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7261 1. Rings Fall 2017

A Ring (with 1) is a set R with two binary operations + and × such that

R1. (R,+) is an Abelian group under +.

R2. (R,×) is a Monoid under ×, (so × is associative and has an identity 1).

R3. The distributive laws hold: a(b+ c) = ab+ ac, (b+ c)a = ba+ ca.

Many of the standard facts from algebra follow from these axioms. In particular,
0a = a0 = 0, a(−b) = (−a)b = −(ab), −a = (−1)a, (

∑
i ai)(

∑
j bj) =

∑
i,j aibj.

The ring R is commutative if × is commutative.
An element of R is a unit if it has a (2-sided) multiplicative inverse.
The set of units R× (or U(R)) is a group under ×.
The trivial ring is the ring {0} with 0+ 0 = 0.0 = 0, and is the only ring in which 1 = 0.
A division ring or skew field is a non-trivial ring in which every non-zero element is a
unit.
A field is a commutative division ring.
An Integral Domain (ID) is a non-trivial commutative ring in which ab = 0 implies
a = 0 or b = 0. Note that any field is an ID.

Examples

1. Z, Q, R, C are all rings under the usual + and ×. Q, R, C are fields. Z is an ID.

2. Z/nZ is a ring under + and × mod n. This ring is an ID iff n is prime. In fact, if n
is prime then Z/nZ is a field.

3. If R is a ring then the set Mn(R) of n× n matrices with entries in R is a ring under
matrix addition and multiplication. Mn(R) is non-commutative in general.

4. Let (A,+) be an abelian group and let End(A) be the set of group homomorphisms
A → A. Define addition pointwise, (f + g)(a) = f(a) + g(a), and multiplication by
composition, fg(a) = f(g(a)). Then End(A) is a (usually non-commutative) ring.

5. If A =
∏

i∈N Z = {(a0, a1, . . . ) : ai ∈ Z} then the maps R((a0, . . . )) = (0, a0, a1, . . . )
and L((a0, a1, . . . )) = (a1, a2, . . . ) lie in End(A) and LR = 1 ̸= RL. Hence R has a
left, but not a right inverse. [Recall that left and right inverses must be equal if they
both exist.]

6. Let C[0, 1] be the set of continuous functions from [0, 1] to R with addition and
multiplication defined pointwise. Then C[0, 1] is a ring. It is not an ID (why?).

A subset S of R is a subring iff (S,+) is a subgroup of (R,+) and (S,×) is a submonoid
of (R,×). Equivalently, 1R ∈ S and a, b ∈ S implies a− b, ab ∈ S.

A subset I of R is a left ideal iff (I,+) is a subgroup of (I,+) such that for all r ∈ R,
a ∈ I, we have ra ∈ I. A subset I of R is a right ideal iff (I,+) is a subgroup of (I,+)
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such that for all r ∈ R, a ∈ I, we have ar ∈ I. An ideal is a subset that is both a left ideal
and a right ideal. Equivalently, I ̸= ∅ and a, b ∈ I, r ∈ R, implies a − b, ra, ar ∈ I. The
sets {0} and R are ideals of R. An ideal I is proper if I ̸=R, and non-trivial if I ̸={0}.

Examples

1. nZ is an ideal of Z but not a subring (unless n = ±1).

2. Z is a subring of R but not an ideal.

3. The set of the matrices I =
{(

0 b
0 d

)
: b, d ∈ R

}
is a left ideal, but not a right ideal of

M2(R). But I is a 2-sided ideal of the subring T =
{(

a b
0 d

)
: a, b, d ∈ R

}
of M2(R).

4. The quaternions H =
{(

α β
−β̄ ᾱ

)
: α, β ∈ C

}
form a subring of M2(C). Any x ∈ H

can be written uniquely as x = a + bi + cj + dk where i =
(
i 0
0 −i

)
, j =

(
0 1
−1 0

)
,

k =
(
0 i
i 0

)
. Then i2 = j2 = k2 = −1, ij = k, ji = −k, and (a + bi + cj + dk)−1 =

(a/r) − (b/r)i − (c/r)j − (d/r)k where r = a2 + b2 + c2 + d2. Thus H is a non-
commutative division ring.

Lemma 1.1 If Sα, α ∈ A, are subrings of R then
∩

α∈A Sα is a subring of R.
If Iα are ideals of R then

∩
α∈A Iα is an ideal of R.

The ideal (S) generated by a subset S ⊆ R is the smallest ideal of R containing S. It can
be defined as the intersection

∩
J⊇S J of all ideals containing S.

An ideal I is principal if it is generated by a single element, I = (a) for some a ∈ R. An
ideal is finitely generated if it is generated by a finite set, I = (S), |S| < ∞.

We can also define the subring generated by a subset. More generally, if R is a subring
of R′ and S ⊆ R′, then R[S] is the smallest subring of R′ containing R and S (= the
intersection of all subrings of R′ containing R and S).

Exercises

1. Show that an ideal is proper iff it does not contain a unit.

2. Show that (S) = {
∑n

i=1 risir
′
i : ri, r

′
i ∈ R, si ∈ S, n ∈ N}.

3. Show that if R is commutative then the principal ideal (a) is {ra : r ∈ R}.
4. Show that R[α] is the set of all polynomial expressions

∑n
i=0 aiα

i with coefficients
ai ∈ R.

5. Deduce that Z[i] = {a+bi : a, b ∈ Z} as a subring of C and Q[ 3
√
2] = {a+b 3

√
2+c 3

√
4 :

a, b, c ∈ Q} as a subring of R.
6. Describe Z[1/2] as a subring of Q.

7. Let I be the set of continuous functions f ∈ C[0, 1] such that f(0.5) = 0. Show that
I is an ideal of C[0, 1] that is not principal (or even finitely generated).

2



7261 2. Ring homomorphisms Fall 2017

A (ring) homomorphism from the ring R to the ring S is a function f : R → S that is
a group homomorphism (R,+) → (S,+) and a monoid homomorphism (R,×) → (S,×).
Equivalently f(a+ b) = f(a) + f(b), f(ab) = f(a)f(b), f(1R) = 1S.

Examples

1. The map f : T → R given by f(
(
a b
0 d

)
) = a where T =

{(
a b
0 d

)
: a, b, d ∈ R

}
.

2. If S is a subring of R then the inclusion map i : S → R, i(r) = r, is a homomorphism.

A (ring) isomorphism is a homomorphism R → S that has a 2-sided inverse map g : S →
R which is also a homomorphism. It is sufficient for f to be a bijective homomorphism.

