Galois Theory

Spring 2018

Paul Balister University of Memphis

A field **extension** K/F is an (injective) ring homomorphism between two fields $i: F \to K$ so, by the isomorphism theorem, identifies F with the subfield i(F) of K. When the map i is clear, we often abuse notation by regarding F as a subset of K. For example, \mathbb{C}/\mathbb{R} is a field extension and we commonly write $\mathbb{R} \subset \mathbb{C}$.

If K/F is an extension then we can regard K=(K,+) as a vector space over F since (K,+) is an abelian group and the map $F\times K\to K$; $(x,y)\mapsto xy=i(x)y$ satisfies the properties of multiplication by a scalar. The dimension of this vector space is called the **degree** of K over F, $[K:F]=\dim_F K$. An extension K/F is called **finite** if $[K:F]<\infty$.

Examples: \mathbb{C}/\mathbb{R} , \mathbb{R}/\mathbb{Q} , $\mathbb{Q}(X)/\mathbb{Q}$, $\mathbb{C}(X)/\mathbb{Q}$ are all field extensions. $[\mathbb{C}:\mathbb{R}]=2$, $[\mathbb{R}:\mathbb{Q}]=\infty$ since $\{1,\pi,\pi^2,\ldots\}$ is linearly independent over \mathbb{Q} , $[\mathbb{Q}(X):\mathbb{Q}]=[\mathbb{C}(X):\mathbb{Q}]=\infty$ since $\{1,X,X^2,\ldots\}$ is linearly independent over \mathbb{Q} .

Theorem (The Tower Law) If L/K and K/F are field extensions then L/F is a field extension and [L:F] = [L:K][K:F] (finite or infinite).

Proof. We can compose the inclusions $F \to K$ and $K \to L$ to get an inclusion $F \to L$. Hence L/F is an extension. Let $\{a_i : i \in I\}$ be a basis for K/F and $\{b_j : j \in J\}$ be a basis for L/K. The result will follow if we can show that $\{a_ib_j : i \in I, j \in J\}$ is a basis for L/F. Independence: If $\sum_{i,j} \lambda_{ij} a_i b_j = 0$ with $\lambda_{ij} \in F$ then $\mu_j = \sum_i \lambda_{ij} a_i \in K$ and $\sum_j \mu_j b_j = 0$. By K-linear independence of the b_j we have $\mu_j = 0$, and then by F-linear independence of the a_i we have $\lambda_{ij} = 0$.

Spanning: If $\alpha \in L$ we can write $\alpha = \sum_{j} \mu_{j} b_{j}$ for some $\mu_{j} \in K$. But then we can write $\mu_{j} = \sum_{i} \lambda_{ij} a_{i}$ with $\lambda_{ij} \in F$, so $\alpha = \sum_{ij} \lambda_{ij} a_{i} b_{j}$.

Corollary L/F is finite iff both L/K and K/F are finite.

If R is a subring of R' and $S \subseteq R'$ then we denote by R[S] the smallest subring of R' containing R and S. More explicitly, $R[S] = \{f(s_1, \ldots, s_n) : f \in R[X_1, \ldots, X_n], s_i \in S, n \in \mathbb{N}\}.$

If K/F is an extension and $S \subseteq K$, denote by F(S) the smallest subfield of K containing both F and S. Note that $F(S) = \operatorname{Frac} F[S] = \{f(s_1, \ldots, s_n) / g(s_1, \ldots, s_n) : f, g \in F[X_1, \ldots, X_n], g(s_1, \ldots, s_n) \neq 0\}$. We write F(a) for $F(\{a\})$ etc..

The extension K/F is called **simple** if K = F(a) for some $a \in K$. In this case a is called a **primitive element** of K/F.

The extension K/F is called **finitely generated** if K = F(S) for some finite set $S \subseteq K$.

Examples: \mathbb{C}/\mathbb{R} is simple since $\mathbb{C} = \mathbb{R}(i)$. \mathbb{R}/\mathbb{Q} is not simple or even finitely generated since $\mathbb{Q}(a_1,\ldots,a_n)$ is always a countable set but \mathbb{R} is uncountable.

Warning: Whenever you write R[a, b, ...] or F(a, b, ...) it is important that you work inside some fixed, specified ring R' or field F'. For example, do not write $(\mathbb{Z}/p\mathbb{Z})[\sqrt[4]{2}]$.

7262 2. Algebraic and Transcendental Spring 2018

Let K/F be a field extension. Then $\alpha \in K$ is **algebraic over** F if there exists a non-zero polynomial $f \in F[X]$ with $f(\alpha) = 0$. Otherwise α is **transcendental over** F. We call K algebraic over F if every $\alpha \in K$ is algebraic over F. Otherwise K is **transcendental over** F.

Examples: The real number $\sqrt{2}$ is algebraic over \mathbb{Q} (take $f = X^2 - 2$) and π is transcendental over \mathbb{Q} . However π is algebraic over \mathbb{R} (take $f = X - \pi \in \mathbb{R}[X]$). Since \mathbb{R} contains at least one element that is transcendental over \mathbb{Q} , \mathbb{R}/\mathbb{Q} must be transcendental. The extension \mathbb{C}/\mathbb{R} is algebraic since for any $z \in \mathbb{C}$ we can take $f = X^2 - (z + \bar{z})X + z\bar{z} \in \mathbb{R}[X]$.

Theorem 2.1 Let K/F be a field extension and let $\alpha \in K$.

(a) If α is algebraic over F then

```
A1 \exists unique monic irreducible m_{\alpha,F} \in F[X]: \forall f \in F[X]: f(\alpha) = 0 iff m_{\alpha,F} \mid f,
```

A2
$$F[\alpha] = F(\alpha)$$
 and both are isomorphic to $F[X]/(m_{\alpha,F})$,

A3
$$[F(\alpha):F] = \deg m_{\alpha,F} = n < \infty$$
 and the set $\{1,\alpha,\ldots,\alpha^{n-1}\}$ is a basis for $F(\alpha)/F$,

(b) If α is transcendental over F then

```
T1 \forall f \in F[X]: f(\alpha) = 0 \text{ iff } f = 0,
```

T2
$$F[\alpha] \neq F(\alpha)$$
, $F[\alpha] \cong F[X]$, and $F(\alpha) \cong F(X) = \operatorname{Frac} F[X]$.

T3
$$[F(\alpha):F]=\infty$$
.

The polynomial $m_{\alpha,F}$ in (a) is called the **minimal polynomial of** α **over** F.

Proof. The map $\operatorname{ev}_{\alpha} \colon F[X] \to K; f \mapsto f(\alpha)$ is a ring homomorphism and $f \in \operatorname{Ker} \operatorname{ev}_{\alpha}$ iff $f(\alpha) = 0$. Since F[X] is a PID, $\operatorname{Ker} \operatorname{ev}_{\alpha} = (m_{\alpha,F})$ for some $m_{\alpha,F}$. But $\operatorname{Im} \operatorname{ev}_{\alpha} = F[\alpha]$, so $F[\alpha] \cong F[X]/(m_{\alpha,F})$. Now $F[\alpha]$ is an ID (\subseteq Field), so $(m_{\alpha,F})$ is a prime ideal. If α is algebraic, then $\exists f \in (m_{\alpha,F}), f \neq 0$, so $m_{\alpha,F} \neq 0$ is prime and so irreducible. Generators of ideals are unique up to multiplication by units and $(F[X])^{\times} = F^{\times}$, so by multiplying $m_{\alpha,F}$ by a constant we may assume it is monic and it is then unique. Since F[X] is a PID, $(m_{\alpha,F})$ is maximal, so $F[\alpha]$ is a field, and thus $F[\alpha] = F(\alpha)$. By the division algorithm any $f = qm_{\alpha,F} + r$ with $\deg r < n$. Thus $f(\alpha) = r(\alpha)$ is a linear combination of $\{1, \alpha, \ldots, \alpha^{n-1}\}$. These are linearly independent, since otherwise some $r(\alpha) = 0, r \neq 0$, so $m_{\alpha,F} \mid r$ contradicting $\deg r < n$.

If α is transcendental then $\operatorname{Ker}\operatorname{ev}_{\alpha}=(0)$, so $F[\alpha]\cong F[X]$. Then $F(\alpha)=\operatorname{Frac} F[\alpha]\cong F(X)$. If $1/\alpha=f(\alpha)$ then α would be a root of Xf(X)-1. Thus $1/\alpha\notin F[\alpha]$ and so $F[\alpha]\neq F(\alpha)$. Now $\{1,\alpha,\alpha^2,\dots\}$ is linearly independent (otherwise some $f(\alpha)=0$) so $[F(\alpha):F]=\infty$.

Examples: $\mathbb{C} = \mathbb{R}(i) = \mathbb{R}[i]$, $m_{i,\mathbb{R}} = X^2 + 1$, $[\mathbb{C} : \mathbb{R}] = \deg m_{i,\mathbb{R}} = 2$, and $\{1, i\}$ is a basis for \mathbb{C}/\mathbb{R} . Note that $m_{i,\mathbb{C}} = X - i \neq m_{i,\mathbb{R}}$, so it is important to specify the ground field F.

Theorem 2.2 If K/F is finite then it is algebraic. (Converse not true in general.)

Proof. If $\alpha \in K$, $\infty > [K:F] = [K:F(\alpha)][F(\alpha):F] \ge [F(\alpha):F]$, so α is algebraic. \square

Theorem 2.3 If A is the set of all elements of K algebraic over F then A is a subfield of K containing F.

Proof. Elements of F are algebraic over F, so $F \subseteq A \subseteq K$. If $\alpha, \beta \in A$ then β is algebraic over $F(\alpha)$ (since β is algebraic over F). Hence $[F(\alpha, \beta) : F] = [F(\alpha, \beta) : F(\alpha)][F(\alpha) : F] = (\deg m_{\beta, F(\alpha)})(\deg m_{\alpha, F}) < \infty$. Therefore $F(\alpha, \beta)/F$ is algebraic, so $\alpha \pm \beta, \alpha/\beta, \alpha\beta \in F(\alpha, \beta)$ are algebraic over F. Hence $\alpha \pm \beta, \alpha/\beta, \alpha\beta \in A$ and A is a subfield of K. \square

Theorem 2.4 If L/K/F then L/F is algebraic iff both L/K and K/F are.

Proof. \Rightarrow is clear. Now assume both L/K and K/F are algebraic and $\alpha \in L$. Then $f(\alpha) = 0$ where $f = \sum_{i=0}^{n} b_i X^i \in K[X]$, $f \neq 0$. Define $F_i = F(b_0, \dots, b_{i-1})$. Then α is algebraic over F_{n+1} (since $f \in F_{n+1}[X]$ and $f(\alpha) = 0$), b_i is algebraic over F_i (since $b_i \in K$ is algebraic over F), and $F_{i+1} = F_i(b_i)$. Hence $[F_{n+1}(\alpha):F] = [F_{n+1}(\alpha):F_{n+1}][F_{n+1}:F_n] \dots [F_1:F_0] < \infty$. Therefore $\alpha \in F_{n+1}(\alpha)$ is algebraic over $F = F_0$.

Constructive proof of Theorems 2.3 and 2.4.

Theorem (Symmetric Function Theorem) If $f \in R[X_1, ..., X_n]$ is symmetric under interchange of any pair X_i , X_j , then $f \in R[\sigma_1, ..., \sigma_n]$ where σ_i is the ith elementary symmetric function of the X_i , $\sigma_i = \sum_{|S|=i} \prod_{j \in S} X_j$.

Suppose there exists M/K such that $m_{\alpha} = m_{\alpha,F}$ and $m_{\beta} = m_{\beta,F}$ split in M, i.e., factor completely into linear factors $m_{\alpha} = (X - \alpha_1) \dots (X - \alpha_n)$, $m_{\beta} = (X - \beta_1) \dots (X - \beta_m)$, $\alpha = \alpha_1, \beta = \beta_1, \alpha_i, \beta_j \in M$. (We shall prove the existence of such an M later, the α_i are called the **conjugates** of α). Consider the polynomial

$$f(X) = \prod_{i=1}^{n} \prod_{j=1}^{m} (X - \alpha_i \beta_j) \in F[\alpha_1, \dots, \alpha_n, \beta_1, \dots, \beta_m, X] \subseteq M[X].$$

We can consider f as a polynomial in indeterminates α_i and coefficients in the ring $R = F[\beta_1, \ldots, \beta_m, X]$. By the Symmetric Function Theorem, $f \in R[\sigma_1, \ldots, \sigma_m]$, where σ_i are the elementary symmetric functions in the α_i . But then σ_i are just \pm the coefficients of m_{α} , so lie in F. Thus $f \in F[\beta_1, \ldots, \beta_m, X]$. A similar argument using symmetry in the β_j shows that $f \in F[X]$. But f is monic (so non-zero) and $f(\alpha\beta) = f(\alpha_1\beta_1) = 0$. Hence $\alpha\beta$ is algebraic over F. Note that f might not be irreducible so we can only conclude that $m_{\alpha\beta,F}$ is a factor of f. A similar argument can be used for $\alpha \pm \beta$. For $1/\alpha$ the proof is easier since we can take the polynomial $f(X) = X^n m_{\alpha}(1/X)$. Hence Theorem 2.3 can be made constructive.

For Theorem 2.4 a similar trick can be used. Let α be algebraic over K with minimal polynomial, $m_{\alpha,K} = \sum_{i=0}^{m} \beta_i X^i$, where each β_i is algebraic over F. Suppose we can find a M/L such that each minimal polynomial $m_{\beta_i,F}$ splits, $m_{\beta_i,F} = \prod_{j=1}^{n_i} (X - \beta_{i,j}), \ \beta_i = \beta_{i,1}, \ \beta_{i,j} \in M$. Now consider

$$f(X) = \prod_{j_1=1}^{n_1} \cdots \prod_{j_m=1}^{n_m} \sum_{i=0}^m \beta_{i,j_i} X^i \in F[\beta_{1,1}, \dots, \beta_{1,n_1}, \beta_{2,1}, \dots, \beta_{m,n_m}, X].$$

This polynomial is symmetric in each collection $\{\beta_{i,1},\ldots,\beta_{i,n_i}\}$, so by applying the Symmetric Function Theorem m times we get $f \in F[X]$. But $m_{\alpha,K} \mid f$, so $f(\alpha) = 0$.

