The asymptotic number of prefix normal words

Paul Balister∗ Stefanie Gerke†

July 6, 2018

Abstract

We show that the number of prefix normal binary words of length \(n \) is \(2^n - \Theta((\log n)^2) \). We also show that the maximum number of binary words of length \(n \) with a given fixed prefix normal form is \(2^n - O(\sqrt{n \log n}) \).

Keywords: Prefix normal words, random construction

1 Introduction

Given a binary word \(w = (w_i)_{i=1}^n \in \{0,1\}^n \) of length \(n \), denote by \(w[j,k] \) the subword of length \(k - j + 1 \) starting at position \(j \), that is, \(w[j,k] = w_j w_{j+1} \ldots w_k \). Let \(|w|_1 \) be the number of 1s in the word \(w \). We define the profile \(f_w: \{0,\ldots,n\} \to \{0,\ldots,n\} \) by

\[
f_w(k) = \max_{0 \leq j \leq n-k} |w[j+1,j+k]|_1,
\]

so that \(f(k) \) is the maximum number of 1s in any subword of \(w \) of length \(k \). The word \(w \) is called prefix normal if for all \(0 \leq k \leq n \) this number is maximized at \(j = 0 \), so that

\[
|w[1,k]|_1 \geq |w[j+1,j+k]|_1 \quad \text{for} \quad 0 \leq j \leq n - k.
\]

∗Department of Mathematical Sciences, University of Memphis, Memphis TN 38152. Email: pbalistr@memphis.edu. Partially supported by NSF grant DMS 1600742.
†Mathematics Department, Royal Holloway University of London, Egham TW20 0EX, UK. Email: Stefanie.Gerke@rhul.ac.uk.
In other words, a word \(w \) is called prefix normal if the number of 1s in any subword is at most the number of 1s in the prefix of the same length.

Prefix normal words were introduced by G. Fici and Z. Lipták in [3] because of their connection to binary jumbled pattern matching. Recently, prefix normal words have been used because of their connection to trees with a prescribed number of vertices and leaves in caterpillar graphs [6].

If \(j < k \) then we can remove the common subword \(w[j+1,k] \) of \(w[1,k] \) and \(w[j+1,j+k] \), so that \(|w[1,k]|_1 \geq |w[j+1,k+1]|_1 \) iff \(|w[1,j]|_1 \geq |w[k+1,k+j]|_1 \). Thus to show that \(w \) is prefix normal it is enough to check that

\[
|w[1,k]|_1 \geq |w[j+1,j+k]|_1 \quad \text{for} \quad k \leq j \leq n-k. \tag{1}
\]

We prove the following result, conjectured in [1] (Conjecture 2) where also weaker upper and lower bounds were shown, see also [2].

Theorem 1. The number of prefix normal words of length \(n \) is \(2^n - \Theta((\log n)^2) \).

Given an arbitrary binary word \(w \) of length \(n \), the *prefix normal form* \(\tilde{w} \) of \(w \) is the unique binary word of length \(n \) that satisfies

\[
|\tilde{w}[1,k]|_1 = f_w(k).
\]

Note that for any \(w, f_w(k) \leq f_w(k+1) \leq f_w(k) + 1 \), so \(\tilde{w} \) is well-defined. Moreover, we can define an equivalence relation \(\sim \) on binary words of length \(n \) by

\[
w \sim v \iff f_w = f_v \iff \tilde{w} = \tilde{v}.
\]

Indeed, \(\tilde{w} \) is just the lexicographically maximal element of the equivalence class \([w]\) of \(w \) under this equivalence relation.

In [4] it is asked how large can an equivalence class \([w]\) be. In other words, what is the maximum number of words of length \(n \) that have the same fixed prefix normal form. From Theorem 1 it is clear that the answer must be at least \(2^{\Theta((\log n)^2)} \). However, we show that it is much larger.

Theorem 2. For each \(n \) there exists a prefix normal word \(w \) such that the number of binary words of length \(n \) with prefix normal form \(w \) is \(2^n - O(\sqrt{n \log n}) \).
2 Proofs

Proof of the lower bound of Theorem 1. To prove the lower bound we will need to construct \(2^{n-\Theta((\log n)^2)}\) prefix normal words of length \(n\). We will do so by giving a random construction and showing that this construction almost always produces a prefix normal word.

