71904	0.72240
0.6	0.72575	0.72907	0.73237	0.73565	0.73891	0.74215	0.74537	0.74857	0.75175	0.75490
0.7	0.75804	0.76115	0.76424	0.76730	0.77035	0.77337	0.77637	0.77935	0.78230	0.78524
0.8	0.7881	0.7910	0.7938	0.79673	0.79955	0.80234	0.80511	0.80785	0.81057	0.81327
0.9	0.81594	0.81859	0.82121	0.82381	0.82639	0.82894	0.83147	0.83398	0.83646	0.83891
1.0	0.84134	0.84375	0.84614	0.84849	0.85083	0.85314	0.85543	0.85769	0.85993	0.86214
1.1	0.86433	0.86650	0.86864	0.87076	0.87286	0.87493	0.87698	0.87900	0.88100	0.88298
1.2	0.88493	0.88686	0.88877	0.89065	0.89251	0.89435	0.89617	0.89796	0.89973	0.90147
1.3	0.90320	0.90490	0.9065	0.90824	0.90988	0.91149	0.91309	0.91466	0.91621	0.91774
1.	0.91924	0.9207	0.9222	0.9236	0.9250	0.92647	0.92785	0.92922	0.93056	0.93189
1.5	0.93319	0.93448	0.9357	0.9369	0.9382	0.9394	0.94062	0.94179	0.94295	0.94
1.6	0.94520	0.94630	0.94738	0.94845	0.94950	0.9505	0.95154	0.95254	0.95352	0.95449
1.7	0.95543	0.95637	0.95728	0.95818	0.95907	0.95994	0.96080	0.96164	0.96246	0.96327
1.8	0.96407	0.96485	0.96562	0.96638	0.96712	0.96784	0.96856	0.96926	0.96995	0.97062
1.9	0.97128	0.97193	0.97257	0.97320	0.97381	0.97441	0.97500	0.97558	0.97615	0.97670
2.0	0.97725	0.97778	0.97831	0.97882	0.97932	0.97982	0.98030	0.98077	0.98124	0.98169
2.1	0.98214	0.98257	0.98300	0.98341	0.98382	0.98422	0.98461	0.98500	0.98537	0.98574
2.2	0.98610	0.98645	0.98679	0.98713	0.98745	0.98778	0.98809	0.98840	0.98870	0.98899
2.3	0.98928	0.98956	0.98983	0.99010	0.99036	0.99061	0.99086	0.99111	0.99134	0.99158
2.4	0.99180	0.99202	0.9922	0.99245	0.99266	0.9928	0.99305	0.99324	0.99343	0.99361
2.5	0.99379	0.99396	0.99413	0.99430	0.99446	0.99461	0.99477	0.99492	0.99506	0.99520
2.6	0.99534	0.99547	0.99560	0.99573	0.99585	0.99598	0.99609	0.99621	0.99632	0.99643
2.7	0.99653	0.99664	0.99674	0.99683	0.99693	0.99702	0.99711	0.99720	0.99728	0.99736
2.8	0.99744	0.99752	0.99760	0.99767	0.99774	0.99781	0.99788	0.99795	0.99801	0.99807
2.9	0.99813	0.99819	0.99825	0.99831	0.99836	0.99841	0.99846	0.99851	0.99856	0.99861
3.0	0.99865	0.99869	0.99874	0.99878	0.99882	0.99886	0.99889	0.99893	0.99896	0.99900
3.1	0.99903	0.99906	0.99910	0.99913	0.99916	0.99918	0.99921	0.99924	0.99926	0.99929
3.2	0.99931	0.99934	0.99936	0.99938	0.99940	0.99942	0.99944	0.99946	0.99948	0.99950
3.3	0.99952	0.99953	0.99955	0.99957	0.99958	0.99960	0.99961	0.99962	0.99964	0.99965
3.4	0.99966	0.99968	0.99969	0.99970	0.99971	0.99972	0.99973	0.99974	0.99975	0.99976
3.5	0.99977	0.99978	0.99978	0.99979	0.99980	0.99981	0.99981	0.99982	0.99983	0.99983
3.6	0.99984	0.99985	0.99985	0.99986	0.99986	0.99987	0.99987	0.99988	0.99988	0.99989
3.7	0.99989	0.99990	0.99990	0.99990	0.99991	0.99991	0.99992	0.99992	0.99992	0.99992
3.8	0.99993	0.99993	0.99993	0.99994	0.99994	0.99994	0.99994	0.99995	0.99995	0.99995
3.9	0.99995	0.99995	0.99996	0.99996	0.99996	0.99996	0.99996	0.99996	0.99997	0.99997
4.0	0.99997	0.99997	0.99997	0.99997	0.99997	0.99997	0.99998	0.99998	0.99998	0.99998
4.1	0.99998	0.99998	0.99998	0.99998	0.99998	0.99998	0.99998	0.99998	0.99999	0.99999

