The asymptotic number of prefix normal words

Paul Balister*
Stefanie Gerke ${ }^{\dagger}$

July 6, 2018

Abstract

We show that the number of prefix normal binary words of length n is $2^{n-\Theta\left((\log n)^{2}\right)}$. We also show that the maximum number of binary words of length n with a given fixed prefix normal form is $2^{n-O(\sqrt{n \log n})}$.

Keywords: Prefix normal words, random construction

1 Introduction

Given a binary word $w=\left(w_{i}\right)_{i=1}^{n} \in\{0,1\}^{n}$ of length n, denote by $w[j, k]$ the subword of length $k-j+1$ starting at position j, that is, $w[j, k]=w_{j} w_{j+1} \ldots w_{k}$. Let $|w|_{1}$ be the number of 1 s in the word w. We define the profile $f_{w}:\{0, \ldots, n\} \rightarrow\{0, \ldots, n\}$ by

$$
f_{w}(k)=\max _{0 \leq j \leq n-k}|w[j+1, j+k]|_{1},
$$

so that $f(k)$ is the maximum number of 1 s in any subword of w of length k. The word w is called prefix normal if for all $0 \leq k \leq n$ this number is maximized at $j=0$, so that

$$
|w[1, k]|_{1} \geq|w[j+1, j+k]|_{1} \quad \text { for } 0 \leq j \leq n-k .
$$

[^0]In other words, a word w is called prefix normal if the number of 1 s in any subword is at most the number of 1 s in the prefix of the same length.

Prefix normal words were introduced by G. Fici and Z. Lipták in [3] because of their connection to binary jumbled pattern matching. Recently, prefix normal words have been used because of their connection to trees with a prescribed number of vertices and leaves in caterpillar graphs [6].

If $j<k$ then we can remove the common subword $w[j+1, k]$ of $w[1, k]$ and $w[j+1, j+k]$, so that $|w[1, k]|_{1} \geq|w[j+1, k+1]|_{1}$ iff $|w[1, j]|_{1} \geq|w[k+1, k+j]|_{1}$. Thus to show that w is prefix normal it is enough to check that

$$
\begin{equation*}
|w[1, k]|_{1} \geq|w[j+1, j+k]|_{1} \quad \text { for } k \leq j \leq n-k . \tag{1}
\end{equation*}
$$

We prove the following result, conjectured in [1] (Conjecture 2) where also weaker upper and lower bounds were shown, see also [2].

Theorem 1. The number of prefix normal words of length n is $2^{n-\Theta\left((\log n)^{2}\right)}$.

Given an arbitrary binary word w of length n, the prefix normal form \tilde{w} of w is the unique binary word of length n that satisfies

$$
|\tilde{w}[1, k]|_{1}=f_{w}(k) .
$$

Note that for any $w, f_{w}(k) \leq f_{w}(k+1) \leq f_{w}(k)+1$, so \tilde{w} is well-defined. Moreover, we can define an equivalence relation \sim on binary words of length n by

$$
w \sim v \quad \Longleftrightarrow \quad f_{w}=f_{v} \quad \Longleftrightarrow \quad \tilde{w}=\tilde{v}
$$

Indeed, \tilde{w} is just the lexicographically maximal element of the equivalence class $[w]$ of w under this equivalence relation.

In [4] it is asked how large can an equivalence class $[w]$ be. In other words, what is the maximum number of words of length n that have the same fixed prefix normal form. From Theorem 1 it is clear that the answer must be at least $2^{\Theta\left((\log n)^{2}\right)}$. However, we show that it is much larger.

Theorem 2. For each n there exists a prefix normal word w such that the number of binary words of length n with prefix normal form w is $2^{n-O(\sqrt{n \log n})}$.

2 Proofs

Proof of the lower bound of Theorem 1. To prove the lower bound we will need to construct $2^{n-\Theta\left((\log n)^{2}\right)}$ prefix normal words of length n. We will do so by giving a random construction and showing that this construction almost always produces a prefix normal word.