7262 3. Straight Edge and Compass Spring 2018

If P and Q are two distinct points in the plane, write L(P,Q) for the (infinite) line through P and Q and C(P,Q) for the circle with center P going through the point Q.

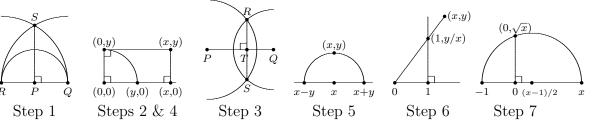
The point $P \in \mathbb{R}^2$ is **constructible by straight edge and compass** from the set of points $\{P_1, \ldots, P_n\}$ if there is a sequence of points $P_{n+1}, P_{n+2}, \ldots, P_m = P$, where each $P_i, i > n$ is constructed from previous points using one of the following constructions:

- 1. P_i is the point of intersection of two distinct lines of the form $L(P_i, P_k)$, j, k < i,
- 2. P_i is any point of intersection of two distinct circles of the form $C(P_i, P_k)$, j, k < i,
- 3. P_i is any point of intersection of a line $L(P_i, P_k)$ and a circle $C(P_r, P_s)$, j, k, r, s < i.

We say a line (resp. circle) is constructible if it is of the form L(P,Q) (resp. C(P,Q)) for some pair of constructible points P and Q. If n = 1 then the only constructible point is P_1 , hence we may assume $n \ge 2$. Define a Cartesian coordinate system so that $P_1 = (0,0)$ and $P_2 = (1,0)$.

Lemma 3.1 The set of constructible points is of the form $C = \{(x, y) : x, y \in F\}$ where F is some subfield of \mathbb{R} . Moreover, if $a \in F$ and a > 0 then $\sqrt{a} \in F$.

Proof. Let $F = \{x : (x, 0) \text{ is constructible}\}.$



Step 1. If $P, Q \in \mathcal{C}$ then the line perpendicular to L(P, Q) through P is constructible. $[R \in L(P,Q) \cap C(P,Q), S \in C(R,Q) \cap C(Q,R), L(P,S)$ is perpendicular to L(P,Q).] Call this line $L^{\perp}(P,Q)$.

Step 2. If $(x,0), (y,0) \in \mathcal{C}$ then $(x,y) \in \mathcal{C}$.

 $[(0,y)\in C((0,0),(y,0))\cap L^{\perp}((0,0),(1,0)),\,(x,y)\in L^{\perp}((0,y),(0,0))\cap L^{\perp}((x,0),(0,0)).]$

Step 3. If $P, Q, R \in \mathcal{C}$ then the projection of R onto L(P, Q) is constructible.

 $[S \in C(P,R) \cap C(Q,R), T \in L(R,S) \cap L(P,Q).]$

Step 4. If $(x, y) \in \mathcal{C}$ then $(x, 0), (y, 0) \in \mathcal{C}$.

[Project (x, y) onto L((0, 0), (1, 0)) and $L^{\perp}((0, 0), (1, 0))$ (the axes) to get (x, 0) and (0, y). $(y, 0) \in C((0, 0), (0, y)) \cap L((0, 0), (1, 0))$.]

Steps 2 and 4 imply that $C = \{(x, y) : x, y \in F\}.$

Step 5. If $x, y \in F$ then $x \pm y \in F$.

 $[C((x,0),(x,y)) \cap L((0,0),(1,0)) = \{(x+y,0),(x-y,0)\}.]$

Step 6. If $x, y \in F$ and $x \neq 0$ then $y/x, xy \in F$.

 $[(1, y/x) \in L((0,0), (x,y)) \cap L^{\perp}((1,0), (0,0)).$ Also y/(1/x) = xy.]

We have now shown that F is a field.

Step 7. If $x \in F$, x > 0, then $\sqrt{x} \in F$.

 $[C((x-1)/2,0),(x,0)\cap L^{\perp}((0,0),(1,0))=\{(0,\pm\sqrt{x})\}.]$

Lemma 3.2 If [K:F]=2 and char $F\neq 2$ then $K=F(\sqrt{\alpha})$ for some $\alpha\in F$.

Proof. Pick any $\beta \in K$, $\beta \notin F$. Then $[F(\beta):F] > 1$, so by the Tower Law, $F(\beta) = K$ and $\deg m_{\beta,F} = 2$. Hence β is the solution to $m_{\beta,F} = X^2 + bX + c = 0$ with $b,c \in F$. Hence $\beta = \frac{-b \pm \sqrt{\alpha}}{2}$ can be written in terms of a square root of $\alpha = b^2 - 4c \in F$. Conversely $\sqrt{\alpha} = \pm (2\beta + b)$ can be written in terms of β , so $F(\sqrt{\alpha}) = F(\beta) = K$.

Theorem 3.3 A point (x, y) is constructible from $\{P_1, \ldots, P_n\}$, $P_0 = (0, 0)$, $P_1 = (1, 0)$, $P_i = (x_i, y_i)$, $i \geq 2$, iff there exists a sequence of fields $F_0 \subseteq F_1 \subseteq \cdots \subseteq F_m \subseteq \mathbb{R}$ with $F_0 = \mathbb{Q}(x_2, y_2, \ldots, x_n, y_n)$, $[F_{i+1} : F_i] = 2$, and $x, y \in F_m$.

Proof. Let F_m be as described above and let F be defined as in Lemma 1. Then $x_i, y_i \in F$, $i=2,\ldots,n$, so $F\supseteq F_0$. Also, $[F_{i+1}:F_i]=2$, so by Lemma 2, $F_{i+1}=F_i(\sqrt{a})$ for some $a\in F_i$ and a>0 (since $F_{i+1}\subseteq\mathbb{R}$). Hence by induction $F\supseteq F_i$. Thus $x,y\in F_m\subseteq F$ and (x,y) is constructible. Conversely suppose (x,y) is constructible, it is enough to show that if the coordinates of P_1,\ldots,P_{i-1} lie in K and $P_i=(x,y)$ is the intersection of lines and/or circles formed from $P_j,\ j< i$, then $[K(x,y):K]\le 2$. If $P,Q\in K^2$, then L(P,Q) is given by an equation of the form ax+by+c=0 where $a,b,c\in K$. Similarly C(P,Q) is a circle of the form $x^2+y^2+ax+by+c=0$, $a,b,c\in K$. It is easy to check that the x and y coordinates of an intersection of such lines and circles can be obtained by solving a linear or quadratic equation. (For the intersection of circles, subtracting the equations reduces to the case of intersecting a circle with a line.) Hence $[K(x,y):K]\le 2$.

From Theorem 3.3 and the Tower Law, if (x, y) is constructible then $[F_0(x, y): F_0]$ is a power of 2, or equivalently, if $\alpha \in F$ then $[F_0(\alpha): F_0]$ is a power of 2.

Examples:

- 1. 'The cube cannot be doubled'. The aim is to construct a length $\sqrt[3]{2}$ times longer than a given length P_0P_1 . This would imply $\sqrt[3]{2} \in F$ which is impossible since $[\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}] = 3$ is not a power of 2.
- 2. 'The circle cannot be squared'. The aim is to construct a length $\sqrt{\pi}$ times longer than a given length P_0P_1 . This would imply $\pi \in F$ which is impossible since $[\mathbb{Q}(\pi):\mathbb{Q}] = \infty$ is not a power of 2.
- 3. In general, 'angles cannot be trisected'. An angle is given by three points P_0, P_1, P_2 where $P_0 = (0,0), P_1 = (1,0),$ and $P_2 = (x,y)$ where $y/x = \tan \theta$. By intersecting $L(P_0,P_2)$ and $C(P_0,P_1)$ we see $P'_2 = (\cos \theta, \sin \theta)$ is constructible. Hence $a = 2\cos \theta \in F$. Conversely we can construct a suitable P_2 from $P'_2 = (a,0)$ by intersecting $L^{\perp}(P'_2,P_0)$ with $C(P_0,(2,0))$. Hence we may assume $F_0 = \mathbb{Q}(a)$. If there are constructible points Q_1, Q_2, Q_3 that make an angle $\theta/3$ then an easy exercise shows that $\alpha = 2\cos(\theta/3) \in F$. Hence $[\mathbb{Q}(a)(\alpha):\mathbb{Q}(a)]$ is a power of 2. By the triple angle formula for cosines, α is a root of $X^3 3X a = 0$. There are many choices for a that make this polynomial irreducible over $\mathbb{Q}(a)$, for example a = 1 ($\theta = 60^{\circ}$). But then $[\mathbb{Q}(a)(\alpha):\mathbb{Q}(a)] = 3$, a contradiction.

Note that *some* angles can be trisected, e.g., $\theta = 90^{\circ}$ (a = 0).

7262 4. Splitting field extensions

Spring 2018

We start with a rather technical, but very useful, lemma.

Lemma (Extension Theorem) Let $\phi: F_1 \to F_2$ be an isomorphism of fields. Let K_1/F_1 and K_2/F_2 be two extensions and let $\alpha \in K_1$. Then there is an extension of ϕ to $\tilde{\phi}: F_1(\alpha) \to K_2$ with $\tilde{\phi}_{|F_1} = \phi$ and $\tilde{\phi}(\alpha) = \beta \in K_2$ iff β is a zero of $\phi(m_{\alpha,F_1}) \in F_2[X]$. Moreover, for each such β $\tilde{\phi}$ is unique.

 $\begin{array}{ccc} K_1 & K_2 \\ \uparrow & \uparrow \\ F_1(\alpha) & \stackrel{\tilde{\phi}}{\to} & F_2(\beta) \\ \uparrow & \uparrow \\ F_1 & \stackrel{\phi}{\to} & F_2 \end{array}$

[If $f \in F_1[X]$ then $\phi(f) \in F_2[X]$ is obtained by applying ϕ to the coefficients of f. In terms of our earlier notation, $\phi(f) = \text{ev}_{\phi,X}(f)$.]

Proof. Write $m_{\alpha,F_1} = \sum b_i X^i$. If $\tilde{\phi}$ exists and $\beta = \tilde{\phi}(\alpha)$ then $\phi(m_{\alpha,F_1})(\beta) = \sum \phi(b_i)\beta^i = \sum \tilde{\phi}(b_i)\tilde{\phi}(\alpha)^i = \tilde{\phi}(\sum b_i\alpha^i) = \tilde{\phi}(0) = 0$. Also, $\tilde{\phi}$ is unique since every element of $F_1(\alpha)$ can be written in the form $f(\alpha)$, $f \in F_1[X]$, and $\tilde{\phi}(f(\alpha)) = \phi(f)(\beta)$ is uniquely determined. Conversely, assume β is a zero of $\phi(m_{\alpha,F_1})$, then $\phi(m_{\alpha,F_1}) = m_{\beta,F_2}$ since it is monic, irreducible, and has β as a root. Now both $\operatorname{ev}_{1,\alpha} \colon F_1[X] \to F_1(\alpha)$ and $\operatorname{ev}_{\phi,\beta} \colon F_1[X] \to F_2(\beta)$ are surjective with kernel (m_{α,F_1}) and we can define $\tilde{\phi}$ as the composition of the two isomorphisms

$$F_1(\alpha) \cong F_1[X]/(m_{\alpha,F_1}) \cong F_2(\beta).$$

Under this isomorphism $\alpha \mapsto X + (m_{\alpha,F_1}) \mapsto \beta$ and $c \mapsto c + (m_{\alpha,F_1}) \mapsto \phi(c)$ for $c \in F_1$. \square

We shall often use this lemma with $F_1 = F_2$ and $\phi = 1$. Note that the image of $\tilde{\phi}$ is $F_2(\beta)$, so $\tilde{\phi}$ gives an isomorphism $F_1(\alpha) \to F_2(\beta)$.

Examples:

- 1. The fields $\mathbb{Q}(\sqrt[4]{2})$ and $\mathbb{Q}(i\sqrt[4]{2})$ are isomorphic, but distinct, subfields of \mathbb{C} .
- 2. There is an automorphism of $\mathbb{Q}(\sqrt{2})$ sending $\sqrt{2}$ to $-\sqrt{2}$ and fixing \mathbb{Q} .

A polynomial $f \in F[X]$ splits in K/F if it factors as a product of linear factors in K[X].

Examples:

- 1. The polynomial $X^2 2$ splits in $\mathbb{Q}(\sqrt{2})$.
- 2. The polynomial $X^3 2$ has a zero, but does not split in $\mathbb{Q}(\sqrt[3]{2})$ since $\mathbb{Q}(\sqrt[3]{2}) \subseteq \mathbb{R}$, but only one of the three roots of $X^3 2 = 0$ is real.

A splitting field extension (sfe) of $f \in F[X]$ is an extension K/F such that

- (a) f splits in K; and
- (b) if $F \subseteq L \subseteq K$ and f splits in L then L = K.

More generally, a splitting field extension of $\mathcal{F} \subseteq F[X]$ is an extension K/F such that

- (a) f splits in K for all (non-zero) $f \in \mathcal{F}$; and
- (b) if $F \subseteq L \subseteq K$ and f splits in L for all $f \in \mathcal{F}$ then L = K.

Theorem 4.1 If $f \in F[X]$ then there exists an extension K/F in which f splits. Moreover, if deg f = n then such a K exists with $[K:F] \leq n!$.

Proof. Induction on n. For n=1, f is linear, so is already split. Assume n>1 and let g be an irreducible factor of f in F[X]. Let F'=F[X]/(g). Then (g) is a maximal ideal, F' is a field, and F'/F is a field extension. Let $\alpha=X+(g)\in F'$. Then $g(\alpha)=0$ in F'. Thus $f(\alpha)=0$ and using the division algorithm we can write $f(X)=(X-\alpha)h(X)$ in F'[X]. Applying induction, there exists an extension K/F' in which h(X) splits and $[K:F'] \leq (n-1)!$. But then f(X) splits in K and $[K:F] = [K:F'][F':F] \leq n!$.