If I is an ideal of R then the quotient ring R/I is the quotient group (R/I,+) with
multiplication defined by (a+ I)(b+ I) = ab+ I.

Lemma 2.1 The quotient ring R/I is indeed a ring and the projection map π : R → R/I
given by π(a) = a+ I is a surjective ring homomorphism.

Example R = Z, I = (n), then R/I = Z/nZ is the integers mod n with addition and
multiplication mod n.

Theorem (1st Isomorphism Theorem) If f : R → S then Ker f = {r : f(r) = 0} is
an ideal of R, Im f = {f(r) : r ∈ R} is a subring of S and f = i ◦ f̃ ◦ π where

• π : R → R/Ker f is the (surjective) projection homomorphism.

• f̃ : R/I → Im f is a (bijective) ring isomorphism.

• i : Im f → S is the (injective) inclusion homomorphism.

R
f−→ S

π ↓ ↑ i

R/Ker f
f̃−→ Im f

Theorem (2nd Isomorphism Theorem) If I is an ideal of R then there is a bijection

{subgroups H of (R,+) with I ≤ H ≤ R} ↔ {subgroups of (R/I,+)},

where H corresponds to H/I. In this correspondence subrings correspond to subrings and
ideals correspond to ideals. Moreover, if J is an ideal with I ≤ J ≤ R then there is an
isomorphism R/J ∼= (R/I)/(J/I).

Theorem (3rd Isomorphism Theorem) If I is an ideal of R and S is a subring of R
then S + I is a subring of R, S ∩ I is an ideal of S, and (S + I)/I ∼= S/(S ∩ I).

Example For any ring R define f : Z → R by f(n) = n.1R (n.1R = 1R+· · ·+1R defined as
for additive groups). Then f is a ring homomorphism. The kernel is a subgroup of (Z,+)
so is nZ for some n ≥ 0. The image S = {n.1R : n ∈ Z} is called the prime subring of
R and is isomorphic to Z/nZ. The characteristic of R, char(R), is the integer n. E.g.,
char(R) = 0, char(Z/nZ) = n, char({0}) = 1.
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A maximal ideal is a proper ideal M of R such that for any ideal I, M ⊆ I ⊆ R implies
I = M or I = R.

Example The ideal (n) is a maximal ideal of Z iff n is prime.

A non-trivial ring is simple if the only ideals of R are (0) and R. Equivalently, (0) is
maximal.

Lemma 2.2 Let R be a commutative ring. Then R is simple iff R is a field.

Proof. If R is a field and I ̸= (0) is an ideal then u ∈ I for some u ̸= 0. But u is a unit
so (ru−1)u = r ∈ I for all r ∈ R. Thus I = R. Conversely, if a ̸= 0 and a is not a unit
then (a) = {ra : r ∈ R} is a non-trivial proper ideal of R.

Note that if R is a division ring then R is simple. However the converse fails:

Lemma 2.3 Let D be a division ring. Then Mn(D) is a simple ring for any n ≥ 1.

Proof. Let I be a non-zero ideal of Mn(D) and let A = (aij) ∈ I, A ̸= 0. In particular
akl ̸= 0 for some k, l. Let Eij be the matrix with 1 in entry (i, j) and zeros elsewhere.
Then EikAElj = aklEij ∈ I. Since akl ∈ D and D is a division ring, a−1

kl ∈ D, so
a−1
kl I ∈ Mn(D). Now (a−1

kl I)(aklEij) = Eij ∈ I. But any matrix B = (bij) is a linear
combination

∑
(bijI)Eij, so B ∈ I and I = Mn(D).

So by the 2nd Isomorphism Theorem, for commutative R, M is maximal iff R/M is a field,
but for non-commutative R, M may be maximal without R/M being a division ring.

Exercises

1. Show that any finite ID is a field.

2. An element a of a ring is nilpotent if an = 0 for some n ∈ N. Show that if a is
nilpotent then 1 + a is a unit.

3. Show that if R is commutative then the set of nilpotent elements forms an ideal of
R. [Hint: make sure you check that a, b nilpotent implies a− b is nilpotent.]

4. Show that if r ∈ R lies in the intersection of all maximal ideals of R then 1 + r is a
unit.

5. Show that any homomorphism f : F → R from a field F to a non-trivial ring R is
injective, so in particular R contains a subring isomorphic to F .
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7261 3. Zorn’s Lemma Fall 2017

A partial ordering on a set X is a relation ≤ satisfying the properties:

O1. ∀x : x ≤ x,

O2. ∀x, y : if x ≤ y and y ≤ x then x = y,

O3. ∀x, y, z : if x ≤ y and y ≤ z then x ≤ z.

A total ordering is a partial ordering which also satisfies:

O4. ∀x, y : either x ≤ y or y ≤ x.

Example Any collection of sets with ⊆ as the ordering forms a partially ordered set that
is not in general totally ordered.

If (X ,≤) is a partially ordered set, a chain in X is a non-empty subset C ⊆ X that is
totally ordered by ≤.

If S ⊆ X , and x ∈ X , we say x is an upper bound for S if y ≤ x for all y ∈ S. [Note
that we do not require x to be an element of S.]

A maximal element of X is an element x such that for any y ∈ X , x ≤ y implies x = y.
[Note: This does not imply that y ≤ x for all y since ≤ is only a partial order. In particular
there may be many maximal elements.]

Theorem (Zorn’s Lemma) If (X ,≤) is a non-empty partially ordered set for which
every chain has an upper bound then X has a maximal element.

This result follows from (and is equivalent to) the Axiom of choice, which states that if
Xi are non-empty sets then

∏
i∈I Xi is non-empty. [I will not give the proof here as it is

rather long.]

Note: If we had defined things so that ∅ were a chain, we would not need the condition that
X ̸= ∅ in Zorn’s Lemma since the existence of an upper bound for ∅ is just the condition
that an element of X exists. However, in practice it is easier to check X ̸= ∅ and then
check separately that each non-empty totally ordered subset has an upper bound.

Theorem 3.1 If I is a proper ideal of a ring R (with 1) then there exists a maximal ideal
M such that I ⊆ M .