Fix a constant $c>\sqrt{2}$ and define

$$
p_{k}= \begin{cases}\frac{1}{2}+c \sqrt{\frac{\log n}{k}}, & \text { for } k>16 c^{2} \log n \\ 1, & \text { for } k \leq 16 c^{2} \log n\end{cases}
$$

Write $k_{0}:=\left\lfloor 16 c^{2} \log n\right\rfloor$ so $p_{k}=1$ iff $k \leq k_{0}$. Let w be a random word with each letter w_{k} chosen to be 1 with probability p_{k}, independently for each $k=1, \ldots, n$. Clearly (1) holds for all $k \leq k_{0}$, so assume $k>k_{0}$. By comparing the integral $\int c \sqrt{\frac{\log n}{k}} d k=2 c \sqrt{k \log n}+C$ with the corresponding Riemann sum, we note that

$$
\sum_{i=1}^{k} p_{k}=\frac{k}{2}+2 c \sqrt{k \log n}+O(1)
$$

uniformly for $k>k_{0}$ (and uniformly in c), as the approximation of the integral by the Riemann sum has error at most the maximum term, and the additive constant is also $O(1)$ by considering the case $k=k_{0}$. From this we estimate the expected difference

$$
\begin{equation*}
|w[1, k]|_{1}-|w[j+1, j+k]|_{1}=\sum_{i=1}^{k} w_{i}+\sum_{i=j+1}^{k+j}\left(1-w_{i}\right)-k \tag{2}
\end{equation*}
$$

as
$\mu:=\mathbb{E}\left(|w[1, k]|_{1}-|w[j+1, j+k]|_{1}\right)=2 c \sqrt{k \log n}-2 c \sqrt{(j+k) \log n}+2 c \sqrt{j \log n}+O(1)$.
This expression is minimized when j is as small as possible, i.e., $j=k$. Thus

$$
\mu \geq 2(2-\sqrt{2}) c \sqrt{k \log n}+O(1)>c \sqrt{k \log n}
$$

for sufficiently large n. $\operatorname{By}(2),|w[1, k]|_{1}-|w[j+1, j+k]|_{1}$ can be considered as the sum of $2 k$ Bernoulli random variables (with an offset of $-k$).

We recall the Hoeffding bound [5] that states that if X is the sum of n independent random variables in the interval $[0,1]$ then for all $x \geq 0$,

$$
\begin{equation*}
\mathbb{P}(X-\mathbb{E}(X) \geq x) \leq \exp \left\{-2 x^{2} / n\right\} \text { and } \mathbb{P}(X-\mathbb{E}(X) \leq-x) \leq \exp \left\{-2 x^{2} / n\right\} \tag{3}
\end{equation*}
$$

(Note that these two bounds are essentially the same bound as the second can be easily derived from the first by exchanging the roles of the 0 's and 1 s but we state them both here for convenience.)

Let $\mu^{*}=\mathbb{E}\left(\sum_{i=1}^{k} w_{i}+\sum_{i=j+1}^{k+j}\left(1-w_{i}\right)\right)$. Note that $\mu^{*}=\mu+k$. We have

$$
\begin{aligned}
\mathbb{P}\left(|w[1, k]|_{1}<|w[j+1, j+k]|_{1}\right) & \stackrel{(2)}{=} \mathbb{P}\left(\sum_{i=1}^{k} w_{i}+\sum_{i=j+1}^{k+j}\left(1-w_{i}\right)<k\right) \\
& \leq \mathbb{P}\left(\sum_{i=1}^{k} w_{i}+\sum_{i=j+1}^{k+j}\left(1-w_{i}\right)-\mu^{*}<k-\mu^{*}\right) \\
& \leq \mathbb{P}\left(\sum_{i=1}^{k} w_{i}+\sum_{i=j+1}^{k+j}\left(1-w_{i}\right)-\mu^{*}<-\mu\right) \\
& \stackrel{(3)}{\leq} \exp \left\{-2 \mu^{2} /(2 k)\right\} \\
& \leq \exp \left\{-c^{2} \log n\right\}
\end{aligned}
$$

Hence if c is large enough $(c>\sqrt{2})$ then $\mathbb{P}\left(|w[1, k]|_{1}<|w[j+1, j+k]|_{1}\right)=o\left(n^{-2}\right)$. Taking a union bound over all possible values of k and j, we deduce that w is prefix normal with probability $1-o(1)$.

It remains to count the number of such w. For any discrete random variable X, define the entropy of the distribution of X as

$$
H(X):=\sum_{x}-\mathbb{P}(X=x) \log _{2} \mathbb{P}(X=x)
$$

where the sum is over all possible values x of X and the logarithm is to base 2 . If the random variable is a Bernoulli random variable, we call it the binary entropy function H_{b}. We use the following well-known (and easily verified) facts about the entropy.