We can extend this theorem to any *finite* set \mathcal{F} of polynomials by considering the polynomial $f(X) = \prod_{g \in \mathcal{F} \setminus \{0\}} g(X) \in F[X]$. For infinite \mathcal{F} one needs Zorn's lemma.

Theorem 4.2 If every $f \in \mathcal{F}$ splits in K then there exists a unique subfield $L \subseteq K$ such that L/F is a sfe for \mathcal{F} .

Proof. Let $A = \{ \alpha \in K : \alpha \text{ is a zero of some } f \in \mathcal{F} \}$. Suppose \mathcal{F} splits in $L \subseteq K$. If $f \in \mathcal{F}$, then $f = c \prod (X - \alpha_i)$ in K[X] and $f = c' \prod (X - \beta_i)$ in $L[X] \subseteq K[X]$. By unique factorization in K[X], $\alpha_i = \beta_i$ (up to permutation of factors), so $\alpha_i \in L$. Thus $A \subseteq L$ and hence $F(A) \subseteq L$. Conversely, every $f \in \mathcal{F}$ splits in F(A). Hence L = F(A) is the unique subfield of K that is a sfe for \mathcal{F} .

Theorem 4.3 Any two sfe's for $f \in F[X]$ are isomorphic.

Proof. We shall prove a slightly stronger result: If $\phi \colon F \to F'$ is an isomorphism, K is a sfe of $f \in F[X]$, and $\phi(f)$ splits in K'/F', then there is an extension $\tilde{\phi} \colon K \to K'$ of ϕ .

Let g be a monic irreducible factor of f and let α be a zero of g in K and β a zero of $\phi(g)$ in K'. By the Extension Theorem, ϕ extends to an isomorphism $\phi' \colon F(\alpha) \to F'(\beta)$. Write $f(X) = (X - \alpha)h(X)$ in $F(\alpha)[X]$. Now $K/F(\alpha)$ is a sfe for h and $\phi'(h)$ splits in K' (since $\phi'(h) \mid \phi(f)$). Hence by induction on deg f, ϕ' extends to a map $\tilde{\phi} \colon K \to K'$.

Now assume K' is also a sfe and F = F'. Then f splits in $\operatorname{Im} \tilde{\phi} \subseteq K'$. Hence $\operatorname{Im} \tilde{\phi} = K'$ and $\tilde{\phi}$ is an isomorphism.

Putting Theorems 4.1–4.3 together, we see that a sfe for $f \in F[X]$ exists, is unique up to isomorphism, has degree at most n! over F, and can be written as $K = F(\alpha_1, \ldots, \alpha_n)$ where $\alpha_1, \ldots, \alpha_n$ are the zeros of f in K.

Examples:

- 1. The sfe of $X^3 2$ over \mathbb{Q} is $\mathbb{Q}(\sqrt[3]{2}, \zeta_3\sqrt[3]{2}, \zeta_3\sqrt[3]{2}) = \mathbb{Q}(\zeta_3, \sqrt[3]{2})$, where $\zeta_3 = e^{2\pi i/3}$. This extension is of degree 6 = 3! over \mathbb{Q} . [Prove this!]
- 2. The sfe of $X^3 2$ over \mathbb{R} is \mathbb{C} , which is of degree 2 < 3! over \mathbb{R} .

Exercise: Find the sfe K of $X^4 - 2$ over \mathbb{Q} . What is $[K : \mathbb{Q}]$?

The aim is to used Zorn's Lemma to prove, given F, the existence and uniqueness of the splitting field extension of any $\mathcal{F} \subseteq F[X]$. We need to generalize Theorems 4.1 and 4.3 above. (Theorem 4.2 already applies to any \mathcal{F} .)

Theorem 5.1 For any F, there exists an extension K/F in which every $f \in F[X]$ splits.

The idea of the proof is to use Zorn's Lemma to construct a "maximal" algebraic extension. Unfortunately the collection of algebraic extensions do not form a set, so we have to be a bit more careful. In particular, we need to fix the underlying set of elements we use.

Proof. Let $\mathcal{L} = \{(f, n) : f \in F[X] \text{ is a monic irreducible polynomial and } n \in \mathbb{N}\}$. An \mathcal{L} -extension (not standard notation) will be a field $(K, +, \times)$ where

- 1. $K \subseteq \mathcal{L}$,
- 2. the map $i: F \to K$ given by i(a) = (X a, 1) is a ring homomorphism (so K/F is an extension and F can be identified with the set $\{(X a, 1) : a \in F\} \subseteq K$),
- 3. if $\alpha = (f, n) \in K$ then $f(\alpha) = 0$ (coefficients c_i of f are identified with $i(c_i) \in K$).

It is clear that any algebraic extension is isomorphic to one of this form. Indeed, if M/F is an algebraic extension we can just rename the roots $\alpha_1, \ldots, \alpha_r$ of any irreducible polynomial $f = m_{\alpha_1,F}$ as $(f,1),\ldots,(f,r)$. Since each f has only finitely many roots we never run out of elements of \mathcal{L} . [Technically this requires the axiom of choice since there are an infinite number of choices as to how to do the renaming: for each f we must order the roots.]

Let \mathcal{X} be the set of all \mathcal{L} -extensions. It is clear that \mathcal{X} is a set. Indeed, it is a subset of $\mathcal{P}(\mathcal{L}) \times \mathcal{P}(\mathcal{L} \times \mathcal{L} \times \mathcal{L}) \times \mathcal{P}(\mathcal{L} \times \mathcal{L} \times \mathcal{L})$ where $\mathcal{P}(A)$ denotes the set of all subsets of A. [We regard + and \times as subsets of $\mathcal{L} \times \mathcal{L} \times \mathcal{L}$, since they can be determined by the set of all triples (a, b, a + b) or (a, b, ab).]

Define a partial order on \mathcal{L} -extensions by setting $(K, +, \times) \leq (K', +', \times')$ iff K is a subfield of K'., i.e., $K \subseteq K'$ and + and \times are the restrictions of +' and \times' to K. It is clear that < is a partial order.

The field $\{(X-a,1): a \in F\}$ with (X-a,1)+(X-b,1)=(X-(a+b),1) and (X-a,1)(X-b,1)=(X-ab,1) is an \mathcal{L} -extension, so $\mathcal{X} \neq \emptyset$. Let \mathcal{T} be a chain in \mathcal{X} . We claim that $\bigcup_{K \in \mathcal{T}} K \in \mathcal{X}$. If $\alpha, \beta \in \bigcup_{K \in \mathcal{T}} K$ then $\alpha \in K_1, \beta \in K_2$ for some $K_1, K_2 \in \mathcal{T}$. Since \mathcal{T} is totally ordered, we can assume $K_1 \leq K_2$, so $\alpha, \beta \in K_2$. Define $\alpha + \beta$ and $\alpha\beta$ by their values in K_2 . Then by the definition of \leq , these values agree with their values in any $K \in \mathcal{T}$ with $K_2 \leq K$. The field axioms follow immediately, since to check an axiom, we just take any $K \in \mathcal{T}$ big enough to contain all the relevant elements and use the corresponding axioms in K. The fact that $a \mapsto (X-a,1)$ is a ring homomorphism and $f(\alpha) = 0$ when $\alpha = (f,n)$ follow from the corresponding properties in each $K \in \mathcal{T}$. It is now clear that $\bigcup_{K \in \mathcal{T}} K$ is an upper bound for \mathcal{T} . Zorn's Lemma now provides us with the existence of a maximal \mathcal{L} -extension, $(M, +, \times)$ say.

We now prove that every $f \in F[X]$ splits in M. If not, then there exists a sfe for f over M, say M'/M with $M' \neq M$. But M'/M and M/F are algebraic, so M'/F is algebraic.

By renaming the elements of M' we can assume $M \subseteq M'$. By renaming the elements $\alpha \in M' \setminus M$ as $(m_{\alpha,F}, i)$ as above, we can assume that M' is an \mathcal{L} -extension containing M. Note that we never run out of choices for i since every $m_{\alpha,F}$ has only finitely many roots. Clearly $M \subseteq M'$ and $M \neq M'$ contradicting the choice of M. Hence every polynomial in F[X] splits in M.

Theorem 5.3 If K/F and M/F are extensions with K/F an sfe for $\mathcal{F} \subseteq F[X]$ and assume \mathcal{F} splits in M. There exists an homomorphism $\phi \colon K \to M$ that fixes F. In particular, if M/F is also an sfe for \mathcal{F} then ϕ is an isomorphism.

Proof. Let \mathcal{X} be the set of homomorphisms $\phi \colon L_{\phi} \to M$ where L_{ϕ} is some subfield of K containing F and ϕ fixes F. The inclusion $F \to M$ lies in \mathcal{X} , so $\mathcal{X} \neq \emptyset$. Define a partial ordering on \mathcal{X} by $\phi \leq \psi$ if $L_{\phi} \subseteq L_{\psi}$ and $\phi = \psi$ on L_{ϕ} . This is clearly a partial order. Let \mathcal{T} be a chain in \mathcal{X} . Define \tilde{L} to be $\bigcup_{\phi \in \mathcal{T}} L_{\phi}$. Since the L_{ϕ} are totally ordered by inclusion, \tilde{L} is a subfield of K containing F. [If $\alpha, \beta \in \tilde{L}$ then $\alpha \in L_{\phi}$, $\beta \in L_{\psi}$ for some $\phi, \psi \in \mathcal{T}$. Since \mathcal{T} is totally ordered, we may assume $\phi \leq \psi$, so $\alpha, \beta \in L_{\psi}$. Then $\alpha \pm \beta, \alpha\beta, \alpha/\beta \in L_{\psi} \subseteq \tilde{L}$.] Define $\tilde{\phi}(a)$ to be $\phi(a)$ for any $\phi \in \mathcal{T}$ for which $a \in L_{\phi}$. Since \mathcal{T} is totally ordered, if $a \in L_{\phi}$, L_{ψ} we can assume $\phi \leq \psi$ and so $\phi(a) = \psi(a)$. Hence $\tilde{\phi}$ is well defined. It is obvious that $\tilde{\phi}$ is a ring homomorphism from \tilde{L} to M, so $\tilde{\phi} \in \mathcal{X}$ and it is clearly an upper bound for \mathcal{T} . Now using Zorn's Lemma we have a maximal $\phi \in \mathcal{T}$.

If $L_{\phi} \neq K$ then some $f \in \mathcal{F}$ does not split in L_{ϕ} . Hence there exists a root α of f with $\alpha \in K$ and $\alpha \notin L_{\phi}$. Let m_{α} be the minimal polynomial of α over L_{ϕ} . Note that $m_{\alpha} \mid f$. Let $L' = \operatorname{Im}(\phi)$ be the image of L_{ϕ} in M. Then L' is a subfield of M, isomorphic (via ϕ) to L_{ϕ} . The image $\phi(m_{\alpha})$ is therefore irreducible in L'[X]. Since $m_{\alpha} \mid f, \phi(m_{\alpha}) \mid \phi(f) = f$, so $\phi(m_{\alpha})$ must split in M (since f does). Therefore there exists a $\beta \in M$ which is a root of $\phi(m_{\alpha})$. The minimal polynomial of β over L' is clearly $\phi(m_{\alpha})$, so by the Extension Theorem, there exists a $\tilde{\phi}$: $L_{\phi}(\alpha) \to M$ which agrees with ϕ on L_{ϕ} . Hence $\tilde{\phi} \in \mathcal{X}$ and $\phi < \tilde{\phi}$ contradicting the choice of ϕ . Therefore $L_{\phi} = K$.

Finally, since K is isomorphic to the image $\operatorname{Im} \phi$, \mathcal{F} splits in $\operatorname{Im} \phi/F$ and $\operatorname{Im} \phi \subseteq M$. If M/F is a sfe, $\operatorname{Im} \phi = M$ and ϕ gives an isomorphism from K to M fixing F.

Lemma 5.4 If K/F is an extension, then K is a sfe for $\mathcal{F} = F[X]$ iff (a) K/F is algebraic; and

(b) K is algebraically closed: every non-constant $f \in K[X]$ has a root in K.

Proof. Assuming (a) and (b) and using induction on deg f we see that every $f \in F[X]$ splits in K. But every element of K is a root of some $f \in F[X]$ so K must be a sfe for F[X]. Conversely, if K is the sfe for F[X] then K/F is algebraic and if $f \in K[X]$ is irreducible, M = K[X]/(f) is an algebraic extension of K. But then M/F is algebraic, so every $\alpha \in M$ is a root of some $g \in F[X]$. But then $\alpha \in K$, so M = K and f is linear. In particular every non-constant polynomial in K[X] factors into linear factors, so has a root in K.

The extension K of Lemma 5.4 is called the **algebraic closure** of F and is denoted \overline{F} . The above theorems show that the algebraic closure exists and is unique up to isomorphism.

An extension K/F is **normal** iff K/F is algebraic and if any *irreducible* $f \in F[X]$ has a root in K then it splits in K.

Theorem 6.1 Assume K/F is an extension. The following are equivalent.

- (a) K/F is normal,
- (b) K/F is a sfe for some $\mathcal{F} \subseteq F[X]$,
- (c) K/F is algebraic and for any field M and any two homomorphisms $\phi, \psi \colon K \to M$ with $\phi_{|F} = \psi_{|F}$, we have $\operatorname{Im} \phi = \operatorname{Im} \psi$.

Proof.