Proof. If an ideal J contains 1 then J = R, so an ideal is proper iff it does not contain
1. Let X be the set of proper ideals J of R with I ⊆ J . The partial order on X will be
⊆. Since I ∈ X , X ̸= ∅. Now let C be a chain in X , i.e., a set of ideals {Jα} such that for
every Jα, Jβ ∈ C either Jα ⊆ Jβ or Jβ ⊆ Jα. Let K =

∪
Jα∈C Jα. We shall show that K is

an upper bound for C.
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Firstly C ̸= ∅, so some ideal Jα lies in C and I ⊆ Jα ⊆ K. In particular K ̸= ∅. If
x, y ∈ K then x ∈ Jα, y ∈ Jβ, say. Since C is totally ordered, we can assume without loss
of generality that Jα ⊆ Jβ. Thus x, y ∈ Jβ, and x − y ∈ Jβ ⊆ K. If x ∈ K, r ∈ R, then
x ∈ Jα, say, so xr, rx ∈ Jα ⊆ K. Hence K is an ideal with I ⊆ K. However 1 /∈ Jα for
each Jα ∈ C, so 1 /∈ K. Hence K is proper. Therefore K ∈ X and is clearly an upper
bound for C.

The conditions of Zorn’s Lemma apply, so X has a maximal element M , say. Now M is a
proper ideal containing I and is maximal, since if M ⊂ J ⊂ R then J ∈ X and M would
not be maximal in X .

We now give an example from linear algebra. Let V be a vector space (possibly infinite
dimensional).

A set S ⊆ V is called linearly independent if there are no non-trivial finite linear
combinations that give 0. In other words if

∑n
i=1 λisi = 0 and the si are distinct elements

of S then λi = 0 for each i.

A set S ⊆ V is called spanning if every element v ∈ V can be written as a finite linear
combinations of elements of S, v =

∑n
i=1 λisi.

A set S ⊆ V is called a basis if it is a linearly independent spanning set. Note that every
element v ∈ V can be written as a linear combination of elements of a basis in a unique
way. [Spanning implies existence, linear independence implies uniqueness.]

Theorem 3.2 Every vector space has a basis.

Proof. Let X be the set of all linearly independent sets in V partially ordered by ⊆. Since
∅ is linearly independent, X ̸= ∅. Let C be a chain in X and let S =

∪
Sα∈C Sα. We shall

show that S is linearly independent.

Suppose
∑n

i=1 λisi = 0 and si ∈ Sαi
∈ C (the si are distinct but the αi need not be).

Then by total ordering of the Sαi
, there must be one Sαj

that contains all the others
(use induction on n). But then

∑n
i=1 λisi = 0 is a linear relation in Sαj

which is linearly
independent. Thus λi = 0 for all i. Hence S is linearly independent, so S ∈ X and is an
upper bound for C.

Now apply Zorn’s Lemma to give a maximal linearly independent set M . We shall show
that M spans V and so is a basis. Clearly any element of M is a linear combination
of elements of M , so pick any v /∈ M and consider M ∪ {v}. By maximality of M this
cannot be linearly independent. Hence there is a linear combination λv +

∑n
i=1 λisi = 0,

si ∈ M , with not all the λ’s zero. If λ = 0 this gives a linear relation in M , contradicting
linear independence of M . Hence λ ̸= 0 and v =

∑n
i=1(−λi/λ)si is a linear combination

of elements of M .
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7261 4. Miscellaneous topics Fall 2017

Anti-isomorphisms

An anti-homomorphism is a map f : R → S such that f(a+ b) = f(a)+ f(b), f(1) = 1,
and f(ab) = f(b)f(a). An anti-isomorphism is an invertible anti-homomorphism.

Examples The transpose map T : Mn(R) → Mn(R).
The map H → H given by f(a+ bi+ cj + dk) = a− bi− cj − dk.

The opposite ring Ro of R is the ring R with multiplication defined by a×Rob = b×R a.
Note that Roo = R.

Lemma 4.1 A map f : R → S is an anti-homomorphism iff it is a homomorphism viewed
as a map R → So (or Ro → S).

Example Mn(R)o is isomorphic to Mn(R), one isomorphism being the transpose map T .

Rngs (Rings without 1s)

A Rng (or “ring which does not necessarily have a 1”) is a set R with + and × defined
so that (R,+) is an abelian group, (R,×) is a semigroup (× is associative), and the
distributive laws hold. However, R need not contain a multiplicative identity.

Subrngs, rng-homomorphisms etc., can be defined without the conditions involving 1. The
definition of an ideal is the same, and an ideal is a special case of a subrng. The theory
of rngs is similar to that of rings, although they are more awkward to deal with later on.
The following lemma shows that we can regard a rng as an ideal of a bigger ring.

Lemma 4.2 Let R be a rng and define R1 = Z × R with addition (n, r) + (m, s) =
(n+m, r+s) and multiplication (n, r)(m, s) = (nm, n.s+m.r+rs), where n.s = s+ · · ·+s
etc.. Then R1 is a ring containing an ideal {0} ×R isomorphic to R.

Direct sums and the Chinese Remainder Theorem

If R1 and R2 are rings, define the ring R1 ⊕R2 as the set R1 ×R2 with addition (a1, a2) +
(b1, b2) = (a1 + b1, a2 + b2) and multiplication (a1, a2)(b1, b2) = (a1b1, a2b2). The identity is
(1, 1). The direct sum R1 ⊕ · · · ⊕Rn is defined similarly. Note that even if R1 and R2 are
IDs, R1 ⊕R2 will not be since (1, 0)(0, 1) = (0, 0).

If R is a ring and I and J are ideals of R, we can define the following ideals.

• I + J = {a+ b : a ∈ I, b ∈ J}
• I ∩ J = {c : c ∈ I, c ∈ J}
• IJ = {

∑n
i=1 aibi : ai ∈ I, bi ∈ J, n ∈ N}
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It is easily checked that each of these is indeed an ideal. Note that in general IJ ̸= {ab :
a ∈ I, b ∈ J}, but IJ is the ideal generated by all the products ab, a ∈ I, b ∈ J .

Example For R = Z, I = (x) = {ax : a ∈ Z}, J = (y) = {by : b ∈ Z}

1. I + J = (gcd(x, y)).
Note gcd(x, y) = ax + by for some a, b ∈ Z, so gcd(x, y) ∈ I + J . Conversely
I + J = {ax+ by : a, b ∈ Z} and ax+ by is always a multiple of gcd(x, y).

2. I ∩ J = (lcm(x, y)).
m ∈ I ⇐⇒ x | m and m ∈ J ⇐⇒ y | m. Hence if m ∈ I ∩ J then m must
be a common multiple of x and y. Thus m ∈ (lcm(x, y)) Conversely lcm(x, y) is a
common multiple of x and y so lies in I ∩ J . Hence I ∩ J = (lcm(x, y)).