1. If X_{1}, \ldots, X_{n} are independent discrete random variables and $X=\left(X_{1}, \ldots, X_{n}\right)$, then $H(X)=\sum_{i=1}^{n} H\left(X_{i}\right)$.
2. If X takes on N possible values with positive probability then $H(X) \leq \log _{2} N$.
3. The Taylor series of the binary entropy function in a neighbourhood of $1 / 2$ is

$$
H_{b}(p)=1-\frac{1}{2 \ln 2} \sum_{n=1}^{\infty} \frac{(1-2 p)^{2 n}}{n(2 n-1)}
$$

In particular, for a Bernoulli random variable with $\mathbb{P}(X=1)=\frac{1}{2}+x, H(X)=$ $1-\Theta\left(x^{2}\right)$.
4. If \mathcal{B} is subset of possible values of X we have

$$
H(X)=H(X \mid X \in \mathcal{B}) \mathbb{P}(X \in \mathcal{B})+H(X \mid X \notin \mathcal{B}) \mathbb{P}(X \notin \mathcal{B})+H\left(1_{X \in \mathcal{B}}\right)
$$

where $X \mid \mathcal{E}$ denotes the distribution of X conditioned on the event \mathcal{E} and $1_{\mathcal{E}}$ denotes the indicator function of \mathcal{E}.

Applying these results to our random word w we have

$$
H(w)=\sum_{k>k_{0}}^{n} H\left(w_{k}\right)=n-k_{0}-\Theta\left(\sum_{k=k_{0}}^{n} c^{2} \frac{\log n}{k}\right)=n-\Theta\left((\log n)^{2}\right) .
$$

On the other hand, if \mathcal{B} is the set of prefix normal words, then

$$
\begin{aligned}
H(w) & =H(w \mid w \in \mathcal{B}) \mathbb{P}(w \in \mathcal{B})+H(w \mid w \notin \mathcal{B}) \mathbb{P}(w \notin \mathcal{B})+H\left(1_{w \in \mathcal{B}}\right) \\
& \leq \log _{2}(|\mathcal{B}|) \mathbb{P}(w \in \mathcal{B})+n \mathbb{P}(w \notin \mathcal{B})+1 \\
& =n+1-\left(n-\log _{2}|\mathcal{B}|\right)(1-o(1)) .
\end{aligned}
$$

We deduce that $n-\log _{2}|\mathcal{B}| \leq \Theta\left((\log n)^{2}\right)$ and hence $|\mathcal{B}| \geq 2^{n-\Theta\left((\log n)^{2}\right)}$.
Proof of the upper bound in Theorem 1. We will prove the upper bound in two parts. Firstly we will show that most prefix normal words have to contain a good number of 1 s in any prefix of reasonable size as otherwise we cannot extend the prefix with too few 1s to a prefix normal word in many ways. Secondly we will show that there are $2^{n-\Theta\left(\log ^{2} n\right)}$ ways to construct a word which has sufficiently many 1 s in all reasonably sized prefixes.

Assume $\log n \leq k \leq \sqrt{n}$ and consider the first $\lfloor\sqrt{n}\rfloor$ blocks of size k of w. If $|w[1, k]|_{1}=$ d then the number of choices for the second and subsequent blocks is at most $2^{k}(1-$ $\left.\mathbb{P}\left(\operatorname{Bin}\left(k, \frac{1}{2}\right)>d\right)\right)$, and hence the number of choices for w is at most

$$
2^{n}\left(1-\mathbb{P}\left(\operatorname{Bin}\left(k, \frac{1}{2}\right)>d\right)\right)^{\lfloor\sqrt{n}\rfloor-1} \leq 2^{n-\Omega(\sqrt{n} \mathbb{P}(\operatorname{Bin}(k, 1 / 2)>d))}
$$

If $\mathbb{P}\left(\operatorname{Bin}\left(k, \frac{1}{2}\right)>d\right)>n^{-1 / 3}$, say, then there are far fewer than $2^{n-\Theta\left((\log n)^{2}\right)}$ choices of such prefix normal words, even allowing for summation over all such k and d. For $k \geq \log n$ by the Hoeffding bound (3), $\mathbb{P}\left(\operatorname{Bin}\left(k, \frac{1}{2}\right)>d\right) \leq n^{-1 / 3}$ implies that $d \geq \frac{k}{2}+c \sqrt{k \log n}$ for some small universal constant $c>0$. Thus, without loss of generality, we can restrict to prefix normal words with the property that

$$
\begin{equation*}
|w[1, k]|_{1} \geq \frac{k}{2}+c \sqrt{k \log n} \quad \text { for all } k \text { with } \quad \log n \leq k \leq \sqrt{n} \tag{4}
\end{equation*}
$$