- (a) \Rightarrow (b): Assume K/F is normal and let $\mathcal{F} = \{m_{\alpha,F} : \alpha \in K\}$. Then every $f \in \mathcal{F}$ splits in K, so \mathcal{F} splits in K. Conversely, if $L \subseteq K$ and \mathcal{F} splits in L then L contains all the roots of each $m_{\alpha,F}$. Hence L contains each $\alpha \in K$. Therefore L = K and K is a sfe.
- (b) \Rightarrow (c): Both Im ϕ and Im ψ are subfields of M and are sfe's for $\phi(\mathcal{F}) = \psi(\mathcal{F})$ over F. Hence by Theorem 4.2, Im $\phi = \text{Im } \psi$.
- (c) \Rightarrow (a): Assume K/F is not normal. Then there exists an irreducible $f \in F[X]$ such that f has a root $\alpha \in K$ but does not split over K, without loss of generality $f = m_{\alpha,F}$. Let M be a sfe over K for the set $\mathcal{F} = \{m_{\gamma,F} : \gamma \in K\}$, so in particular $f = m_{\alpha,F}$ splits in M. Let β be another root of f in M that does not lie in K. By the Extension Theorem, there exists an isomorphism $\phi \colon F(\alpha) \to F(\beta)$ fixing F. Now $M/F(\alpha)$ and $M/F(\beta)$ are sfe's for \mathcal{F} and $\phi(\mathcal{F}) = \mathcal{F}$ respectively. Hence ϕ extends to an isomorphism $\tilde{\phi} \colon M \to M$ with $\tilde{\phi}(\alpha) = \beta$. Now $\tilde{\phi}_{|K}$ and the inclusion $i \colon K \to M$ are two maps $K \to M$ with distinct images since $\beta \in \operatorname{Im} \tilde{\phi}_{|K}$ but $\beta \notin \operatorname{Im} i$. This contradicts (c), so K/F is normal.

Corollary 6.2 An extension K/F is finite and normal iff it is the sfe over F of some polynomial $f \in F[X]$.

Proof. If K/F is a sfe for f, then by Theorem 4.1+4.2 it is finite ($[K:F] \leq (\deg f)!$), and by Theorem 6.1 it is normal.

If K/F is normal and K = F(A) for some set A, then the proof of $(a)\Rightarrow(b)$ above in fact shows that K is a sfe for $\mathcal{F} = \{m_{\alpha,F} : \alpha \in A\}$: clearly \mathcal{F} splits in K, but if \mathcal{F} splits in L, K/L/F, then L must contain A, and so contains F(A) = K. But if $[K:F] < \infty$ we can take A to be finite (e.g., a basis for K/F), and then a sfe for \mathcal{F} is just a sfe for the single polynomial $f = \prod_{g \in \mathcal{F} \setminus \{0\}} g$.

Let K/F be algebraic. Then M is a **normal closure** of K/F iff M is an extension of K such that

- (a) M/F is normal; and
- (b) if $K \subseteq L \subseteq M$ and L/F is normal then L = M.

In other words, M is a smallest extension of K such that M/F is normal. Clearly, if K/F is already normal then M = K, otherwise M will be larger (assuming it exists).

Lemma 6.3 Let K/F be algebraic and K = F(A) for some subset $A \subseteq K$. Then M/K is a normal closure of K/F iff M is a sfe for $\mathcal{F} = \{m_{\alpha,F} \mid \alpha \in A\}$ over K (or over F).

Proof. Let M be a normal closure of K/F. Then every $m_{\alpha,F} \in \mathcal{F}$ has a root $\alpha \in K \subseteq M$. Hence every $m_{\alpha,F}$ splits in M. Let $L \subseteq M$ be a sfe for \mathcal{F} over F. Then L contains all the roots of every $m_{\alpha,F} \in \mathcal{F}$. In particular $A \subseteq L$, so $F(A) = K \subseteq L$. This implies L is a sfe for \mathcal{F} over K as well. Also L/F is a sfe, so is normal. Thus by the definition of normal closure L = M. Now let M/K be a sfe for \mathcal{F} . Let $L \subseteq M$ be a sfe for \mathcal{F} over F. Then $A \subseteq L$, $F(A) = K \subseteq L$ and L is a sfe for \mathcal{F} over K. Hence L = M and M/F is normal. Now Let $K \subseteq L' \subseteq M$ with L'/F normal. Since every $m_{\alpha,F} \in \mathcal{F}$ has a root $\alpha \in K \subseteq L'$, it must split in L'. Therefore \mathcal{F} splits in L' and L' = M by definition of sfe.

Corollary 6.4 Normal closures exist and are unique up to isomorphism. Also, if $[K:F] < \infty$ and M/K is a normal closure of K/F then $[M:F] < \infty$.

Proof. Existence and uniqueness up to isomorphism follow since M/K is a sfe for some \mathcal{F} . If $[K:F] < \infty$ then K = F(A) for some finite set A. Hence M/F is a sfe for a finite set of polynomials and so $[M:F] < \infty$.

Examples:

- 1. The normal closure of $\mathbb{Q}(\sqrt[4]{2})/\mathbb{Q}$ is equal to the sfe of $m_{\sqrt[4]{2},\mathbb{Q}} = X^4 2$ over $\mathbb{Q}(\sqrt[4]{2})$ (or \mathbb{Q}), which is $\mathbb{Q}(\sqrt[4]{2}, i\sqrt[4]{2}, i\sqrt[4]{2}, i\sqrt[3]{4}) = \mathbb{Q}(\sqrt[4]{2}, i)$.
- 2. Any quadratic extension is normal: Any quadratic extension K/F is of the form $K = F(\alpha)$ for some (any) $\alpha \in K$, $\alpha \notin F$. If $K = F(\alpha)$ then K/F is normal iff $m_{\alpha,F}$ splits, which it will definitely do if it is quadratic.
- 3. A normal extension of a normal extension need not be normal. For example, the extensions $\mathbb{Q}(\sqrt[4]{2})/\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt{2})/\mathbb{Q}$ are both quadratic, so normal, but $\mathbb{Q}(\sqrt[4]{2})/\mathbb{Q}$ is not normal $(X^4 2$ does not split in $\mathbb{Q}(\sqrt[4]{2})$.
- 4. If M/K/F and M/F is normal, then M/K is normal, but K/F may not be: If M is a sfe of \mathcal{F} over F then it is also a sfe of \mathcal{F} over K. But, for example, $\mathbb{Q}(\sqrt[4]{2},i)/\mathbb{Q}$ is normal while $\mathbb{Q}(\sqrt[4]{2})/\mathbb{Q}$ is not.

Lemma 7.1 Let K_1/F_1 and K_2/F_2 be extensions with $[K_1:F_1] < \infty$. Let $\phi: F_1 \to F_2$ be an isomorphism. Then

$$|\{\tilde{\phi}\colon K_1 \to K_2 : \tilde{\phi}_{|F_1} = \phi\}| \le [K_1 : F_1].$$

Moreover if $K_1 = F_1(A)$ then equality holds iff $\phi(m_{\alpha,F_1})$ splits in $K_2[X]$ into distinct linear factors for all $\alpha \in A$.

Proof. Proof is by induction on $[K_1:F_1]$. When $[K_1:F_1]=1$ the result is clear. Now assume $[K_1:F_1]>1$ and pick some $\alpha\in A, \alpha\notin F_1$. Now let $\beta_1,\ldots,\beta_r\in K_2$ be the (distinct) roots of $\phi(m_{\alpha,F_1})$ in K_2 . By the Extension theorem, for each $i=1,\ldots,r$ there exists an isomorphism $\phi_i\colon F_1(\alpha)\to F_2(\beta_i)$ given by $\phi_i(\alpha)=\beta_i$. By induction each ϕ_i can be extended to at most $[K_1:F_1(\alpha)]$ maps $\tilde{\phi}\colon K_1\to K_2$. Conversely any map $\tilde{\phi}\colon K_1\to K_2$ gives by restriction to $F_1(\alpha)$ one of the maps ϕ_i . Therefore the number of $\tilde{\phi}$ s is at most $[K_1:F_1(\alpha)]r$. But $r\leq \deg m_{\alpha,F_1}=[F_1(\alpha):F_1]$, so there are at most $[K_1:F_1(\alpha)][F_1(\alpha):F_1]=[K_1:F_1]$ such maps.

Moreover, if m_{α,F_1} does not split into distinct linear factors in $K_2[X]$ then $r < \deg m_{\alpha,F_1}$ and we have a strict inequality. Conversely if every m_{α,F_1} does split into distinct linear factors then $r = \deg m_{\alpha,F_1}$. Also every $\phi_i(m_{\alpha',F_1(\alpha)})$ with $\alpha' \in A$ splits into distinct linear factors in $K_2[X]$ since they are factors of $\phi(m_{\alpha',F_1})$. Hence by induction the number of extensions of each ϕ_i is exactly $[K_1:F_1(\alpha)]$ and we have equality.

There are therefore two ways in which we may have fewer that $[K_1:F_1]$ maps in Lemma 1. The first is if K_2 is not "big enough". In this case some of the m_{α,F_1} may not split. The other is that the m_{α,F_1} may split, but some of the roots may be multiple roots. This motivates the following definitions.

An *irreducible* polynomial $f \in F[X]$ is **separable** if it has no multiple roots in a sfe of f over F. An element $\alpha \in K$ is **separable over** F if it is algebraic over F and $m_{\alpha,F}$ is separable. An extension K/F is **separable** if every $\alpha \in K$ is separable over F. Polynomials, elements, and field extensions are **inseparable** iff they are not separable.

The **separable degree** $[K:F]_s$ of an algebraic extension K/F is the number of maps $\phi: K \to M$ which fix F, where M/F is (or contains) the normal closure of K/F.

Containing the normal closure means that all the $m_{\alpha,F}$'s in Lemma 7.1 split in $K_2 = M$. Enlarging M further does not affect the number of maps since the image of any map $K \to M$ will always lie in the normal closure. Thus, for example, one can also choose $M = \overline{F}$, the algebraic closure of F.

Corollary 7.2 If K/F is finite then $[K:F]_s \leq [K:F]$ with equality iff K/F is separable. Proof. Immediate from Lemma 7.1 by taking A = K, $\phi = 1_F$.

Example: Let $K = \mathbb{F}_p(t)$ and $F = \mathbb{F}_p(t^p) \subseteq K$ where t is a transcendental element over \mathbb{F}_p . Then K is obtained from F by adjoining a root of $f(X) = X^p - t^p$. In K[X], f(X) splits as $f(X) = (X - t)^p$. The only non-trivial monic factors of f in K[X] are therefore

of the form $(X - t)^r$, 0 < r < p, and it is clear that these do not lie in F[X] (consider the constant term). Hence f is irreducible in F[X] and so f, t, and K are inseparable over F.

In fact the above example is typical as the following lemma shows.

Lemma 7.3 If $f \in F[X]$ is irreducible then the following are equivalent:

- (a) f is inseparable,
- (b) f' = 0 where f' is the formal derivative of f. (If $f = \sum a_n X^n$ then $f' = \sum n a_n X^{n-1}$.)
- (c) char F = p > 0 and $f(X) = g(X^p)$ for some irreducible $g \in F[X]$.

Proof. Write $f = (X - \alpha)h(X)$ in some sfe. Then $f' = (X - \alpha)h' + 1.h$. In particular $f'(\alpha) = h(\alpha)$. If α is a multiple root of f then $f'(\alpha) = h(\alpha) = 0$, so $m_{\alpha} \mid f'$. But $m_{\alpha} \mid f$ and f is irreducible, so $\deg m_{\alpha} = \deg f > \deg f'$. Hence f' = 0. Conversely, if α is not a multiple root then $f'(\alpha) = h(\alpha) \neq 0$, so $f' \neq 0$. This proves (a) \Leftrightarrow (b).

If $f = \sum a_n X^n$ then $f' = \sum n a_n X^{n-1}$. Hence f' = 0 iff $n a_n = 0$ for all n. If char F = 0 then f is a constant, contradicting the irreducibility of f. If char F = p then $a_n = 0$ for all $p \nmid n$. Hence $f(X) = g(X^p)$. Any factorization of g would give a factorization of f, so g is irreducible. Conversely if $f(X) = g(X^p)$ and char F = p then f' = 0. Hence (b) \Leftrightarrow (c).

A field F is called **perfect** if every algebraic extension K/F is separable.

Lemma 7.4 F is perfect iff either (a) char F = 0, or (b) char F = p > 0 and every element of F has a pth root in F.

Proof. If F is perfect and char F = p > 0, consider the polynomial $X^p - a$ for $a \in F$. In a sfe K/F this polynomial factors as $(X - b)^p$ where $b^p = a$. Thus $m_{b,F} \mid (X - b)^p$. If K/F is separable then $m_{b,F}$ has no multiple roots. Thus $m_{b,F} = X - b$ and $b \in F$.

If char F=0 then K/F is separable. Assume char F=p>0 and every element in F has a pth root. If α is not separable over F then the minimal polynomial of α is $f(X)=g(X^p)$ for some $g=\sum g_iX^i\in F[X]$. Let $h(X)=\sum g_i^{1/p}X^i$, where $g_i^{1/p}$ is any pth root of g_i in F. Then $h(X)^p=(\sum g_i^{1/p}X^i)^p=\sum g_iX^{pi}=g(X^p)=f(X)$. Hence f is not irreducible and cannot be the minimal polynomial of α . Hence every algebraic K/F is separable. \square

Note: If K/F is an algebraic extension and char F = 0 then K/F is automatically separable. Hence separability is only an issue in characteristic p > 0.

Exercises

- 1. Show that if char F = p then the map $\phi \colon F \to F$ given by $\phi(a) = a^p$ is a homomorphism. Deduce that F is perfect iff either char F = 0 or ϕ is an isomorphism. $[\phi$ is called the **Frobenius map**.]
- 2. Show that if F is finite then ϕ is an isomorphism. Deduce that all finite fields are perfect.

Let K/F be an arbitrary field extension, then the **Galois group** of K/F is the group

$$Gal(K/F) = \{ \phi \colon K \to K : \phi_{|F} = 1_F, \ \phi \text{ is isomorphism} \},$$

with the group operation given by composition.

Let K be a field and G a group of automorphisms of K. The fixed field of G is

$$K^G = \{ \alpha \in K : \forall g \in G : g(\alpha) = \alpha \}.$$

Note that K^G is indeed a subfield of K. [Proof: g(1) = 1, so $1 \in K^G$. If $\alpha, \beta \in K^G$ then $g(\alpha - \beta) = g(\alpha) - g(\beta) = \alpha - \beta$, so $\alpha - \beta \in K^G$, similarly for $\alpha\beta$, $1/\alpha$.]

K/F is a Galois extension if it is algebraic and $F = K^G$ for some G.