3. IJ = (xy).
IJ = {

∑
aixbiy : ai, bi ∈ Z} ⊆ (xy). Conversely xy ∈ IJ , so (xy) ⊆ IJ .

Ideals I and J are relatively prime if I + J = R. Equivalently ∃a ∈ I, b ∈ J : a+ b = 1
(recall that an ideal equals R iff it contains 1).

Lemma 4.3 IJ ⊆ I ∩ J . Moreover, if R is commutative and I + J = R then IJ = I ∩ J .

Proof. If ai ∈ I then
∑

aibi ∈ I. If bi ∈ J then
∑

aibi ∈ J . Hence IJ ⊆ I ∩ J .
Now let I +J = R so that a+ b = 1 for some a ∈ I, b ∈ J . Then if c ∈ I ∩J , ac+ cb ∈ IJ .
But ac+ cb = c(a+ b) = c, so c ∈ IJ . Thus I ∩ J ⊆ IJ and so IJ = I ∩ J .

Theorem (Chinese Remainder Theorem) If I and J are ideals of a commutative
ring R and I + J = R then R/IJ ∼= R/I ⊕R/J .

Proof. Let f : R → R/I ⊕ R/J be defined by f(r) = (r + I, r + J). Then f(r + s) =
(r+s+I, r+s+J) = (r+I, r+J)+(s+I, s+J) = f(r)+f(s), f(rs) = (rs+I, rs+J) =
(r+I, r+J)(s+I, s+J) = f(r)f(s), and f(1) = (1+I, 1+J) is the identity in R/I⊕R/J .
Now Ker f = {r : r+I = I, r+J = J} = I∩J so Ker f = IJ by Lemma 4.3. For the image
of f , write 1 = a+b with a ∈ I, b ∈ J . Then f(sa+rb) = (sa+r(1−a)+I, s(1−b)+rb+J) =
(r + I, s+ J). Thus f is surjective. Hence R/IJ ∼= R/I ⊕R/J .

Example If gcd(n,m) = 1 then Z/nmZ ∼= Z/nZ⊕ Z/mZ.

Exercises

1. Show that composing two anti-homomorphisms gives a homomorphism and compos-
ing an anti-homomorphism with a homomorphism gives an anti-homomorphism.

2. Define ϕ(n) = |(Z/nZ)×|. Show that if gcd(n,m) = 1 then ϕ(nm) = ϕ(n)ϕ(m). If
n = pa11 . . . parr is the prime factorization of n, deduce that ϕ(n) =

∏
i p

ai−1
i (pi − 1).

3. Generalize the CRT: if I1, . . . , In are ideals of a commutative ring R and for each i
and j, Ii + Ij = R, show that R/I1I2 . . . In ∼= I1 ⊕ I2 ⊕ · · · ⊕ In.
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7261 5. Primes and Localization Fall 2017

Throughout this section we shall assume R is a commutative ring.

Recall: An Integral Domain (ID) is a non-trivial ring in which ab = 0 implies either
a = 0 or b = 0.

A prime ideal of a commutative ring R is a proper ideal such that ab ∈ P implies either
a ∈ P or b ∈ P .

Lemma 5.1 An ideal P is prime iff R/P is an ID.

Proof. Assume P is prime. Then R/P is non-trivial since P is proper. If (a+P )(b+P ) =
0+P then ab+P = P and so ab ∈ P . Thus either a ∈ P or b ∈ P , so either a+P = P or
b + P = P . Thus R/P is an ID. Conversely, if R/P is an ID then P is proper since R/P
is non-trivial. If a, b /∈ P , then a+ P, b+ P ̸= 0+ P , so (a+ P )(b+ P ) = ab+ P ̸= 0+ P ,
so ab /∈ P . Thus P is a prime ideal.

Corollary 5.2 Any maximal ideal of a commutative ring is also a prime ideal.

Proof. M maximal ⇒ R/M is a field ⇒ R/M is an ID ⇒ M is prime.

The converse does not hold: (0) is prime but not maximal in Z.
Examples of prime ideals: (p) in Z, (0) in any ID. The ideal (X) in the ring Z[X] of
polynomials in X with coefficients in Z. This last example is also not maximal.

Every field is an ID. Furthermore, every subring of a field is an ID (e.g., Z ⊆ Q). We shall
show that conversely, every ID can be embedded as a subring of a field.

Assume R is a commutative ring and S ⊆ R is a submonoid of (R,×). In other words,
1 ∈ S and a, b ∈ S implies ab ∈ S. For example, set S = R \ P for any prime P . One
particularly important case is when R is an ID and S = R \ {0}.

Define S−1R as (R × S)/∼, where (r, s) ∼ (r′, s′) iff ∃u ∈ S : urs′ = ur′s. We write r/s
for the equivalence class (r, s) ∈ S−1R.

Note: if S contains no zero-divisors then (r, s) ∼ (r′, s′) iff rs′ = r′s.

Lemma 5.3 The relation ∼ defined above is an equivalence relation and S−1R can be
made into a ring so that the map i : R → S−1R, i(r) = r/1 is a homomorphism. Also
i(S) ⊆ (S−1R)× and the map i is injective iff S contains no zero-divisors.

Proof. Reflexivity and symmetry of ∼ are immediate. For transitivity, if (r, s) ∼ (r′, s′) ∼
(r′′, s′′) then ∃u, u′ : urs′ = ur′s, u′r′s′′ = u′r′′s′. Hence (uu′s′)(rs′′) = u′s′′us′r =
u′s′′usr′ = usu′r′s′′ = usu′r′′s′ = (uu′s′)(r′′s). But uu′s′ ∈ S, so (r, s) ∼ (r′′, s′′).
Define addition by r1/s1+r2/s2 = (r1s2+r2s1)/(s1s2) and multiplication by (r1/s1)(r2/s2) =
(r1r2)/(s1s2). A long and rather tedious check shows that under these operations S−1R
becomes a commutative ring with identity 1/1.

9



The map i(r) = r/1 is a ring homomorphism since i(r) + i(r′) = r/1 + r′/1 = (r+ r′)/1 =
i(r + r′), i(r)i(r′) = (r/1)(r′/1) = (rr′)/1 = i(rr′), and i(1) = 1/1.
The element 1/s ∈ S−1R is the inverse of i(s) = s/1, so i(S) ⊆ (S−1R)×.
The kernel of i is {r ∈ R : r/1 = 0/1} = {r ∈ R : ∃u ∈ S : ur = 0}. Thus Ker i = {0} iff
S contains no zero-divisors.