Define $d_{0}=c \sqrt{\log n}$, which for simplicity we shall assume is an integer. (One can reduce c slightly to ensure this is the case.) Define \mathcal{E}_{t} to be the event that (4) holds with $k=4^{t}$, i.e., that $\left|w\left[1,4^{t}\right]\right|_{1} \geq 2^{2 t-1}+2^{t} d_{0}$. Let t_{0} be the smallest t such that $4^{t} \geq \log n$ and let t_{1} be the largest t such that $4^{t} \leq \sqrt{n}$. We bound the probability that a uniformly chosen $w \in\{0,1\}^{n}$ satisfies $\mathcal{E}_{t_{0}} \cap \mathcal{E}_{t_{0}+1} \cap \cdots \cap \mathcal{E}_{t_{1}}$.

Write $\mathcal{E}_{t, j}$ for the event that $\left|w\left[1,4^{t}\right]\right|_{1}=2^{2 t-1}+2^{t} d_{0}+j$ and $\mathcal{E}_{t, \geq j}$ for the event that $\left|w\left[1,4^{t}\right]\right|_{1} \geq 2^{2 t-1}+2^{t} d_{0}+j$. Thus \mathcal{E}_{t} is just $\mathcal{E}_{t, \geq 0}$. Write $\mathcal{E}_{\leq t}$ for the intersection $\mathcal{E}_{t_{0}} \cap \mathcal{E}_{t_{0}+1} \cap$ $\cdots \cap \mathcal{E}_{t}$.

Claim: For $t \in\left[t_{0}, t_{1}\right]$ and $j \geq 0$,

$$
\mathbb{P}\left(\mathcal{E}_{\leq t-1} \cap \mathcal{E}_{t, \geq j}\right) \leq n^{-2 c^{2}\left(t-t_{0}+1\right) / 3} \beta_{t}^{j} /\left(1-\beta_{t}\right),
$$

where $\beta_{t}:=\exp \left\{-2^{3-t} d_{0} / 3\right\}$. Note that $\beta_{t}<1$ for all $t \in\left[t_{0}, t_{1}\right]$. For the case $t=t_{0}$ we simply use the Hoeffding bound (3) to obtain

$$
\begin{aligned}
\mathbb{P}\left(\mathcal{E}_{t_{0}}\right) & =\mathbb{P}\left(\operatorname{Bin}\left(4^{t_{0}}, \frac{1}{2}\right) \geq 2^{2 t_{0}-1}+2^{t_{0}} d_{0}+j\right) \leq \exp \left\{-2\left(2^{t_{0}} d_{0}+j\right)^{2} / 4^{t_{0}}\right\} \\
& \leq \exp \left\{-2 d_{0}^{2}-4 j d_{0} / 2^{t_{0}}\right\}=n^{-2 c^{2}} \beta_{t_{0}}^{3 j / 2}<n^{-2 c^{2} / 3} \beta_{t_{0}}^{j} /\left(1-\beta_{t_{0}}\right) .
\end{aligned}
$$

Now assume the claim is true for t. We first want to give a bound on $\mathbb{P}\left(\mathcal{E}_{\leq t} \cap \mathcal{E}_{t+1, \geq j}\right)$. Note that if $\mathcal{E}_{\leq t-1} \cap \mathcal{E}_{t, i}$ holds then in particular $\mathcal{E}_{t, i}$ holds and thus for $\mathcal{E}_{t+1, \geq j}$ to hold we still need at least

$$
2^{2(t+1)-1}+2^{t+1} d_{0}+j-2^{2 t-1}-2^{t} d_{0}-i=2^{2 t-1}(4-1)+2^{t} d_{0}+j-i
$$

1 s in the interval $\left[4^{t}+1,4^{t+1}\right]$. Thus we get

$$
\mathbb{P}\left(\mathcal{E}_{\leq t} \cap \mathcal{E}_{t+1, \geq j}\right) \leq \sum_{i \geq 0} \mathbb{P}\left(\mathcal{E}_{\leq t-1} \cap \mathcal{E}_{t, i}\right) \mathbb{P}\left(\left|w\left[4^{t}+1,4^{t+1}\right]\right|_{1} \geq 3 \cdot 2^{2 t-1}+2^{t} d_{0}+j-i\right)
$$