Note 1: For any K/F and G we have $F \subseteq K^{Gal(K/F)}$ and $G \subseteq Gal(K/K^G)$.

Note 2: If K/F is Galois then $F \subseteq K^{\operatorname{Gal}(K/F)} \subseteq K^G = F$. Thus without loss of generality we can assume $G = \operatorname{Gal}(K/F)$ in the definition of Galois extension.

Examples:

- 1. $Gal(\mathbb{C}/\mathbb{R}) = \{1, c\}$, where c = complex conjugation. Now $\mathbb{C}^{\{1, c\}} = \{\alpha \in \mathbb{C} : \bar{\alpha} = \alpha\} = \mathbb{R}$. Hence \mathbb{C}/\mathbb{R} is Galois.
- 2. If $g \in \operatorname{Gal}(\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q})$ then $g(\sqrt[3]{2})$ is a root of $X^3 2 = 0$ in $\mathbb{Q}(\sqrt[3]{2})$. But there is only one root $\sqrt[3]{2}$, so $g(\sqrt[3]{2}) = \sqrt[3]{2}$. Since $\sqrt[3]{2}$ generates $\mathbb{Q}(\sqrt[3]{2})$, g = 1 and $\operatorname{Gal}(\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}) = \{1\}$. Now $\mathbb{Q}(\sqrt[3]{2})^{\{1\}} = \mathbb{Q}(\sqrt[3]{2}) \neq \mathbb{Q}$, so $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$ is not Galois.
- 3. If $g \in \operatorname{Gal}(\mathbb{F}_p(t)/\mathbb{F}_p(t^p))$ then $g(t)^p = g(t^p) = t^p$. Thus g(t) is a root of $X^p t^p = (X t)^p = 0$, so g(t) = t. Since t generates $\mathbb{F}_p(t)$, g = 1 and $\operatorname{Gal}(\mathbb{F}_p(t)/\mathbb{F}_p(t^p)) = \{1\}$. Now $\mathbb{F}_p(t)^{\{1\}} = \mathbb{F}_p(t) \neq \mathbb{F}_p(t^p)$, so $F_p(t)/\mathbb{F}_p(t^p)$ is not Galois.

Theorem 8.1 K/F is Galois if and only if it is both normal and separable.

Proof. The definitions of Galois, normal, and separable all require K/F to be algebraic, so we may assume this. Assume first that K/F is normal and separable. We know that $F \subseteq K^{\operatorname{Gal}(K/F)}$, so it enough to show that for every $\alpha \in K$, $\alpha \notin F$, there exists a $\phi \in \operatorname{Gal}(K/F)$ with $\phi(\alpha) \neq \alpha$. Since K/F is normal, $m_{\alpha,F}$ splits in K[X]. Since K/F is separable, $m_{\alpha,F}$ has distinct roots in K. Since $\alpha \notin F$, deg $m_{\alpha,F} > 1$. Hence there is a $\beta \in K$ with $m_{\alpha,F}(\beta) = 0$, $\beta \neq \alpha$. By the Extension theorem, there exists $\phi \colon F(\alpha) \to F(\beta)$ fixing F with $\phi(\alpha) = \beta$. Since K/F is normal, K is the sfe of some $\mathcal{F} \subseteq F[X]$ over F. Hence K is a sfe of \mathcal{F} over either $F(\alpha)$ or $F(\beta)$. By the proof of the uniqueness of the sfe, there exists an isomorphism $\tilde{\phi} \colon K \to K$ that agrees with ϕ on $F(\alpha)$. This $\tilde{\phi}$ is an element of $\operatorname{Gal}(K/F)$ which does not fix α .

Now assume K/F is Galois with $F = K^G$. For any $\alpha \in K$ let $\alpha = \alpha_1, \alpha_2, \ldots, \alpha_r$ be the distinct values of $g(\alpha)$ as g runs over $\operatorname{Gal}(K/F)$. Note that there are only finitely many such values (even if $\operatorname{Gal}(K/F)$ is infinite) since each α_i is a root of $m_{\alpha,F}$. Indeed, $r \leq \deg m_{\alpha,F}$. Consider the polynomial $f(X) = \prod_{i=1}^r (X - \alpha_i)$. Each $g \in G$ is injective on K and if $\alpha_i = h(\alpha)$ then $g(\alpha_i) = (gh)(\alpha) = \alpha_j$ for some j. Hence g permutes the α_i s

and so g(f(X)) = f(X). Thus $f \in K^G[X] = F[X]$. But $f(\alpha) = 0$, so $m_{\alpha,F} \mid f$. Therefore $m_{\alpha,F}$ splits into distinct linear factors in K[X]. Since this holds for any $\alpha \in K$, K/F is both normal and separable.

Note: The first part of the proof of Theorem 8.1 shows that if K/F is Galois and $\alpha \in K$ then Gal(K/F) permutes the roots of $m_{\alpha,F}$ transitively, i.e., for any other root β there exists $g \in Gal(K/F)$ with $g(\alpha) = \beta$.

Theorem 8.2 If G is a finite group of automorphisms of K then $[K:K^G] = |G|$ and $G = Gal(K/K^G)$.

Proof. Assume first that $[K:K^G] > |G| = n$. Let $\alpha_1, \ldots, \alpha_m, m > n$, be a subset of K, linearly independent over K^G and let $G = \{g_1, \ldots, g_n\}$. Consider the system of linear equations

$$g_j(\alpha_1)x_1 + \dots + g_j(\alpha_m)x_m = 0, \qquad j = 1, \dots, n.$$
(1)

There are n equations in m > n unknowns x_i . Hence there is a non-trivial solution with $x_i \in K$. Pick a non-trivial solution with the least number of non-zero x_i . Without loss of generality assume $x_1, \ldots, x_r \neq 0$ and $x_{r+1}, \ldots, x_m = 0$. Let $g \in G$ and apply g to each of the equations above. Then

$$gg_j(\alpha_1)g(x_1) + \dots + gg_j(\alpha_r)g(x_r) = 0, \qquad j = 1,\dots, n.$$
(2)

As j varies, gg_j runs over all the elements of G. Hence

$$g_j(\alpha_1)g(x_1) + \dots + g_j(\alpha_r)g(x_r) = 0, \qquad j = 1, \dots, n.$$
 (3)

Multiplying (2) by $g(x_r)$ and (3) by x_r and subtracting gives

$$\sum_{i=1}^{r} g_j(\alpha_i)(x_i g(x_r) - x_r g(x_i)) = 0.$$

However the i=r term vanishes, so we get a solution to (1) with fewer non-zero x_i s. The only way in which this is possible is if all the coefficients $x_i g(x_r) - x_r g(x_i)$ are zero. But then $x_i/x_r = g(x_i/x_r)$ for all $g \in G$. Hence $y_i = x_i/x_r \in K^G$. Dividing through by x_r and setting $g_i = 1$ in (1) gives

$$\alpha_1 y_1 + \dots \alpha_r y_r = 0$$

with $y_i \in K^G$ non-zero, contradicting linear independence of the α_i s. Thus $[K:K^G] \leq |G|$. For any extension K/F, every element of $\operatorname{Gal}(K/F)$ is a map $K \to K$ which fixes F, hence

gives a map $K \to M$ fixing F for any M/K. Thus

$$|\operatorname{Gal}(K/K^G)| \le [K:K^G]_s \le [K:K^G] \le |G|.$$
 But $G \subseteq \operatorname{Gal}(K/K^G)$, so $G = \operatorname{Gal}(K/K^G)$ and $|G| = [K:K^G]$.

Exercises

- 1. Show that $\mathbb{Q}(\sqrt[3]{2}, \zeta_3)/\mathbb{Q}$ is Galois and $Gal(\mathbb{Q}(\sqrt[3]{2}, \zeta_3)/\mathbb{Q}) \cong S_3$. [Hint: consider the action of an automorphism on the roots of $X^3 2 = 0$].
- 2. For each subgroup $H \leq \operatorname{Gal}(\mathbb{Q}(\sqrt[3]{2}, \zeta_3)/\mathbb{Q})$ identify the fixed field $\mathbb{Q}(\sqrt[3]{2}, \zeta_3)^H$.
- 3. Show that if K/F is finite and separable then the normal closure M/F of K/F is finite and Galois.

Theorem (Fundamental Theorem of Galois Theory)

Assume K/F is a finite Galois extension, then there exists a bijection

$$\{subgroups \ H \leq \operatorname{Gal}(K/F)\} \leftrightarrow \{subfields \ L \subseteq K : K/L/F\}$$

$$H \rightarrow K^{H}$$

$$\operatorname{Gal}(K/L) \leftarrow L$$

Proof. Since $|\operatorname{Gal}(K/F)| \leq [K:F]$, $\operatorname{Gal}(K/F)$ is finite. We shall show the two maps given are inverse to each over. Starting with $H \leq \operatorname{Gal}(K/F)$ we get $H \mapsto K^H \mapsto \operatorname{Gal}(K/K^H)$. Now H is finite so by Theorem 8.2, $H = \operatorname{Gal}(K/K^H)$. Starting with $L \subseteq K$, we get $L \mapsto \operatorname{Gal}(K/L) \mapsto K^{\operatorname{Gal}(K/L)}$. However, K/L is both normal and separable (since K/F is), so K/L is Galois and $L = K^{\operatorname{Gal}(K/L)}$. Thus these maps are inverse to one another and we have a bijection.

The **join** or **compositum** L_1L_2 of two subfields L_1 and L_2 of a field K is the smallest field containing them both. I.e., $L_1L_2 = L_1(L_2) = L_2(L_1)$.

Warning: It is possible that $L_2 \cong L_3$ but $L_1L_2 \ncong L_1L_3$. Hence you should always specify L_1 and L_2 as subfields of a specific field K. It is not enough just to define L_1 and L_2 up to isomorphism.

Corollary 9.1 Let K/F be a finite Galois extension with Gal(K/F) = G. Let $H_i \leq G$ and let $L_i \subseteq K$ be the subfields corresponding to H_i . Then

- (a) $H_1 \leq H_2$ iff $L_1 \supseteq L_2$ and in this case $[H_2: H_1] = [L_1: L_2]$,
- (b) $H_1 \cap H_2$ corresponds to L_1L_2 ,
- (c) $\langle H_1 \cup H_2 \rangle$ corresponds to $L_1 \cap L_2$,
- (d) if $g \in G$ then gHg^{-1} corresponds to g(L),
- (e) $H_1 \subseteq H_2 \iff L_2/L_1$ is Galois $\iff L_2/L_1$ is normal, and in this case $Gal(L_1/L_2) \cong H_2/H_1$.

Proof.

(a) If $H_1 \leq H_2$, then $L_1 = K^{H_1} \supseteq K^{H_2} = L_2$.

If $L_1 \supseteq L_2$, then $H_1 = \operatorname{Gal}(K/L_1) \le \operatorname{Gal}(K/L_2) = H_2$.

 $|H_i| = [K:K^{H_i}] = [K:L_i], \text{ so } [L_1:L_2] = [K:L_2]/[K:L_1] = |H_2|/|H_1| = [H_2:H_1].$

- (b) $H_1 \cap H_2$ is the largest subgroup of G that is contained in both H_1 and H_2 . This corresponds to the smallest subfield of K that contains both L_1 and L_2 , but this is just L_1L_2 .
- (c) $\langle H_1 \cup H_2 \rangle$ is the smallest subgroup of G that contains both H_1 and H_2 . This corresponds to the largest subfield of K that is contained in both L_1 and L_2 , but this is just $L_1 \cap L_2$.
- (d) Any element of g(L) is of the form $g(\alpha)$ with $\alpha \in L$. But if $ghg^{-1} \in gHg^{-1}$ then h fixes α and so $ghg^{-1}(g(\alpha)) = g(h(\alpha)) = g(\alpha)$. Thus $g(\alpha)$ is fixed by gHg^{-1} , $g(L) \subseteq K^{gHg^{-1}}$. But g is an automorphism of K, so [K:g(L)] = [g(K):g(L)] = [K:L]. Also $[K:L] = |H| = |gHg^{-1}| = [K:K^{gHg^{-1}}]$. Hence $g(L) = K^{gHg^{-1}}$.

(e) If $H_1 leq H_2$ then $gH_1g^{-1} = H_1$, so $g(L_1) = L_1$ for all $g \in H_2 = \operatorname{Gal}(K/L_2)$. Hence $g_{|L_1} \in \operatorname{Gal}(L_1/L_2)$. Thus we have a map $\phi \colon \operatorname{Gal}(K/L_2) \to \operatorname{Gal}(L_1/L_2)$ which maps $g \mapsto g_{|L_1}$. This is clearly a group homomorphism with kernel equal to $\operatorname{Gal}(K/L_1)$. But $L_2 \subseteq L_1^{\operatorname{Gal}(L_1/L_2)} \subseteq L_1^{\operatorname{Im}\phi} \subseteq K^{\operatorname{Gal}(K/L_2)} = L_2$, so L_1/L_2 is Galois. If L_1/L_2 Galois then L_1/L_2 normal, so we now prove L_1/L_2 normal implies $H_1 \subseteq H_2$. If L_1/L_2 is normal and $g \in H_2$, then $g(L_1)$ must have the same image in K as $1(L_1) = L_1$. Hence $g(L_1) = L_1$ and $gH_1g^{-1} = H_1$. Thus $H_1 \subseteq H_2$. Finally $H_2/H_1 = H_2/\operatorname{Ker}\phi \cong \operatorname{Im}\phi$ is a subgroup of $\operatorname{Gal}(L_1/L_2)$, but $[H_2:H_1] = [L_1:L_2] = |\operatorname{Gal}(L_1/L_2)|$, so the image of ϕ is $\operatorname{Gal}(L_1/L_2)$ and $\operatorname{Gal}(L_1/L_2) \cong H_2/H_1$.

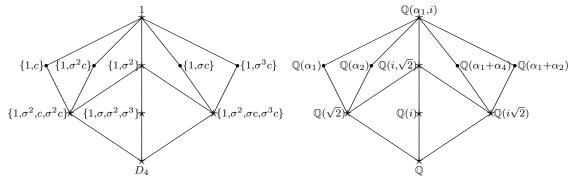
Lemma 9.2 If K/F is the sfe for $f \in F[X]$ then Gal(K/F) is isomorphic to a subgroup of the symmetric group S_R where R is the set of roots of f in K.