Lemma 5.4 S−1R satisfies the following universal property: If f : R →
R′ is a homomorphism with f(S) ⊆ (R′)× then f factors uniquely as
f = h ◦ i where h : S−1R → R′ is a homomorphism.

R
f→ R′

i↓ ↗h

S−1R

Proof. Any such f̃ must satisfy f̃(r/s)f̃(s/1) = f̃(r/1) and f̃(t/1) = f(t). Hence
f̃(r/s)f(s) = f(r) and f̃(r/s) = f(r)f(s)−1. Conversely, defining f̃(r/s) = f(r)f(s)−1

gives a homomorphism S−1R → R′ (check this!).

Notation: If S = R \ P for some prime ideal P , we also write S−1R as RP and call it the
localization of R at P .

Lemma 5.5 If R is an ID then (R \ {0})−1R = R(0) is a field containing a subring
isomorphic to R.

Proof. Let S = R \ {0}. If r/s ̸= 0/1 then r ̸= 0, so s/r ∈ S−1R and (s/r)(r/s) = 1/1.
Hence any non-zero element of S−1R is invertible. The map i is injective, so Im i is a
subring of S−1R isomorphic to R.

In this case we call R(0) = S−1R the field of fractions of R, or FracR. For example
Frac(Z) = Q.

Exercises

1. Show that the units of RP consists of the elements r/s where r /∈ P and there is a
unique maximal ideal of RP consisting of all the non-unit elements. [Rings that have
a unique maximal ideal are called local rings.]

2. Show that if R is an ID, then for any prime ideal P , RP is isomorphic to a subring
of FracR.

3. Describe Z(2) explicitly as a subring of Q.

4. What is the field of fractions of a field?

5. What is the field of fractions of the ring of entire functions (holomorphic functions
f : C → C)?

6. What is the field of fraction of the ring of polynomial functions C[X] = {
∑n

i=0 aiX
i :

ai ∈ C, n ∈ N}?

10



7261 6. Polynomial rings Fall 2017

Assume that R is a commutative ring. We wish to construct the ring R[X] of polynomials
in X with coefficients in R.

Define R[X] as the set of sequences (a0, a1, . . . ) with the property that all but finitely many
of the ais are zero. Define (a0, . . . ) + (b0, . . . ) = (a0 + b0, a1 + b1, . . . ) (so R[X] =

⊕
i∈NR

as group under +) and define (a0, . . . )(b0, . . . ) = (c0, c1, . . . ) where ci =
∑

0≤j≤i ajbi−j.
We call R[X] the ring of polynomials in X over R. Let i : R → R[X] be defined by
i(a) = (a, 0, 0, . . . ) and let X ∈ R[X] be the element X = (0, 1, 0, 0, . . . ). Note that
X(a0, a1, . . . ) = (0, a0, a1, . . . ) and i(a)(a0, a1, . . . ) = (aa0, aa1, . . . ).

Lemma 6.1 R[X] is a ring, i : R → R[X] is an injective ring homomorphism, and if
ai = 0 for all i > n then (a0, a1, . . . ) =

∑n
i=0 i(ai)X

i

We shall normally identify i(a) with a and write polynomials f(X) ∈ R[X] in the form∑n
i=0 aiX

i. The degree deg f(X) of a polynomial is the largest n such that an ̸= 0, (or
−∞ if f = 0). The leading coefficient of f(X) is an where n = deg f , (or 0 if f = 0). A
polynomial is monic if the leading coefficient is 1.

Lemma 6.2 If f, g ∈ R[X] then

1. deg(f + g) ≤ max{deg f, deg g},
2. deg(fg) ≤ deg f + deg g, with equality holding if R is an ID.

Lemma 6.3 If R is an ID then R[X] is an ID and (R[X])× = R×.

Proof. If f, g ∈ R[X] and f, g ̸= 0 then deg(fg) = deg f +deg g ≥ 0, so fg ̸= 0. If fg = 1
then 0 = deg(fg) = deg f + deg g so deg f = deg g = 0 and f, g ∈ R. Hence f ∈ (R[X])×

implies f ∈ R×. Conversely f ∈ R× clearly implies f ∈ (R[X])×.

Theorem (Universal property of polynomial rings) If ϕ : R → R′ is a ring homo-
morphism and α ∈ R′ then there exists a unique homomorphism evϕ,α : R[X] → R′ such
that evϕ,α(a) [= evϕ,α(i(a))] = ϕ(a) for all a ∈ R and evϕ,α(X) = α.

If R is a subring of R′ and ϕ is the inclusion map we write f(α) for evϕ,α(f). More generally,
if just R is a subring of R′ we write ϕ(f)(α) for evϕ,α(f).

Lemma 6.4 If R is a subring of R′ and α ∈ R′ then R[α] is isomorphic to a quotient
R[X]/I where I is an ideal of R[X] containing no non-zero constants: I ∩R = {0}.

Proof. Apply 1st Isomorphism Theorem to evα : R[X] → R′.

We say α ∈ R′ is transcendental over R ⊆ R′ if the map evα is injective. In other words,
if f(α) = 0 implies f(X) = 0. Otherwise we say that α is algebraic over R.
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Examples The element π ∈ R is transcendental over Z, so Z[π] ∼= Z[X]. The elements
i,
√
2, 4
√
3 ∈ C are all algebraic over Z. However π is algebraic over R (since it is a root of

X − π ∈ R[X]).

Theorem (Division Algorithm) If f, g ∈ R[X] and the leading coefficient of g is a
unit in R, then there exist unique q, r ∈ R[X] such that f = qg + r and deg r < deg g (or
r = 0).

If a, b ∈ R, we say a divides b, a | b, if there exists c ∈ R such that b = ca.

Examples In any ring, u | 1 iff u ∈ R×, a | 0 for all a. In Z, 7 | 21. In Q, 21 | 7.

Lemma 6.5 If α ∈ R and f ∈ R[X] then f(X) = (X−α)q(X)+f(α) for some q ∈ R[X].
In particular, X − α | f iff f(α) = 0.

Lemma 6.6 If R is an ID and f ∈ R[X], f ̸= 0, then |{α ∈ R : f(α) = 0}| ≤ deg f .

Lemma 6.7 If R is an ID and G is a finite subgroup of R× then G is cyclic.