Fix a constant \(c > \sqrt{2}\) and define

\[
p_k = \begin{cases}
 \frac{1}{2} + c \sqrt{\frac{\log n}{k}}, & \text{for } k > 16c^2 \log n; \\
 1, & \text{for } k \leq 16c^2 \log n.
\end{cases}
\]

Write \(k_0 := \lfloor 16c^2 \log n \rfloor\) so \(p_k = 1\) iff \(k \leq k_0\). Let \(w\) be a random word with each letter \(w_k\) chosen to be 1 with probability \(p_k\), independently for each \(k = 1, \ldots, n\). Clearly (1) holds for all \(k \leq k_0\), so assume \(k > k_0\). By comparing the integral \(\int c \sqrt{\frac{\log n}{k}} dk = 2c \sqrt{k \log n} + C\) with the corresponding Riemann sum, we note that

\[
\sum_{i=1}^{k} p_k = \frac{k}{2} + 2c \sqrt{k \log n} + O(1)
\]

uniformly for \(k > k_0\) (and uniformly in \(c\)), as the approximation of the integral by the Riemann sum has error at most the maximum term, and the additive constant is also \(O(1)\) by considering the case \(k = k_0\). From this we estimate the expected difference

\[
|w[1,k]|_1 - |w[j+1,j+k]|_1 = \sum_{i=1}^{k} w_i + \sum_{i=j+1}^{k+j} (1 - w_i) - k
\]

as

\[
\mu := \mathbb{E}(|w[1,k]|_1 - |w[j+1,j+k]|_1) = 2c \sqrt{k \log n} - 2c \sqrt{(j+k) \log n} + 2c \sqrt{j \log n} + O(1).
\]

This expression is minimized when \(j\) is as small as possible, i.e., \(j = k\). Thus

\[
\mu \geq 2(2 - \sqrt{2})c \sqrt{k \log n} + O(1) > c \sqrt{k \log n}
\]

for sufficiently large \(n\). By (2), \(|w[1,k]|_1 - |w[j+1,j+k]|_1|\) can be considered as the sum of \(2k\) Bernoulli random variables (with an offset of \(-k\)).

We recall the Hoeffding bound [5] that states that if \(X\) is the sum of \(n\) independent random variables in the interval \([0, 1]\) then for all \(x \geq 0\),

\[
\mathbb{P}(X - \mathbb{E}(X) \geq x) \leq \exp\{-2x^2/n\} \quad \text{and} \quad \mathbb{P}(X - \mathbb{E}(X) \leq -x) \leq \exp\{-2x^2/n\}.
\]
Let $\mu^* = \mathbb{E}\left(\sum_{i=1}^{k} w_i + \sum_{i=j+1}^{k+j} (1 - w_i)\right)$. Note that $\mu^* = \mu + k$. We have

$$\mathbb{P}\left(|w[1,k]|_1 < |w[j+1,j+k]|_1\right) \overset{(2)}{=} \mathbb{P}\left(\sum_{i=1}^{k} w_i + \sum_{i=j+1}^{k+j} (1 - w_i) < k\right)$$

$$\leq \mathbb{P}\left(\sum_{i=1}^{k} w_i + \sum_{i=j+1}^{k+j} (1 - w_i) - \mu^* < k - \mu^*\right)$$

$$\leq \mathbb{P}\left(\sum_{i=1}^{k} w_i + \sum_{i=j+1}^{k+j} (1 - w_i) - \mu^* < -\mu\right)$$

$$\overset{(3)}{\leq} \exp\left\{ -2\mu^2/(2k) \right\}$$

$$\leq \exp\left\{ -c^2 \log n \right\}$$

Hence if c is large enough ($c > \sqrt{2}$) then $\mathbb{P}\left(|w[1,k]|_1 < |w[j+1,j+k]|_1\right) = o(n^{-2})$. Taking a union bound over all possible values of k and j, we deduce that w is prefix normal with probability $1 - o(1)$.

It remains to count the number of such w. For any discrete random variable X, define the **entropy** of the distribution of X as

$$H(X) := \sum_{x} -\mathbb{P}(X = x) \log_2 \mathbb{P}(X = x),$$

where the sum is over all possible values x of X and the logarithm is to base 2. If the random variable is a Bernoulli random variable, we call it the **binary entropy function** H_b. We use the following well-known (and easily verified) facts about the entropy:

1. If X_1, \ldots, X_n are independent discrete random variables and $X = (X_1, \ldots, X_n)$, then $H(X) = \sum_{i=1}^{n} H(X_i)$.