Proof. Map $\operatorname{Gal}(K/F) \to S_R$ by restricting $\phi \in \operatorname{Gal}(K/F)$ to $R \subseteq K$. The image is a permutation since ϕ is injective and maps the finite set R to R. The map is a group homomorphism since the group operation on each side is the same — composition of functions. If the image in S_R is the identity then ϕ fixes R and F, so fixes F(R) = K and so $\phi = 1$. Hence the map $\operatorname{Gal}(K/F) \to S_R$ is injective and $\operatorname{Gal}(K/F)$ is isomorphic to the image of this map in S_R .

Example: Consider $\mathbb{Q}(\sqrt[4]{2}, i)/\mathbb{Q}$ which is the sfe of X^4-2 . Let $G = \operatorname{Gal}(\mathbb{Q}(\sqrt[4]{2}, i)/\mathbb{Q})$. By the Extension Theorem there exists a $\sigma \in G$ with $\sigma(\sqrt[4]{2}) = i\sqrt[4]{2}$. There is also $c \in G$ with c = complex conjugation. We do not know what $\sigma(i)$ is, but if $\sigma(i) = -i$ then $\sigma c(i) = i$ and $\sigma c(\sqrt[4]{2}) = \sqrt[4]{2}$. Hence by replacing σ with σc if necessary we may assume $\sigma(i) = i$. Let the four roots of $X^4 - 2$ be

$$\alpha_1 = \sqrt[4]{2}, \qquad \alpha_2 = i\sqrt[4]{2}, \qquad \alpha_3 = -\sqrt[4]{2}, \qquad \alpha_4 = -i\sqrt[4]{2}.$$

Then σ acts as the permutation (1234) and c acts as the permutation (24) on the roots. The subgroup of S_4 generated by these is D_4 which is of order 8. But $|G| = [\mathbb{Q}(\sqrt[4]{2}, i) : \mathbb{Q}] = 8$, so $G = \langle \sigma, c \rangle \cong D_4$. The subgroups of G and their corresponding subfields are:



In order to apply Galois theory we need a finite Galois extension. The following Lemma is therefore extremely useful.

Lemma 9.3 If K/F is finite and separable and if M is the normal closure of K/F then M/F is finite and Galois.

Proof. Exercise.
$$\Box$$

If F is a field of characteristic p, then the map $\phi \colon F \to F$ given by $\phi(a) = a^p$ is called the **Frobenius map**.

Lemma 10.1 The Frobenius map is a ring homomorphism from F to F.

Proof. If $a,b \in F$ then $\phi(a+b) = (a+b)^p = a^p + \binom{p}{1}a^{p-1}b + \cdots + \binom{p}{p-1}ab^{p-1} + b^p$. However, for 0 < i < p the binomial coefficient $\binom{p}{i} = p!/i!(p-i)!$ is divisible by p since $p \mid p!$ but $p \nmid i!(p-i)!$. Hence $\phi(a+b) = a^p + b^p = \phi(a) + \phi(b)$. Also $\phi(1) = 1$ and $\phi(ab) = (ab)^p = a^pb^p = \phi(a)\phi(b)$. Thus ϕ is a ring homomorphism.

Note: The Frobenius map is always injective, but it need not be surjective. For example, take $F = \mathbb{F}_p(t)$ where t is transcendental over \mathbb{F}_p . Then $t \notin \text{Im } \phi$.

Theorem 10.2 For all primes p and all $n \ge 1$ there exists a field \mathbb{F}_{p^n} with p^n elements. It is the sfe of $X^{p^n} - X$ over \mathbb{F}_p . Conversely every finite field is isomorphic to some \mathbb{F}_{p^n} .

Proof. Let K be the sfe of $f(X) = X^{p^n} - X$ over $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$. Then K is finite and the Frobenius map ϕ is therefore an automorphism of K. Let G be the cyclic group of automorphisms of K generated by ϕ^n . Then $K^G = \{\alpha : \phi^n(\alpha) = \alpha\} = \{\alpha : \alpha^{p^n} = \alpha\}$ is just the set of roots of f in K. But K^G is a subfield of K containing \mathbb{F}_p and all the roots of f. Hence $K = K^G = \{\alpha : f(\alpha) = 0\}$. For any root α , $f'(\alpha) = -1 \neq 0$, so f has no multiple roots. Since f splits in K, there are exactly p^n roots of f in K, and $|K| = p^n$.

Now assume K is some finite field. The characteristic of K cannot be zero, since otherwise K would contain \mathbb{Q} which is infinite. Assume char K = p. Then $\mathbb{F}_p \subseteq K$ and so K/\mathbb{F}_p is a field extension. The extension is clearly finite since one cannot have a basis for K/F with more than |K| elements. If $[K:\mathbb{F}_p] = n$ then $K \cong \mathbb{F}_p^n$ as a vector space, so $|K| = p^n$. Any $\alpha \in K$ is either zero, or in K^{\times} which is a group of order $p^n - 1$. Hence either $\alpha = 0$ or $\alpha^{p^n-1} = 1$. Thus every $\alpha \in K$ is a root of $f(X) = X^{p^n} - X$. Since there are at most p^n roots of f in K and $|K| = p^n$, f splits in K. Thus K contains a sfe of f over \mathbb{F}_p . But since K consists of the roots of f, K must be equal to a sfe of f over \mathbb{F}_p . Since any two sfe's are isomorphic, $K \cong \mathbb{F}_{p^n}$.

Theorem 10.3 Any finite extension K/F of a finite field F is Galois. The Galois group is cyclic and is generated by a power of the Frobenius map.

Proof. Since $|F| < \infty$ and $[K:F] < \infty$, we have $|K| = |F|^{[K:F]} < \infty$. Assume $K = \mathbb{F}_{p^n}$ and let G be the cyclic group of automorphisms generated by the Frobenius map ϕ . The fixed field $K^G = \{\alpha : \phi(\alpha) = \alpha\}$ is just the set of roots of the polynomial $X^p - X = 0$. But there are at most p roots, and ϕ fixes \mathbb{F}_p . Therefore $K^G = \mathbb{F}_p$. Hence K/\mathbb{F}_p is Galois and $\mathrm{Gal}(K/\mathbb{F}_p) = G$ is a cyclic group, generated by the Frobenius map ϕ .

If K/F then $\mathbb{F}_p \subseteq F \subseteq K$, so by the Fundamental theorem of Galois theory, $F = K^H$ for some $H \subseteq G$. Thus K/F is Galois with Galois group $\operatorname{Gal}(K/F) = H$. Now H is a subgroup of a cyclic group G, so is cyclic. It is generated by some element of G, which is a power of ϕ .

Note: If $Gal(\mathbb{F}_{p^n}/\mathbb{F}_p)$ is cyclic of order n. The subgroups are cyclic of order m for some $m \mid n$ and are generated by $\phi^{n/m}$. The fixed field of $\phi^{n/m}$ is just \mathbb{F}_{p^n} . Hence the subfields of \mathbb{F}_{p^n} are precisely the \mathbb{F}_{p^d} for all $d \mid n$.

Lemma 10.4 Any finite subgroup G of the multiplicative group F^{\times} of a field is cyclic.

Proof. G is finite and abelian, so $G \cong \mathbb{Z}/d_1\mathbb{Z} \times \cdots \times \mathbb{Z}/d_r\mathbb{Z}$ where $d_{i+1} \mid d_i$. Every element of G has order dividing d_1 , so $X^{d_1} - 1 = 0$ has at least $|G| = d_1 d_2 \dots d_r$ roots. But then $|G| \leq d_1$, so $d_2 = \cdots = d_r = 1$ and G is cyclic.

Corollary 10.5 For each n there exists some irreducible polynomial of degree n in $\mathbb{F}_p[X]$. Furthermore $X^{p^n} - X$ is the product of all monic irreducible polynomials of degree $d \mid n$.

Proof. The group $\mathbb{F}_{p^n}^{\times}$ is cyclic, generated by α say. Then $\mathbb{F}_{p^n} = \mathbb{F}_p(\alpha)$ and the minimal polynomial m_{α,\mathbb{F}_p} is irreducible of degree $[\mathbb{F}_p(\alpha):\mathbb{F}_p] = [\mathbb{F}_{p^n}:\mathbb{F}_p] = n$.

Write $X^{p^n} - X = \prod f_i$ where f_i are irreducible monic polynomials in $\mathbb{F}_p[X]$. If α is a root of f_i in the sfe \mathbb{F}_{p^n} , then $\mathbb{F}_p(\alpha)$ is a subfield of \mathbb{F}_{p^n} . Hence $\mathbb{F}_p(\alpha) = \mathbb{F}_{p^d}$ for some $d \mid n$ and $f_i = m_{\alpha, \mathbb{F}_p}$ has degree $[\mathbb{F}_{p^d} : \mathbb{F}_p] = d$. Conversely if f is an irreducible polynomial of degree $d \mid n$, and α is a root of f in some extension, then $\mathbb{F}_p(\alpha)$ is isomorphic to \mathbb{F}_{p^d} . But every element of \mathbb{F}_{p^d} is a root of $X^{p^d} - X \mid X^{p^n} - X$. Hence α is a root of $X^{p^n} - X$. Thus $f \mid X^{p^n} - X$. Since $X^{p^n} - X$ has no multiple roots, it cannot be divisible by f^2 . Hence $X^{p^n} - X$ is precisely the product of monic irreducible polynomials of degree $d \mid n$.

Lemma 10.6 If $f \in \mathbb{F}_p[X]$ and $f = f_1 f_2 \dots f_r$ where $f_i \in F_p[X]$ are distinct irreducibles, then the sfe for f over \mathbb{F}_p is \mathbb{F}_{p^d} where $d = \text{lcm}\{\deg f_i\}$. The Frobenius map ϕ acts on the roots of f as a permutation of cycle type $(\deg f_1)(\deg f_2)\dots(\deg f_r)$ in $S_{\deg f}$ permuting the roots of each f_i cyclically.

Proof. Let K be the sfe for f. The Galois group $G = \operatorname{Gal}(K/\mathbb{F}_p)$ permutes the roots of each f_i transitively and is also cyclic, generated by the Frobenius map ϕ . The only way this can happen is if ϕ permutes the roots of f_i cyclically, and so has cycle type $(\deg f_1)(\deg f_2)\dots(\deg f_r)$. Finally, if $K = \mathbb{F}_{p^d}$ then $d = [K : \mathbb{F}_p] = |G| = \text{the order of } \phi$, which is $\operatorname{lcm}\{\deg f_i\}$.

Notation If $f \in F[X]$, then Gal(f/F) denotes Gal(K/F), where K/F is a sfe for f.

Theorem (Comparison Theorem) If $f = \sum_{i=0}^{n} a_i X^i \in \mathbb{Z}[X]$, p is a prime with $p \nmid a_n$, and the reduction \bar{f} of f mod p is a product of **distinct** irreducible polynomials in $\mathbb{F}_p[X]$, $\bar{f} = f_1 \dots f_r$, then $\operatorname{Gal}(f/\mathbb{Q})$ contains an automorphism which acts on the roots of f as a permutation with cycle type $(\deg f_1)(\deg f_2)\dots(\deg f_r)$.

The proof of this result is rather technical, so I will not include it here.

Example: Let $f(X) = X^3 + 7X + 3$. Then mod 2, $\bar{f} = X^3 + X + 1$ is irreducible, so $Gal(f/\mathbb{Q})$ contains a 3-cycle. But mod 3, $\bar{f} = X^3 + X = X(X^2 + 1)$, and $X^2 + 1$ is irreducible. Therefore $Gal(f/\mathbb{Q})$ contains an element of cycle type (1)(2), i.e., a transposition. Since $Gal(f/\mathbb{Q})$ is a subgroup of S_3 , $Gal(f/\mathbb{Q}) \cong S_3$.

7262 11. The equation $X^n - a = 0$ Spring 2018

A **primitive** nth root of 1 is an element $\zeta_n \in K$ with order n in K^{\times} , i.e., $\zeta_n^n = 1$ but $\zeta_n^r \neq 1$ for 0 < r < n.

Lemma 11.1 If K/F is a sfe for $X^n - 1$ and char $F \not\mid n$ then the roots of $X^n - 1$ in K are $\{1, \zeta_n, \ldots, \zeta_n^{n-1}\}$ where $\zeta_n \in K$ is a primitive nth root of 1. Also $K = F(\zeta_n)$ and K/F is Galois with $Gal(K/F) \leq (\mathbb{Z}/n\mathbb{Z})^{\times}$ where $(\mathbb{Z}/n\mathbb{Z})^{\times} = \{r \mod n : \gcd(r, n) = 1\}$ is the group of units of $\mathbb{Z}/n\mathbb{Z}$ under multiplication.

Proof. Let $A = \{\alpha \in K : \alpha^n = 1\}$. Then A is a subgroup of K^{\times} . If α is a multiple root of $f(X) = X^n - 1$ then $f'(\alpha) = n\alpha^{n-1} = 0$. But $\alpha \neq 0$ and char $F \not\mid n$, so this is impossible. Hence |A| = n. Since any finite subgroup of K^{\times} is cyclic, $A = \{1, \zeta_n, \ldots, \zeta_n^{n-1}\}$ for some ζ_n which is then a primitive nth root of 1. Now $K = F(A) = F(\zeta_n)$ is normal and separable over F, so K/F is Galois. If $\sigma \in \operatorname{Gal}(K/F)$ then $\sigma(\zeta_n) = \zeta_n^r$ for some r which is uniquely determined mod n. But ζ_n^r must also have order n in K^{\times} since σ is an automorphism. Hence $\operatorname{gcd}(r,n) = 1$. Thus we have a map $\phi \colon \operatorname{Gal}(K/F) \to (\mathbb{Z}/n\mathbb{Z})^{\times}$ sending $\sigma \mapsto r \mod n$. If $\sigma(\zeta_n) = \zeta_n^r$ and $\sigma(\zeta_n) = \zeta_n^r$ then $\sigma(\zeta_n) = \sigma(\zeta_n) = \sigma(\zeta_n)^s = \zeta_n^r$, so $\sigma(\zeta_n) = rs = \sigma(\sigma) = rs = \sigma(\sigma) = rs = \sigma(\sigma)$. Thus $\sigma(\zeta_n) = \sigma(\zeta_n) = \sigma(\zeta_n) = \sigma(\zeta_n) = \sigma(\zeta_n)$ is injective since $\sigma(\zeta_n) = \sigma(\zeta_n) = \sigma(\zeta_n) = \sigma(\zeta_n)$. So if $\sigma(\zeta_n) = \zeta_n^r$ then $\sigma(\zeta_n) = \sigma(\zeta_n) = \sigma(\zeta_n) = \sigma(\zeta_n) = \sigma(\zeta_n)$.