Proof. G is a finite abelian group, so G ∼= Cd1 × · · · × Cdr . But then xd1 = 1 for all
x ∈ G. Thus the polynomial Xd1 − 1 has |G| zeros. Thus |G| = d1d2 . . . dr ≤ d1, so
d2 = · · · = dr = 1 and G ∼= Cd1 is cyclic.

We can generalize polynomial rings to polynomials in many variables. If {Xi}i∈I is a set
(possibly infinite) of indeterminates, define a term t to be a function I → N which is
non-zero for only finitely many i ∈ I. We think of t as corresponding to a finite product∏

i∈I X
t(i)
i . Let T be the set of terms. Now define the ring

R[{Xi}i∈I ] =
⊕
t∈T

R = {(at)t∈T | at = 0 for all but finitely many t},

with addition of coefficients componentwise (at)+(bt) = (at+bt) and multiplication defined
by (at)(bt) = (ct) where ct =

∑
r+s=t arbs (note that this is a finite sum). As for R[X] we

can identify R as a subring of R[{Xi}i∈I ] and define elements Xi so that (at)t∈T is equal

to the (finite) sum
∑

t∈T at
∏

i∈I X
t(i)
i .

Theorem (Universal property of polynomial rings) If ϕ : R → R′ is a ring
homomorphism and αi ∈ R′ for all i ∈ I then there exists a unique homomorphism
evϕ,(αi) : R[{Xi}i∈I ] → R′ such that evϕ,(αi)(a) = ϕ(a) for all a ∈ R and evϕ,(αi)(Xi) = αi

for all i ∈ I.

If I is finite then we can also identify R[X1, . . . , Xn] with R[X1, . . . , Xn−1][Xn] (use uni-
versal properties to define the isomorphism).

12



7261 7. Euclidean Domains and PIDs Fall 2017

A Euclidean Domain is an ID for which there is a function d : R \ {0} → N such that if
a, b ∈ R, b ̸= 0 then there exists q, r ∈ R such that a = qb + r with either d(r) < d(b) or
r = 0.

Examples

1. Z with d(a) = |a|.
2. F [X], where F is a field, d(f) = deg f .

3. F , where F is a field, d(a) = 0.

4. Z[i], with d(a+ ib) = |a+ ib|2 = a2+ b2. [Write a/b = x+ iy and let q = x′+ iy′ with
|x−x′|, |y−y′| ≤ 1

2
. Then d(r) = |qb−a|2 = |q−a/b|2|b|2 = ((x−x′)2+(y−y′)2)d(b) ≤

1
2
d(b).]

A Principal Ideal Domain (PID) is an ID in which every ideal I is principal, i.e., I = (a)
for some a ∈ R.

Theorem 7.1 Every Euclidean Domain is a PID.

Proof. If R is Euclidean then R is an ID, so it is enough to show that any ideal I is
principal. Let I be an ideal of R and assume I ̸= (0). Pick b ∈ I \ {0} with minimal value
of d(b) (by well ordering of N). If a ∈ I then a = qb + r with d(r) < d(b) or r = 0. But
r = a − qb ∈ I, so by choice of b we must have r = 0. Thus a = qb ∈ (b). Thus I ⊆ (b).
But b ∈ I, so (b) ⊆ I. Thus I = (b) is principal.

Note: PID ̸⇒ Euclidean.

If I = (a) is a principal ideal then b ∈ I implies there exists a c ∈ R with b = ca. Thus
b ∈ I is equivalent to a | b. In particular (b) ⊆ (a) ⇐⇒ a | b. If (a) = (b) then b = ua
and a = vb. Thus either a = b = 0 or uv = 1 and u, v ∈ R×. Conversely, if a = ub with
u ∈ R× then (a) = (b).

The elements a, b ∈ R are called associates if b = ua for some u ∈ R×. Equivalently, a | b
and b | a both hold, or (a) = (b). Write a ∼ b if a and b are associates.

A greatest common divisor (gcd) of a set of elements S ⊆ R is an element d ∈ R such
that

G1. d | a for all a ∈ S, and

G2. if c | a for all a ∈ S then c | d.

Greatest common divisors are unique up to multiplication by units. To see this, let d, d′

be two gcds. Then condition G2 with c = d′ and G1 with d = d′ imply d′ | d. Similarly
d | d′, so d′ = ud for some unit u ∈ R×.

13



Lemma 7.2 If R is a PID then gcds of any S ⊆ R exist. Indeed, if (S) = (d) then d is
a gcd of S and hence can be written in the form d =

∑n
i=1 ciai, for some ai ∈ S, ci ∈ R.

Proof. Since R is a PID, (S) = (d) for some d. If a ∈ S then a ∈ (S) = (d), so d | a. If
c | a for all a ∈ S, then a ∈ (c) for all a ∈ S, so (S) = (d) ⊆ (c). Hence c | d. Thus d is a
gcd of S.

Note: In an arbitrary ID, gcds may not exist, and even if they do, they may not be a
linear combination of elements of S. For example the elements 2 and X in Z[X] have
1 as a gcd, but 1 is not of the form 2c1 + Xc2, c1, c2 ∈ Z[X]. For an example where
the gcd does not exist, consider R = Z[

√
−5]. If a ∈ R then |a|2 ∈ Z. Hence if a | b

in R then |a|2 | |b|2 in Z. Now let x = −3(3 −
√
−5) = (1 + 2

√
−5)(1 +

√
−5) and

y = −7(1+
√
−5) = (1− 2

√
−5)(3−

√
−5). Then 1+

√
−5 and 3−

√
−5 are two common

factors of x and y. If d is a gcd of x and y, then |d|2 must be a factor of |x|2 = 2.32.7
and |y|2 = 2.3.72. On the other hand, |d|2 must be a multiple of |1 +

√
−5|2 = 2.3 and

|3−
√
−5|2 = 2.7. Thus |d|2 = 2.3.7 = 42. However, if d = α+β

√
−5 then |d|2 = α2+5β2,

which is never equal to 42.

The Euclidean Algorithm

We can turn Lemma 1 into an algorithm in the case when R is Euclidean. Assume we
need to find the gcd of a0 = a and a1 = b. Inductively define an+1 for n ≥ 1 and an ̸= 0 by

an−1 = qnan + an+1, d(an+1) < d(an) or an+1 = 0

Since the d(an) are a sequence of decreasing non-negative integers, eventually an+1 = 0.
However ai+1 ∈ (ai, ai−1) and ai−1 ∈ (ai, ai+1) imply the two ideals (ai−1, ai) and (ai, ai+1)
are equal. Hence (a0, a1) = (an, an+1) = (an) and an is a gcd of a0 and a1.