Note that there are $4^{t+1}-4^{t}=3 \cdot 4^{t}$ elements in the interval $\left[4^{t}+1,4^{t+1}\right]$ and that we expect

$$
\frac{3 \cdot 4^{t}}{2}=3 \cdot 2^{2 t-1}
$$

1s in this interval. Hence by Hoeffding

$$
\begin{aligned}
\mathbb{P}\left(\left|w\left[4^{t}+1,4^{t+1}\right]\right|_{1} \geq 3 \cdot 2^{2 t-1}+2^{t} d_{0}+j\right) & \leq \exp \left\{-2\left(2^{t} d_{0}+j\right)^{2} /\left(3 \cdot 4^{t}\right)\right\} \\
& \leq \exp \left\{-2 d_{0}^{2} / 3-4 j d_{0} /\left(3 \cdot 2^{t}\right)\right\} \\
& =n^{-2 c^{2} / 3} \beta_{t+1}^{j} .
\end{aligned}
$$

Note that the final inequality is even true for negative j : For $j \geq-2^{t} d_{0}$ Hoeffding's bound holds and for $j \leq-2^{t} d_{0}$ the bound on the probability is bigger than 1 . If we let $p_{i}=$ $\mathbb{P}\left(\mathcal{E}_{\leq t-1} \cap \mathcal{E}_{t, \geq i}\right)$ then we have

$$
\begin{aligned}
\mathbb{P}\left(\mathcal{E}_{\leq t} \cap \mathcal{E}_{t+1, \geq j}\right) & \leq \sum_{i \geq 0}\left(p_{i}-p_{i+1}\right) n^{-2 c^{2} / 3} \beta_{t+1}^{j-i} \\
& \leq n^{-2 c^{2} / 3} \beta_{t+1}^{j}\left(p_{0}+\left(1-\beta_{t+1}\right)\left(\beta_{t+1}^{-1} p_{1}+\beta_{t+1}^{-2} p_{2}+\ldots\right)\right) .
\end{aligned}
$$

Now by induction, $p_{i} \leq n^{-2 c^{2}\left(t-t_{0}+1\right) / 3} \beta_{t}^{i} /\left(1-\beta_{t}\right)$. As $\beta_{t}=\beta_{t+1}^{2}$ we have

$$
\begin{aligned}
\mathbb{P}\left(\mathcal{E}_{\leq t} \cap \mathcal{E}_{t+1, \geq j}\right) & \leq n^{-2 c^{2}\left(t-t_{0}+2\right) / 3} \beta_{t+1}^{j}\left(1+\left(1-\beta_{t+1}\right)\left(\beta_{t+1}+\beta_{t+1}^{2}+\ldots\right)\right) /\left(1-\beta_{t+1}^{2}\right) \\
& =n^{-2 c^{2}\left(t-t_{0}+2\right) / 3} \beta_{t+1}^{j}\left(1+\beta_{t+1}\right) /\left(1-\beta_{t+1}^{2}\right) \\
& =n^{-2 c^{2}\left(t-t_{0}+2\right) / 3} \beta_{t+1}^{j} /\left(1-\beta_{t+1}\right),
\end{aligned}
$$

as required. Thus the claim is proved.
Now we take $t=t_{1}$ and $j=0$ to deduce that $\mathbb{P}\left(\mathcal{E}_{\leq t_{1}}\right) \leq n^{-2 c^{2}\left(t_{1}-t_{0}+1\right) / 3} /\left(1-\beta_{t_{1}}\right)$. Recall $\beta_{t_{1}}=\exp \left(-2^{3-t_{1}} d_{0} / 3\right), d_{0}=c \sqrt{\log n}$, and that t_{1} was chosen so $\sqrt{n} / 4<4^{t} \leq \sqrt{n}$. Thus, for large $n, n^{-1 / 4}<2^{3-t_{1}} d_{0} / 3<1$. Using the inequality $e^{-x} \leq 1-x / 2$, which holds for $0 \leq x \leq 1$, we deduce that $1-\beta_{t_{1}} \geq n^{-1 / 4} / 2$, and so $1 /\left(1-\beta_{t_{1}}\right)=O\left(n^{1 / 4}\right)$. Also, we have $t_{1}-t_{0}+1=\Theta(\log n)$ as $n \rightarrow \infty$ and thus $\mathbb{P}\left(\mathcal{E}_{\leq t_{1}}\right) \leq 2^{-\Omega\left((\log n)^{2}\right)}$. As the probability that a uniformly chosen word w satisfies $\mathcal{E}_{\leq t_{1}}$ is at most $2^{-\Omega\left((\log n)^{2}\right)}$, we deduce that the number of prefix normal words is at most $2^{n-\bar{\Theta}\left((\log n)^{2}\right)}$.