Note that it is not always the case that $\operatorname{Gal}(K/F) = (\mathbb{Z}/n\mathbb{Z})^{\times}$. For example, F may already contain ζ_n in which case K = F and $\operatorname{Gal}(K/F) = \{1\}$.

Assume char K = 0 (so that $\mathbb{Q} \subseteq K$) and let $\zeta_n \in K$ be a primitive nth root of 1. Define $\Phi_n(X) = \prod_{r \in (\mathbb{Z}/n\mathbb{Z})^{\times}} (X - \zeta_n^r) \in K[X]$.

Lemma 11.2 For n > 0, $X^n - 1 = \prod_{d|n} \Phi_d(X)$, where $\Phi_n(X)$ is irreducible in $\mathbb{Z}[X]$.

Proof. Note that $\Phi_n(X) = \prod_{\zeta} (X - \zeta)$ where the product runs over all primitive nth roots of 1. Also $\Phi_n \in \mathbb{Q}(\zeta_n)[X]$ and for any $\sigma \in \mathrm{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q})$, $\sigma(\Phi_n) = \Phi_n$ since σ permutes the set of primitive nth roots of 1. Thus $\Phi_n \in \mathbb{Q}(\zeta_n)^{\mathrm{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q})}[X] = \mathbb{Q}[X]$.

For any r, ζ_n^r has order $d=n/\gcd(r,n)$, so is a primitive dth root of 1 for some $d\mid n$. Conversely any primitive dth root of 1 is of the form ζ_n^r for some r since it is a power of a fixed primitive dth root of 1, namely $\zeta_n^{n/d}$. Hence $X^n-1=\prod_r(X-\zeta_n^r)=\prod_{d\mid n}\prod_{\zeta}(X-\zeta)$ where the second product is over all primitive dth roots of 1. Therefore $X^n-1=\prod_{d\mid n}\Phi_d(X)$. Now by induction we can assume $\Phi_d\in\mathbb{Z}[X]$ for all d< n. Hence both X^n-1 and $\prod_{d\mid n,\ d< n}\Phi_d$ are monic (and hence primitive) elements of $\mathbb{Z}[X]$, while $\Phi_n\in\mathbb{Q}[X]$. Thus by Gauss' Lemma $\Phi_n\in\mathbb{Z}[X]$.

Write $\Phi_n = fg$ where $f = m_{\zeta_n,\mathbb{Q}}$. Then by Gauss $f,g \in \mathbb{Z}[X]$. If Φ_n is not irreducible then $\deg g > 0$ and $g(\zeta_n^r) = 0$ for some r > 1, $\gcd(r,n) = 1$. Write r as a product of (not necessarily distinct) primes $r = p_1 \dots p_s$. By considering $\zeta_n^{p_1 \dots p_i}$ for each $i = 0, \dots, s$ there must be some α and prime $p \not\mid n$ such that $f(\alpha) = 0$ and $g(\alpha^p) = 0$. Hence $f = m_{\alpha,\mathbb{Q}}$ and $f(X) \mid g(X^p)$ in $\mathbb{Z}[X]$. Consider the reductions \bar{f} and \bar{g} of f and $g \mod p$. Then $\bar{f}(X) \mid \bar{g}(X^p) = (\bar{g}(X))^p$. Then any root β of \bar{f} is also a root of \bar{g} , so is a multiple root of

 $\bar{\Phi}_n = \bar{f}\bar{g}$. Hence β is a multiple root of $X^n - 1 = \bar{\Phi}_n \dots \bar{\Phi}_1$. But then β is a root of the derivative nX^{n-1} and since $p \not\mid n$ this implies $\beta = 0$ which is not a root of $X^n - 1$. Hence Φ_n is irreducible in $\mathbb{Z}[X]$.

Corollary 11.3 If ζ_n is a primitive nth root of 1 then $\operatorname{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q}) \cong (\mathbb{Z}/n\mathbb{Z})^{\times}$.

Proof.
$$|\operatorname{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q})| = [\mathbb{Q}(\zeta_n):\mathbb{Q}] = \operatorname{deg} m_{\zeta_n,\mathbb{Q}} = \operatorname{deg} \Phi_n = |\{r \bmod n : \gcd(r,n) = 1\}| = |(\mathbb{Z}/n\mathbb{Z})^{\times}|$$
. Since $\operatorname{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q}) \leq (\mathbb{Z}/n\mathbb{Z})^{\times}$, the groups must be equal.

We now consider the equation $X^n - a = 0$ with $a \neq 1$.

Lemma 11.4 Assume F contains a primitive nth root of 1. If K is the sfe of $X^n - a$ then Gal(K/F) is isomorphic to a subgroup of the cyclic group $\mathbb{Z}/n\mathbb{Z}$. Conversely, if K/F is a Galois extension with $Gal(K/F) \cong \mathbb{Z}/n\mathbb{Z}$, then $K = F(\alpha)$ for some α with $\alpha^n \in F$.

Proof. The roots of $X^n - a$ are of the form $\{\zeta_n^i \alpha : 0 \le i < n\}$ for some $\alpha \in K$ with $\alpha^n = a$. If $\sigma \in \operatorname{Gal}(K/F)$ then $\sigma(\alpha) = \zeta_n^i \alpha$ for some $i \in \mathbb{Z}/n\mathbb{Z}$. Since $\zeta_n \in F$, $\sigma(\zeta_n) = \zeta_n$. Thus if $\tau(\alpha) = \zeta_n^j \alpha$ then $\sigma\tau(\alpha) = \zeta_n^{i+j} \alpha$, so the map $\operatorname{Gal}(K/F) \to (\mathbb{Z}/n\mathbb{Z}, +)$ sending σ to $i \mod n$ is a homomorphism. This map is injective since if $\sigma(\alpha) = \zeta_n^0 \alpha = \alpha$ then σ fixes F and α , so fixes $F(\alpha) = K$. Hence $\operatorname{Gal}(K/F)$ is isomorphic to a subgroup of $\mathbb{Z}/n\mathbb{Z}$. Conversely, assume K/F is a Galois extension with $\operatorname{Gal}(K/F) = \langle \sigma \rangle$, and σ of order n. For $\alpha \in K$ define

$$\beta = \alpha + \sigma(\alpha)\zeta_n^{-1} + \dots + \sigma^{n-1}(\alpha)\zeta_n^{-(n-1)}$$

Then $\sigma(\beta) = \zeta_n \beta$. Hence $\sigma(\beta^n) = \beta^n$ and so $\beta^n \in K^{\operatorname{Gal}(K/F)} = F$. It remains to prove that we can choose α so that $F(\beta) = K$. If $\beta \neq 0$ then $\sigma^i(\beta) = \zeta_n^i \beta$ gives n distinct values as i varies from 0 to n-1. Hence $m_{\beta,F}$ has n distinct roots and $[F(\beta):F] = \deg m_{\beta,F} \geq n = |\operatorname{Gal}(K/F)| = [K:F]$ so $F(\beta) = K$. The result now follows from the following Theorem (with $\sigma_i = \sigma^{i-1}$ and $\lambda_i = \zeta_n^{-(i-1)}$).

Theorem (Dedekind Independence Theorem) Suppose $\sigma_1, \ldots, \sigma_n$ are distinct automorphisms of a field K. Then for any $\lambda_1, \ldots, \lambda_n \in K$, not all zero, there is an $\alpha \in K$ such that $\sum_{i=1}^n \lambda_i \sigma_i(\alpha) \neq 0$.

Proof. We shall prove the result by induction on n. For n=1 the result is clear. Assume n>1 and suppose $\sum \lambda_i \sigma_i(\alpha)=0$ for all $\alpha \in K$. Since $\sigma_1 \neq \sigma_2$ there is an $\beta \in K$ with $\sigma_1(\beta) \neq \sigma_2(\beta)$. Then for all $\alpha \in K$

$$\sum_{i} \lambda_{i} \sigma_{i}(\beta) \sigma_{i}(\alpha) = \sum_{i} \lambda_{i} \sigma_{i}(\alpha \beta) = 0$$
$$\sum_{i} \lambda_{i} \sigma_{i}(\beta) \sigma_{i}(\alpha) = \sigma_{i}(\beta) \sum_{i} \lambda_{i} \sigma_{i}(\alpha) = 0$$

Subtracting we get $\sum_{i=2}^{n} \lambda_i(\sigma_i(\beta) - \sigma_1(\beta))\sigma_i(\alpha) = 0$ since the terms for i = 1 cancel. Hence by induction $\lambda_i(\sigma_i(\beta) - \sigma_1(\beta)) = 0$ for all i, in particular $\lambda_2(\sigma_2(\beta) - \sigma_1(\beta)) = 0$. But then $\lambda_2 = 0$. Repeating this argument for any pair (i, j) in place of (1, 2) gives $\lambda_j = 0$ for all j.

7262 12. Solutions of Polynomials Spring 2018

We shall assume throughout that char F = 0, $f \in F[X]$, and K/F is a sfe for f. Write the roots of f in K as $\alpha_1, \ldots, \alpha_n$.

Quadratics

Let $f(X) = aX^2 + bX + c$. In general $Gal(K/F) \cong S_2 = C_2$, and $\zeta_2 = -1 \in F$, so $K = F(\sqrt{d})$ for some $d \in F$. To find d we use the trick in Lemma 11.4. $Gal(K/F) = \langle \sigma \rangle$ where σ acts as the permutation (12) on the roots. Let $\beta = \alpha_1 + \zeta_2^{-1}\sigma(\alpha_1) = \alpha_1 - \alpha_2$. Then β^2 is fixed by S_2 . Thus β^2 can be written in terms of elementary symmetric functions of the roots, and hence in terms of the coefficients of f. Indeed $\beta^2 = (\alpha_1 + \alpha_2)^2 - 4\alpha_1\alpha_2 = (-b/a)^2 - 4(c/a) = (b^2 - 4ac)/a^2$. Using $\alpha_1 + \alpha_2 = -b/a$ and $\alpha_1 - \alpha_2 = \beta = \sqrt{b^2 - 4ac}/a$ we can now solve for α_1, α_2 to give the well known formula $\alpha_i = (-b \pm \sqrt{b^2 - 4ac})/2a$. It can be checked that this formula also works when $Gal(K/F) < S_2$ (in which case $\sqrt{d} \in F$).

Cubics

Assume $\zeta_3 \in F$ and $\operatorname{Gal}(K/F) \cong S_3$. Then there is an intermediate field L with $\operatorname{Gal}(K/L) \cong A_3 = C_3$ and $\zeta_3 \in L$. Write

$$z_0 = \alpha_1 + \alpha_2 + \alpha_3$$

$$z_1 = \alpha_1 + \zeta_3 \alpha_2 + \zeta_3^2 \alpha_3$$

$$z_2 = \alpha_1 + \zeta_3^2 \alpha_2 + \zeta_3 \alpha_3$$

Then A_3 fixes z_1^3 and z_2^3 so $z_1^3, z_2^3 \in L$. But the transposition (23) swaps z_1^3 and z_2^3 so in general we do not expect z_1^3 or z_2^3 to lie in F. Construct a new polynomial

$$g(X) = (X - z_1^3)(X - z_2^3) = X^2 - (z_1^3 + z_2^3)X + z_1^3 z_2^3$$

This polynomial is fixed by S_3 and so we can write its coefficients in terms of the coefficients of f. Indeed, by "completing the cube" we can assume $f(X) = X^3 + pX + q$, in which case $g(X) = X^2 + 27qX - 27p^3$ and $z_0 = 0$. Solving g(X) = 0 then gives z_1^3, z_2^3 as roots. Since we know z_0 we can now reconstruct the roots as

$$\alpha_1 = (z_0 + z_1 + z_2)/3$$
, $\alpha_2 = (z_0 + \zeta_3^2 z_1 + \zeta_3 z_2)/2$, $\alpha_3 = (z_0 + \zeta_3 z_1 + \zeta_3^2 z_2)/2$.

As for the quadratics, these formula work even if $Gal(K/F) < S_3$.

Quartics

Assume $\zeta_3 \in F$ and $\operatorname{Gal}(K/F) \cong S_4$. By "completing the quartic" we can write f in the form $f(X) = X^4 + pX^2 + qX + r$ so that $\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 = 0$. There is an intermediate field L with $\operatorname{Gal}(K/L) = V$, the Klein group. Now $V \subseteq S_4$ and $\operatorname{Gal}(L/F) \cong S_4/V \cong S_3$, so with some luck we can get L by splitting a cubic. Write

$$y_1 = (\alpha_1 + \alpha_2)(\alpha_3 + \alpha_4) = -(\alpha_1 + \alpha_2)^2$$

$$y_2 = (\alpha_1 + \alpha_3)(\alpha_2 + \alpha_4) = -(\alpha_1 + \alpha_3)^2$$

$$y_3 = (\alpha_1 + \alpha_4)(\alpha_2 + \alpha_3) = -(\alpha_1 + \alpha_4)^2$$

Then y_i is fixed by V so $y_i \in L$. The cubic

$$g(X) = (X - y_1)(X - y_2)(X - y_3)$$

is now fixed by S_4 , so the coefficients of g are polynomials in the coefficients of f. Indeed $g(X) = X^3 - 2pX^2 + (p^2 - 4r)X + q^2$. Finding the roots y_1, y_2, y_3 as above we can recover $\alpha_i = (\pm \sqrt{-y_1} \pm \sqrt{-y_2} \pm \sqrt{-y_3})/2$ for suitable choice of signs (chosen so that the product of the square root terms is -q). Once again, this works even when $Gal(K/F) < S_4$.