This algorithm is called the Euclidean Algorithm. For more than two elements, one can
calculate the gcd inductively by using gcd(c1, c2, . . . , cr) = gcd(c1, gcd(c2, . . . , cr)).

Exercises

1. Prove that gcd(c1, . . . , cr) = gcd(c1, gcd(c2, . . . , cr)) provided the gcds on the RHS
exist. What is gcd(∅)?

2. Let R = Z[ω] where ω = 1
2
(1 +

√
−3). Show that R = {a + bω : a, b ∈ Z} and that

R is Euclidean.

3. Use the Euclidean algorithm to find the gcd of 7− 3i and 5 + 3i in Z[i].

4. Determine ((Z/nZ)[X])×. [Hint: Consider the case n = pr first.]

5. Solve the congruences

x ≡ i mod 1 + i x ≡ 1 mod 2− i

in Z[i] (use Chinese Remainder Theorem).

14



7261 8. Unique Factorization Fall 2017

An element a ∈ R is irreducible if a ̸= 0, a /∈ R×, and a = bc implies b ∈ R× or c ∈ R×.
An element a ∈ R is a prime if a ̸= 0, a /∈ R× and a | bc implies a | b or a | c.

Lemma 8.1 Let R be an ID, and a ∈ R. Then

1. a is a prime element iff (a) is a non-zero prime ideal,

2. a is irreducible iff (a) is maximal among proper principal ideals
(i.e., (a) ⊆ (b) implies (b) = (a) or (b) = R),

3. if a is prime then a is irreducible,

4. if a is irreducible and R is a PID then a is prime.

Proof.
1. If a is prime and bc ∈ (a) then a | bc. Hence a | b or a | c, so either b ∈ (a) or c ∈ (a).
Also, a ̸= 0, a /∈ R× implies (a) ̸= (0), R. Conversely, if (a) is a prime ideal and a | bc,
then bc ∈ (a), so either b ∈ (a) or c ∈ (a), so either a | b or a | c and (a) ̸= (0), R implies
a ̸= 0, a /∈ R×.
2. If a ∈ R be irreducible and (a) ⊆ (b) then a = bc, so either c ∈ R× and (b) = (a) or
b ∈ R× and (b) = R. Conversely if (a) is maximal among all proper principal ideals and
a = bc then (a) ⊆ (b), so either (a) = (b) and c is a unit or (b) = R and b is a unit.
3. If a is a prime and a = bc then a | bc. Thus either a | b and c ∈ R×, or a | c and b ∈ R×.
4. By part 2, (a) is a maximal ideal. Hence (a) is prime and so a is prime.

A ring R is a Unique Factorization Domain (UFD) if R is an ID such that

U1. Every a ∈ R \ {0} can be written in the form a = up1 . . . pr where u ∈ R× and the
pi are irreducible.

U2. Any two such factorizations are unique in the sense that if up1 . . . pr = vq1 . . . qs then
r = s and there is a permutation π ∈ Sr such that pi ∼ qπ(i) for all i.

Lemma 8.2 R is a UFD iff R is an ID satisfying

A. there is no infinite sequence (ai)i∈N with ai+1 | ai and ai+1 ̸∼ ai, and

B. every irreducible is prime.

Proof.
A ⇒ U1. Suppose a1 ∈ R has no such factorization. Then a1 is neither a unit nor
irreducible, so a1 = bc, b, c /∈ R×, and either b or c also has no factorization into irreducibles.
Assume b has no factorization into irreducibles and set a2 = b. Repeating this process we
get a sequence ai with ai+1 | ai and ai+1 ̸∼ ai.
B ⇒ U2. Since p1 is prime and p1 | vq1 . . . qs, we must have p1 | qi for some i. But qi is
irreducible, so p1 ∼ qi. Cancelling a factor of p1 from both sides (R is an ID) and using
induction on r gives the result.
U1 and U2 ⇒ A and B is clear.
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A ring is Noetherian if every sequence of ideals Ii with Ii ⊆ Ii+1 is eventually constant,
In = In+1 = . . . , for some n.

Lemma 8.3 R is Noetherian iff every ideal is finitely generated.

Proof. ⇐: Let I = ∪In. Then I is an ideal, so I = (d1, . . . , dr) for some di ∈ R. But then
there is an ni with di ∈ In. Let n = maxni, so that I = (d1, . . . , dr) ⊆ In ⊆ In+1 ⊆ · · · ⊆ I,
and so In = In+1 = . . . .
⇒: Assume I is not finitely generated. Then (using Axiom of choice), pick inductively
dn ∈ I \ (d1, . . . , dn−1). Then In = (d1, . . . dn) is a strictly increasing sequence of ideals.

Theorem Every PID is a UFD.

Proof. Every ideal in a PID is finitely generated (by one element), so PID ⇒ Noethe-
rian. By considering the ideals (ai), Noetherian rings satisfy condition A of Lemma 8.2.
Lemma 8.1 part 4 implies condition B of Lemma 8.2, so PID ⇒ UFD.

GCDs and factorizations

Lemma 8.4 If R is a UFD and S ⊆ R then a gcd of S exists.

Proof. The relation ∼ is an equivalence relation on the set of irreducibles in R. So by
choosing a representative irreducible from each equivalence class we can construct a set P
of pairwise non-associate irreducible elements of R. We can write any element a ∈ R as
u
∏

p∈P pnp and if b = v
∏

p∈S p
mp then U2 implies a | b iff np ≤ mp for all p. Write each

ai ∈ S as ai = ui

∏
p∈P pni,p . If we let d =

∏
p∈P pmp with mp = minai∈S ni,p then it is clear

that d is a gcd for S.

A partial converse to Lemma 8.4 is true.

Lemma 8.5 If R is an ID in which the gcd of any pair of elements exists then every
irreducible is prime.

Proof. First we prove that if gcds exist then gcd(ab, ac) ∼ a gcd(b, c). Let e = gcd(ab, ac)
and d = gcd(b, c). Then d | b, c, so ad | ab, ac, so ad | e. Writing e = adu then e | ab, ac, so
du | b, c, so du | d. Thus u ∈ R× and e ∼ ad (or d = 0 = e).
Now let p be an irreducible and assume p ̸ | a, b. Then gcd(p, b) ∼ 1 since the gcd must
be a factor or p and p ̸ | b. Hence gcd(p, ab) | gcd(ap, ab) ∼ a. But gcd(p, ab) | p, so
gcd(p, ab) | gcd(a, p) ∼ 1. Hence gcd(p, ab) ∼ 1 and p ̸ | ab. Hence p is prime.