2. If X takes on N possible values with positive probability then $H(X) \leq \log_2 N$.

3. The Taylor series of the binary entropy function in a neighbourhood of 1/2 is

\[H_b(p) = 1 - \frac{1}{2 \ln 2} \sum_{n=1}^{\infty} \frac{(1 - 2p)^{2n}}{n(2n - 1)}. \]

In particular, for a Bernoulli random variable with \(P(X = 1) = \frac{1}{2} + x \), \(H(X) = 1 - \Theta(x^2) \).

4. If \(B \) is subset of possible values of \(X \) we have

\[H(X) = H(X \mid X \in \mathcal{B})P(X \in \mathcal{B}) + H(X \mid X \notin \mathcal{B})P(X \notin \mathcal{B}) + H(1_{X \in \mathcal{B}}), \]

where \(X \mid \mathcal{E} \) denotes the distribution of \(X \) conditioned on the event \(\mathcal{E} \) and \(1_{\mathcal{E}} \) denotes the indicator function of \(\mathcal{E} \).

Applying these results to our random word \(w \) we have

\[H(w) = \sum_{k > k_0}^n H(w_k) = n - k_0 - \Theta \left(\sum_{k = k_0}^n \frac{2 \log n}{k} \right) = n - \Theta((\log n)^2). \]

On the other hand, if \(\mathcal{B} \) is the set of prefix normal words, then

\[
\begin{align*}
H(w) & = H(w \mid w \in \mathcal{B})P(w \in \mathcal{B}) + H(w \mid w \notin \mathcal{B})P(w \notin \mathcal{B}) + H(1_{w \in \mathcal{B}}) \\
& \leq \log_2(|\mathcal{B}|)P(w \in \mathcal{B}) + nP(w \notin \mathcal{B}) + 1 \\
& = n + 1 - (n - \log_2 |\mathcal{B}|)(1 - o(1)).
\end{align*}
\]

We deduce that \(n - \log_2 |\mathcal{B}| \leq \Theta((\log n)^2) \) and hence \(|\mathcal{B}| \geq 2^{n - \Theta((\log n)^2)}. \)

Proof of the upper bound in Theorem 1. We will prove the upper bound in two parts. Firstly we will show that most prefix normal words have to contain a good number of 1s in any prefix of reasonable size as otherwise we cannot extend the prefix with too few 1s to a prefix normal word in many ways. Secondly we will show that there are \(2^{n - \Theta(\log^2 n)} \) ways to construct a word which has sufficiently many 1s in all reasonably sized prefixes.

Assume \(\log n \leq k \leq \sqrt{n} \) and consider the first \(\lfloor \sqrt{n} \rfloor \) blocks of size \(k \) of \(w \). If \(|w[1, k]| = d \) then the number of choices for the second and subsequent blocks is at most \(2^k(1 - P(\text{Bin}(k, \frac{1}{2}) > d)) \), and hence the number of choices for \(w \) is at most

\[
2^n(1 - P(\text{Bin}(k, \frac{1}{2}) > d))^{\lfloor \sqrt{n} \rfloor - 1} \leq 2^{n - \Omega(\sqrt{n}P(\text{Bin}(k, 1/2) > d))},
\]

5
If $\mathbb{P}(\text{Bin}(k, \frac{1}{2}) > d) > n^{-1/3}$, say, then there are far fewer than $2^{n-\Theta((\log n)^2)}$ choices of such prefix normal words, even allowing for summation over all such k and d. For $k \geq \log n$ by the Hoeffding bound (3), $\mathbb{P}(\text{Bin}(k, \frac{1}{2}) > d) \leq n^{-1/3}$ implies that $d \geq \frac{k}{2} + c\sqrt{k \log n}$ for some small universal constant $c > 0$. Thus, without loss of generality, we can restrict to prefix normal words with the property that

$$|w[1, k]|_1 \geq \frac{k}{2} + c\sqrt{k \log n} \quad \text{for all } k \text{ with } \log n \leq k \leq \sqrt{n}. \quad (4)$$

Define $d_0 = c\sqrt{\log n}$, which for simplicity we shall assume is an integer. (One can reduce c slightly to ensure this is the case.) Define \mathcal{E}_t to be the event that (4) holds with $k = 4^t$, i.e., that $|w[1, 4^t]|_1 \geq 2^{2t-1} + 2^t d_0$. Let t_0 be the smallest t such that $4^t \geq \log n$ and let t_1 be the largest t such that $4^t \leq \sqrt{n}$. We bound the probability that a uniformly chosen $w \in \{0, 1\}^n$ satisfies $\mathcal{E}_{t_0} \cap \mathcal{E}_{t_0+1} \cap \cdots \cap \mathcal{E}_{t_1}$.