Proof of Theorem 2. Fix an integer $t \approx \sqrt{n \log n}$ and assume for simplicity that n is a multiple of $2 t$. Define $w=(10)^{t} 1^{2 t} c_{1} c_{2} \ldots c_{(n-4 t) / 2 t}$, where c_{i} are arbitrary Catalan sequences of length $2 t$. Here a Catalan sequence is a binary sequence c of length $2 t$ such that $|c[1, i]|_{1} \leq$ $i / 2$ for all $i=1, \ldots, 2 t$ and $|c|_{1}=t$. It is well-known that the number of choices for c_{i} is the Catalan number

$$
C_{t}=\frac{1}{t+1}\binom{2 t}{t} \sim \frac{2^{2 t}}{\sqrt{\pi} t^{3 / 2}}
$$

It is easy to see that the prefix normal form of any w of this form is

$$
\begin{equation*}
\tilde{w}=1^{2 t}(01)^{(n-2 t) / 2} . \tag{5}
\end{equation*}
$$

Indeed, there is a subword 1^{k} of w for all $k \leq 2 t$. For $k>2 t$, if we write $k=2 t q+r$ with $0 \leq r<2 t$ then we have a subword $(10)^{r / 2} 1^{2 t} c_{1} \ldots c_{q-1}$ or $0(10)^{(r-1) / 2} 1^{2 t} c_{1} \ldots c_{q-1}$ which is of length t and has the requisite number $t+\lfloor k / 2\rfloor$ of 1 s . On the other hand, the definition of a Catalan sequence implies no other subword of length k containing the $1^{2 t}$ subword can possibly have more 1 s . Any substring intersecting the $1^{2 t}$ and of length greater than $2 t$ can be replaced by one containing the $1^{2 t}$ with at least as many ones. And finally, any subword of w length $k>2 t$ not intersecting the $1^{2 t}$ subword (so contained within the $c_{1} \ldots c_{(n-4 t) / 2 t}$ subword) can have at most $t+\lfloor k / 2\rfloor 1 \mathrm{~s}$ as an end-word of c_{i} contains at most t s and there are at most $\lfloor k / 2\rfloor 1 \mathrm{~s}$ in the initial subword of $c_{i+1} c_{i+2} \ldots$ of length k.

It remains to count the number of possible w's. This is just

$$
C_{t}^{(n-4 t) /(2 t)}=2^{n-4 k-(\log t) 3 n / 4 t+O(n / t)} .
$$

Taking $t \sim \sqrt{n \log n}$ gives $2^{n-O(\sqrt{n \log n})}$ words w satisfying (5).

References

[1] Péter Burcsi, Gabriele Fici, Zsuzsanna Lipták, Frank Ruskey, Joe Sawada. Normal, Abby Normal, Prefix Normal, in: A.Ferro, F. Luccio, P. Widmayer eds., Fun with Algorithms. FUN 2014, LNCS vol. 8496, Springer. pp. 74-88,
[2] Péter Burcsi, Gabriele Fici, Zsuzsanna Lipták, Frank Ruskey, Joe Sawada. On Prefix Normal Words and Prefix Normal Forms, Theor. Comp. Science 658 (2017) 1-13.
[3] Gabriele Fici, Zsuzsanna Lipták. On Prefix Normal Words, In Proc. of the 15th Intern. Conf. on Developments in Language Theory (DLT 2011), volume 6795 of LNCS, pages 228-238. Springer, 2011.
[4] Gabriele Fici, Zsuzsanna Lipták. On Prefix Normal Words, arXiv:1805.12405.
[5] Hoeffding, Wassily Probability Inequalities for sums of bounded random variables Journal of the American Statistical Association 58 (1963) 13-30.
[6] Alexandre Blondin Masse, Julien de Caruful, Alain Goupil, Mélodie Lapointe, Émile Nadeau, Élise Vandomme Leaf Realization problem, caterpillar graphs and prefix normal words, Theor. Comp. Science 732 (2018) 1-13.

[^0]: *Department of Mathematical Sciences, University of Memphis, Memphis TN 38152. Email: pbalistr@memphis.edu. Partially supported by NSF grant DMS 1600742.
 ${ }^{\dagger}$ Mathematics Department, Royal Holloway University of London, Egham TW20 0EX, UK. Email: Stefanie.Gerke@rhul.ac.uk.