An extension K/F is a **radical** extension if $K = F(\alpha_1, ..., \alpha_n)$ and there exists integers $n_i > 0$ such that $\alpha_i^{n_i} \in F(\alpha_1, ..., \alpha_{i-1})$ for each i.

Lemma 12.1 If $F \subseteq L_1, L_2 \subseteq K$ and L_1/F and L_2/F are radical, then so is L_1L_2/F .

Proof. Clear.

Lemma 12.2 The normal closure of a radical extension is radical.

Proof. Let M/F be the normal closure of K/F. If K/F is radical, then g(K)/g(F) = g(K)/F is radical for each $g \in \operatorname{Gal}(M/F)$. Hence the join L of all the g(K) is radical over F. But if $H = \operatorname{Gal}(M/K)$ then $\operatorname{Gal}(M/L) = \bigcap gHg^{-1}$. However, this is a normal subgroup of $\operatorname{Gal}(M/F)$, so L/F is normal and $L \supseteq K$. Thus L = M is radical over F. \square

Theorem 12.3 If K/F is radical and normal then Gal(K/F) is a solvable group.

Proof. Write $K = F(\alpha_1, \ldots, \alpha_r)$ with $\alpha_i^{n_i} \in F(\alpha_1, \ldots, \alpha_{i-1})$ and let $n = \text{lcm}\{n_i\}$. Then $K(\zeta_n)/F$ is also normal (if K/F is the sfe of \mathcal{F} then $K(\zeta_n)/F$ is the sfe of $\mathcal{F} \cup \{X^n - 1\}$). Also $K(\zeta_n) = F(\zeta_n, \alpha_1, \ldots, \alpha_r)$ and $F(\zeta_n, \alpha_1, \ldots, \alpha_i)$ is the sfe of $X^{n_i} - \alpha_i^{n_i}$ over $F(\zeta_n, \alpha_1, \ldots, \alpha_{i-1})$. Hence if $H_i = \text{Gal}(K(\zeta_n)/F(\zeta_n, \alpha_1, \ldots, \alpha_i))$ then $H_i \subseteq H_{i-1}$ and H_{i-1}/H_i is cyclic. Also $H_0 = \text{Gal}(K(\zeta_n)/F(\zeta_n)) \subseteq G = \text{Gal}(K(\zeta_n)/F)$ and $G/H_0 \cong \text{Gal}(F(\zeta_n)/F) \le (\mathbb{Z}/n\mathbb{Z})^{\times}$ is abelian. But $H_r = \{1\}$, so G is solvable. Now Gal(K/F) is a quotient of G, so is also solvable.

Corollary 12.4 There exist quintics that do not have roots in any radical extension.

Proof. There exist quintics f over \mathbb{Q} with Galois group S_5 . If K/\mathbb{Q} were a radical extension containing a root of f then its normal closure M/\mathbb{Q} would be a radical extension containing all roots of f. But then M would contain a sfe L for f and $Gal(L/\mathbb{Q})$ would be a quotient group of $Gal(M/\mathbb{Q})$ which is solvable. Hence $Gal(L/\mathbb{Q}) \cong S_5$ would be solvable, a contradiction.

Theorem 12.5 If K/F is Galois with solvable Galois group then K is contained in a radical extension of F.

Proof. Let n = [K:F]. Then $\operatorname{Gal}(K(\zeta_n)/F)$ is solvable $[\operatorname{Gal}(K(\zeta_n)/K)$ is an abelian normal subgroup with solvable quotient $\operatorname{Gal}(K/F)$]. Hence $G = \operatorname{Gal}(K(\zeta_n)/F(\zeta_n))$ is solvable $[\leq \operatorname{Gal}(K(\zeta_n)/F)]$. The map $G \to \operatorname{Gal}(K/F)$ obtained by restricting $g \in G$ to K is an injective homomorphism $[\text{if } g \text{ fixes } K \text{ and } F(\zeta_n) \text{ then it clearly fixes } K(\zeta_n)]$, so $|G| \mid n$. Thus there is a sequence $1 = H_0 \leq H_1 \leq \ldots \leq H_r = G$ with H_i/H_{i-1} cyclic and if $L_i = K(\zeta_n)^{H_i}$ then L_{i-1}/L_i is a Galois extension with cyclic Galois group of order $n_i \mid |H_i/H_{i-1}| \mid n$, so $\zeta_{n_i} \in L_i$. Thus $L_{i-1} = L_i(\alpha_i)$ for some α_i with $\alpha_i^{n_i} \in L_i$ and $L_r = F(\zeta_n)$. Thus $L_0 = K(\zeta_n)$ is radical over F and contains K.

Any finite Galois extension has a finite number of intermediate fields since these just correspond to subgroups of a finite group. The following lemma gives a criterion for when this happens in general.

Lemma 13.1 Let K/F be a finite extension. Then K/F has finitely many intermediate fields L, $F \subseteq L \subseteq K$, if and only if K/F is simple, i.e., $K = F(\alpha)$ for some $\alpha \in K$.

Proof. Assume first that $K = F(\alpha)$ is simple. Let L be an intermediate field and consider $m_{\alpha,L}$. Now $m_{\alpha,L} \mid m_{\alpha,F}$ in L[X] since $m_{\alpha,F}(\alpha) = 0$. Thus $m_{\alpha,L}$ is a factor of $m_{\alpha,F}$ in K[X]. But if $m_{\alpha,F} = f_1 f_2 \dots f_r$ in K[X] with f_i irreducible, then by unique factorization in K[X], $m_{\alpha,L}$ must be some product of some of the f_i . Hence there are at most 2^r possible values for $m_{\alpha,L}$. If $m_{\alpha,L} = \sum_{i=0}^m b_i X^i$, let $M = F(b_0, \dots, b_m)$. Clearly $M \subseteq L$ so $m_{\alpha,L} \mid m_{\alpha,M}$ since $m_{\alpha,M} \in L[X]$ and $m_{\alpha,M}(\alpha) = 0$. However $m_{\alpha,L} \in M[X]$ so $m_{\alpha,M} \mid m_{\alpha,L}$. Thus $m_{\alpha,L} = m_{\alpha,M}$. Now $K = F(\alpha) \subseteq M(\alpha) \subseteq L(\alpha) \subseteq K$, and $[L(\alpha):L] = [M(\alpha):M] = \deg m_{\alpha,L}$, so [K:L] = [K:M] and M = L. Since $m_{\alpha,L}$ determines M = L and there are only finitely many possible $m_{\alpha,L}$ s, there can be only finitely many Ls.

Now assume there are only finitely many intermediate fields. We shall first consider the case when F is infinite. Since K/F is finite, $K = F(\alpha_1, \ldots, \alpha_r)$ for some $\alpha_i \in K$ (e.g., take the α_i to be a basis for K/F). We shall show that for any $\alpha, \beta \in K$, $F(\alpha, \beta) = F(\gamma)$ for some $\gamma \in K$. The result will then follow by taking r above to be minimal and noting that if $r \geq 2$ then $F(\alpha_1, \ldots, \alpha_r) = F(\alpha_1, \alpha_2)(\alpha_3, \ldots, \alpha_r) = F(\gamma, \alpha_3, \ldots, \alpha_r)$ for some γ .

Let $\gamma = \alpha + c\beta$ for some $c \in F$. Then $F(\gamma)$ is some intermediate field. Since there are only finitely many intermediate fields and F is infinite, there exists $c_1, c_2 \in F$ $c_1 \neq c_2$ with $F(\alpha + c_1\beta) = F(\alpha + c_2\beta)$. Call this field L. Then $(c_1 - c_2)\beta = (\alpha + c_1\beta) - (\alpha + c_2\beta) \in L$. Also $c_1 - c_2 \in F \subseteq L$, so $\beta \in L$. Now $\alpha = (\alpha + c_1\beta) - c_1(\beta) \in L$, so $F(\alpha, \beta) \subseteq L$. Clearly $L \subseteq F(\alpha, \beta)$, so $F(\alpha, \beta) = F(\alpha + c_1\beta)$ as required.

If F is finite then $|K| = |F|^{[K:F]} < \infty$, so K is finite. Then K^{\times} is cyclic, generated by α say, so $K = \{0, 1, \alpha, \alpha^2, \dots, \alpha^r\}$ and $K = F(\alpha)$.

Theorem (The Theorem of the Primitive Element) If K/F is finite and separable then $K = F(\alpha)$ for some $\alpha \in K$.

Proof. Let M be the normal closure of K/F, so M/F is finite and Galois. By the fundamental theorem of Galois theory, there are only finitely many fields L with $F \subseteq L \subseteq M$. Hence there are only finitely many fields with $F \subseteq L \subseteq K$. Hence K/F is simple by Lemma 1.

Example: Let $K = \mathbb{F}_p(x, y)$ where x, y are algebraically independent (in particular y is transcendental over $\mathbb{F}_p(x)$ and x is transcendental over $\mathbb{F}_p(x)$. Let $F = \mathbb{F}_p(x^p, y^p) \subseteq K$. Then $\{x^i y^j : 0 \le i, j < p\}$ is a basis of K/F so any $\gamma \in K$ is of the form $\sum a_{ij} x^i y^j$ with $a_{ij} \in F$. Now $\gamma^p = \sum a_{ij}^p x^{pi} y^{pj} \in F$, so $[F(\gamma):F] \le p$. But $[K:F] = p^2$, so K/F is not simple and has an infinite number of intermediate fields.

Assume K/F is a finite extension with [K:F] = n. Then K can be regarded as an n-dimensional F-vector space. If $\alpha \in K$ then the map $t_{\alpha}: K \to K$ which sends β to $\alpha\beta$ is an F-linear map from the F-vector space K to itself, and as such can be represented by an $n \times n$ matrix with coefficients in F.

The **norm** of an element $\alpha \in K$ is the determinant $N_{K/F}(\alpha) = \det t_{\alpha}$ and the **trace** of α is the trace $\operatorname{Tr}_{K/F}(\alpha) = \operatorname{tr} t_{\alpha}$ of the matrix representing t_{α} . Note that both these quantities are independent of the basis for K/F.

Theorem 14.1

- (a) $N_{K/F}(\alpha\beta) = N_{K/F}(\alpha) N_{K/F}(\beta)$ and $Tr_{K/F}(\alpha + \beta) = Tr_{K/F}(\alpha) + Tr_{K/F}(\beta)$.
- (b) If K/L/F and $\alpha \in L$ then $N_{K/F}(\alpha) = N_{L/F}(\alpha)^{[K:L]}$ and $Tr_{K/F}(\alpha) = [K:L] Tr_{L/F}(\alpha)$.
- (c) If $m_{\alpha,F} = X^n + a_{n-1}X^{n-1} + ... + a_0$ then $N_{F(\alpha)/F}(\alpha) = (-1)^n a_0$ and $Tr_{F(\alpha)/F}(\alpha) = -a_{n-1}$.
- (d) If K/F is Galois, $N_{K/F}(\alpha) = \prod_{g \in Gal(K/F)} g(\alpha)$ and $Tr_{K/F}(\alpha) = \sum_{g \in Gal(K/F)} g(\alpha)$.

Proof.

- (a) Follows from standard properties of det and tr using $t_{\alpha\beta} = t_{\alpha} \circ t_{\beta}$ and $t_{\alpha+\beta} = t_{\alpha} + t_{\beta}$.
- (b) Let $\{\alpha_i\}$ be a basis for L/F and $\{\beta_j\}$ be a basis for K/L. Then by the tower law $\{\alpha_i\beta_j\}$ is a basis for K/F. In this basis, $t_{\alpha}(K/F)$ is represented as a matrix with blocks corresponding to $t_{\alpha}(L/F)$ down the diagonal and zeros elsewhere. Thus det $t_{\alpha}(K/F) = (\det t_{\alpha}(L/F))^r$ and $\operatorname{tr} t_{\alpha}(K/F) = r \operatorname{tr} t_{\alpha}(L/F)$ where r = [K:L] is the number of blocks.
- (c) Use a basis $\{1, \alpha, \dots, \alpha^{n-1}\}$ for $F(\alpha)/F$. Then the matrix t_{α} will be of the form

$$\begin{pmatrix} 0 & 0 & \dots & 0 & -a_0 \\ 1 & 0 & \dots & 0 & -a_1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & -a_{n-1} \end{pmatrix}$$

(d) $N_{K/F}(\alpha) = N_{F(\alpha)/F}(\alpha)^r = (\pm a_0)^r = \prod \alpha_i^r$ where $r = [K:F(\alpha)]$, and $\alpha = \alpha_1, \alpha_2, \ldots$ are the roots of $m_{\alpha,F}$. Let $G = \operatorname{Gal}(K/F)$ and let $H = \operatorname{Gal}(K/F(\alpha))$. For each i there exists a $g \in G$ with $g(\alpha) = \alpha_i$. Moreover if $g'(\alpha) = \alpha_i$ then $g^{-1}g'$ fixes α , so $g^{-1}g' \in H$ and $g' \in gH$. Conversely if $g' \in gH$ then $g'(\alpha) = g(\alpha) = \alpha_i$. Hence

$$\prod_{g \in G} g(\alpha) = \prod_{gH \in G/H} \prod_{g' \in gH} g'(\alpha) = \prod_{gH \in G/H} \alpha_i^{|H|} = \prod \alpha_i^r = \mathcal{N}_{K/F}(\alpha).$$

A similar argument works for Tr.

Exercises

- 1. Show that if K/L/F and both K/F and L/F are Galois then $N_{K/F}(\alpha) = N_{L/F} N_{K/L}(\alpha)$ and $Tr_{K/F}(\alpha) = Tr_{L/F} Tr_{K/L}(\alpha)$. [In fact this is true for any finite K/L/F.]
- 2. Describe the functions $N_{\mathbb{C}/\mathbb{R}}$ and $\mathrm{Tr}_{\mathbb{C}/\mathbb{R}}$ explicitly.