Write $\mathcal{E}_{t,j}$ for the event that $|w[1, 4^t]|_1 \geq 2^{2t-1} + 2^t d_0 + j$ and $\mathcal{E}_{t, \geq j}$ for the event that $|w[1, 4^t]|_1 \geq 2^{2t-1} + 2^t d_0 + j$. Thus \mathcal{E}_t is just $\mathcal{E}_{t, 0}$. Write $\mathcal{E}_{\leq t}$ for the intersection $\mathcal{E}_{t_0} \cap \mathcal{E}_{t_0+1} \cap \cdots \cap \mathcal{E}_{t_1}$.

Claim: For $t \in [t_0, t_1]$ and $j \geq 0$,

$$\mathbb{P}(\mathcal{E}_{\leq t-1} \cap \mathcal{E}_{t, \geq j}) \leq n^{-2c^2(t-t_0+1)/3} \beta_t^j/(1 - \beta_t),$$

where $\beta_t := \exp\{-2^{3-t}d_0/3\}$. Note that $\beta_t < 1$ for all $t \in [t_0, t_1]$. For the case $t = t_0$ we simply use the Hoeffding bound (3) to obtain

$$\mathbb{P}(\mathcal{E}_{t_0}) = \mathbb{P}(\text{Bin}(4^{t_0}, \frac{1}{2}) \geq 2^{2t_0-1} + 2^{t_0} d_0 + j) \leq \exp\{-2(2^{t_0} d_0 + j)^2/4^{t_0}\} \leq \exp\{-2d_0^2 - 4j d_0/2^{t_0}\} = n^{-2c^2 \beta_t^{3j/2}} < n^{-2c^2/3 \beta_t^j/(1 - \beta_t)}.$$

Now assume the claim is true for t. We first want to give a bound on $\mathbb{P}(\mathcal{E}_{\leq t} \cap \mathcal{E}_{t+1, \geq j})$. Note that if $\mathcal{E}_{\leq t-1} \cap \mathcal{E}_{t, j}$ holds then in particular $\mathcal{E}_{t, j}$ holds and thus for $\mathcal{E}_{t+1, \geq j}$ to hold we still need at least

$$2^{2(t+1)-1} + 2^{t+1} d_0 + j - 2^{2t-1} - 2^t d_0 - i = 2^{2t-1} (4 - 1) + 2^t d_0 + j - i$$

1s in the interval $[4^t + 1, 4^{t+1}]$. Thus we get

$$\mathbb{P}(\mathcal{E}_{t+1, \geq j}) \leq \sum_{i \geq 0} \mathbb{P}(\mathcal{E}_{\leq t-1} \cap \mathcal{E}_{t, j})\mathbb{P}(|w[1, 4^t+1, 4^{t+1}]|_1 \geq 3 \cdot 2^{2t-1} + 2^t d_0 + j - i).$$

Note that there are $4^{t+1} - 4^t = 3 \cdot 4^t$ elements in the interval $[4^t + 1, 4^{t+1}]$ and that we expect

$$\frac{3 \cdot 4^t}{2} = 3 \cdot 2^{2t-1}$$
Is in this interval. Hence by Hoeffding
\[\Pr(|w[4^t + 1, 4^{t+1}]|_1 \geq 3 \cdot 2^{2t-1} + 2^t d_0 + j) \leq \exp\left\{-2(2^t d_0 + j)^2/(3 \cdot 4^t)\right\} \]
\[\leq \exp\left\{-2d_0^2/3 - 4jd_0/(3 \cdot 2^t)\right\} = n^{-2c^2/3}/\beta_{t+1}. \]

Note that the final inequality is even true for negative \(j \): For \(j \geq -2^t d_0 \) Hoeffding’s bound holds and for \(j \leq -2^t d_0 \) the bound on the probability is bigger than 1. If we let \(p_i = \Pr(\mathcal{E}_{\leq t-1} \cap \mathcal{E}_{t+1}) \) then we have
\[
\Pr(\mathcal{E}_{\leq t} \cap \mathcal{E}_{t+1}) \leq \sum_{i \geq 0} (p_i - p_{i+1})n^{-2c^2/3}\beta_j^{i-1}
\leq n^{-2c^2/3}\beta_{t+1}(p_0 + (1 - \beta_{t+1})(\beta_{t+1}^{-1}p_1 + \beta_{t+1}^{-2}p_2 + \ldots)).
\]

Now by induction, \(p_i \leq n^{-2c^2(t-t_0+1)/3}\beta_i/(1 - \beta_i) \). As \(\beta_i = \beta_{t+1} \) we have
\[
\Pr(\mathcal{E}_{\leq t} \cap \mathcal{E}_{t+1}) \leq n^{-2c^2(t-t_0+2)/3}\beta_{t+1}^{3/2}(1 + (1 - \beta_{t+1})(\beta_{t+1} + \beta_{t+1}^2 + \ldots))/(1 - \beta_{t+1})
\leq n^{-2c^2(t-t_0+2)/3}\beta_{t+1}^{3/2}/(1 - \beta_{t+1}),
\]
as required. Thus the claim is proved.

Now we take \(t = t_1 \) and \(j = 0 \) to deduce that \(\Pr(\mathcal{E}_{\leq t_1}) \leq n^{-2c^2(t_1-t_0+1)/3}/(1 - \beta_{t_1}) \). Recall \(\beta_{t_1} = \exp(-2^{3-t_1}d_0/3) \), \(d_0 = c\sqrt{\log n} \), and that \(t_1 \) was chosen so \(\sqrt{n}/4 < 4^t \leq \sqrt{n} \). Thus, for large \(n \), \(n^{-1/4} < 2^{3-t_1}d_0/3 < 1 \). Using the inequality \(e^{-x} \leq 1 - x/2 \), which holds for \(0 \leq x \leq 1 \), we deduce that \(1 - \beta_{t_1} \geq n^{-1/4}/2 \), and so \(1/(1 - \beta_{t_1}) = O(n^{1/4}) \). Also, we have \(t_1 - t_0 + 1 = \Theta(\log n) \) as \(n \to \infty \) and thus \(\Pr(\mathcal{E}_{\leq t_1}) \leq 2^{-\Omega((\log n)^2)} \). As the probability that a uniformly chosen word \(w \) satisfies \(\mathcal{E}_{\leq t_1} \) is at most \(2^{-\Omega((\log n)^2)} \), we deduce that the number of prefix normal words is at most \(2^{n-O((\log n)^2)} \). \(\square \)

Proof of Theorem 2. Fix an integer \(t \approx \sqrt{n \log n} \) and assume for simplicity that \(n \) is a multiple of \(2t \). Define \(w = (10)^{t}12^{t}c_1 c_2 \ldots c_{(n-4t)/2t} \), where \(c_i \) are arbitrary Catalan sequences of length \(2t \). Here a **Catalan sequence** is a binary sequence \(c \) of length \(2t \) such that \(|c[1, i]|_1 \leq i/2 \) for all \(i = 1, \ldots, 2t \) and \(|c|_1 = t \). It is well-known that the number of choices for \(c_i \) is the **Catalan number**
\[
C_t = \frac{1}{t + 1} \binom{2t}{t} \sim \frac{2^{2t}}{\sqrt{\pi t^{3/2}}},
\]
It is easy to see that the prefix normal form of any w of this form is
\[
\w = 1^{2t}(01)^{(n-2t)/2}.
\] (5)
Indeed, there is a subword 1^k of w for all $k \leq 2t$. For $k > 2t$, if we write $k = 2tq + r$ with $0 \leq r < 2t$ then we have a subword $(10)^{r/2}1^{2t}c_1 \ldots c_{q-1}$ or $0(10)^{(r-1)/2}1^{2t}c_1 \ldots c_{q-1}$ which is of length t and has the requisite number $t + \lfloor k/2 \rfloor$ of 1s. On the other hand, the definition of a Catalan sequence implies no other subword of length k containing the 1^{2t} subword can possibly have more 1s. Any substring intersecting the 1^{2t} and of length greater than $2t$ can be replaced by one containing the 1^{2t} with at least as many ones. And finally, any subword of w length $k > 2t$ not intersecting the 1^{2t} subword (so contained within the $c_1 \ldots c_{(n-4t)/2t}$ subword) can have at most $t + \lfloor k/2 \rfloor$ 1s as an end-word of c_i contains at most t 1s and there are at most $\lfloor k/2 \rfloor$ 1s in the initial subword of $c_{i+1}c_{i+2} \ldots$ of length k.

It remains to count the number of possible w’s. This is just
\[
C_t^{(n-4t)/(2t)} = 2^{n-4k-(\log t)3n/4t+O(n/t)}.
\]
Taking $t \sim \sqrt{n \log n}$ gives $2^{n-O(\sqrt{n \log n})}$ words w satisfying (5). \hfill \Box

References