Lemma 8.6 If R is an ID in which every set S has a gcd which can be written in the
form

∑
riai for some ai ∈ S, ri ∈ R, then R is a PID.

Proof. Let I be an ideal and write I = (S) for some S (e.g., S = I). Let d =
∑

riai be
a gcd of S. Then d | a for all a ∈ S. Hence a ∈ (d), so S ⊆ (d). Thus I ⊆ (d). However
d =

∑
riai ∈ I. Then (d) ⊆ I. Hence I = (d) is principal.
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7261 9. Factorization of Polynomials Fall 2017

Assume throughout this section that R is a UFD.

Let f(X) =
∑n

i=0 aiX
i ∈ R[X]. Define the content of f(X) to be c(f) = gcd{a0, a1, . . . , an}.

Note that if f ̸= 0 then c(f) ̸= 0. We call f primitive iff c(f) ∼ 1.

Note that monic polynomials are primitive, but not conversely, e.g. 2X + 3 ∈ Z[X].

Lemma (Gauss) If R is a UFD and f, g ∈ R[X] are primitive, then so is fg.

Proof. Assume otherwise and let p be a prime dividing c(fg). Reducing the polynomials
mod p we get f̄ , ḡ ∈ (R/(p))[X] with f̄ , ḡ ̸= 0, but f̄ ḡ = fg = 0 (the map f 7→ f̄
R[X] → (R/(p))[X] is a special case of the evaluation homomorphism evπ,X where X is
sent to X and evπ,X acts as the projection map π : R → R/(p) on constants). Now p
is prime, so (p) is a prime ideal and R/(p) is an ID. Hence f̄ , ḡ ̸= 0 implies f̄ ḡ ̸= 0, a
contradiction.

Corollary 9.1 If R is a UFD then c(fg) ∼ c(f)c(g).

Proof. The result clearly holds if f or g is zero, so assume f, g ̸= 0 and hence c(f) ̸=
0. Since gcd{aai} ∼ a gcd{ai}, c(af) ∼ ac(f) for all a ∈ R. But f/c(f) ∈ R[X], so
c(f)c(f/c(f)) = c(f) and so f/c(f) is primitive. Now fg/(c(f)c(g)) = (f/c(f))(g/c(g)) is
primitive. Hence c(fg) ∼ c(f)c(g)c(fg/c(f)c(g)) ∼ c(f)c(g).

Lemma 9.2 If deg f > 0 and f is irreducible in R[X] then f is irreducible in F [X],
where F = FracR is the field of fractions of R.

Proof. Suppose f = gh in F [X]. By multiplying by denominators, there exist non-zero
a, b ∈ R with ag, bh ∈ R[X]. Thus abf = (ag)(bh) ∈ R[X] and c(abf) ∼ c(ag)c(bh). But
f = c(f)(f/c(f)) is a factorization of f in R[X] and if deg f > 0, f/c(f) /∈ (R[X])× =
R×. Thus c(f) ∈ R× and so c(abf) ∼ ab. Now ab/c(ag)c(bh) = u ∈ R× and f =
(u−1ag/c(ag))(bh/c(bh)) is a factorization of f in R[X]. Hence either deg g = 0 or deg f = 0
and so g or h is a unit in F [X].

Lemma 9.3 If R is a UFD then f ∈ R[X] is irreducible iff either
(a) f ∈ R is an irreducible in R, or (b) f is primitive in R[X] and irreducible in F [X].

Proof. Assume first that deg f = 0. If f = ab in R, f = ab in R[X]. Conversely, if f = gh
in R[X] then deg g = deg h = 0, so f = gh in R. Since R× = (R[X])×, irreducibility in
R[X] is equivalent to irreducibility in R. Assume now that deg f > 0. If f is irreducible
in R[X] then by the previous lemma, f is irreducible in F [X]. Also, f = c(f)(f/c(f)), so
c(f) ∈ (R[X])× = R× and f is primitive. Conversely, if f is primitive and irreducible in
F [X] and f = gh in R[X], then f = gh in F [X], so wlog g ∈ (F [X])× ∩ R[X] = R. But
then g | c(f) in R, so g ∈ R× = (R[X])×. Thus f is irreducible in R[X].
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Theorem 9.4 If R is a UFD then R[X] is a UFD.

Proof. Write f = c(f)f ′ where f ′ is primitive. Now c(f) = up1 . . . pr where u ∈ R× =
(R[X])× and pi are irreducible in R. If f ′ = gh with g, h /∈ (R[X])× = R× then
c(g)c(h) ∼ 1, so g, h are primitive and deg g, deg h > 0 (since otherwise either g or h
would lie in R×). By induction on the degree, f ′ is the product of irreducible primitive
polynomials f ′ =

∏
fi. Hence f has a factorization into irreducibles.

Now assume f = up1 . . . prf1 . . . ft = vq1 . . . qsg1 . . . gu where u, v ∈ R×, p1, qj are irre-
ducible in R and fi, gj are primitive and irreducible in F [X]. The ring F [X] is a PID,
so is a UFD. The elements up1 . . . pr and vq1 . . . qs are units in F [X], so t = u and wlog
fi = γigi for some γi ∈ (F [X])× = F \ {0}. Write γi = ai/bi with ai, bi ∈ R. Now
bifi = aigi, so bi ∼ c(bifi) = c(aigi) ∼ ai. Thus γi ∈ R× and fi ∼ gi in R[X]. Now
c(f) ∼ up1 . . . pr ∼ vq1 . . . qs, so by unique factorization in R, r = s and wlog pi ∼ qi in R
and hence in R[X]. Hence the factorization of f is unique in R[X].

Factorization methods

Evaluation method: If g | f in R[X] then g(c) | f(c) in R for all c ∈ R.

Example: If f = X3−4X+1 ∈ Z[X], then f(±2) = 1. If f = gh then we can assume wlog
that g is linear. But then g(±2) = ±1. The only linear polynomials with this property are
±X/2 which do not lie in Z[X]. Hence f is irreducible in Z[X] (and hence also in Q[X]).

Reduction mod p: If f = gh in R[X] and p is a prime then f̄ = ḡh̄ in (R/(p))[X].

Example: If f = X4 − X2 + 4X + 3 ∈ Z[X], then if p = 2, f̄ = X4 + X2 + 1 =
(X2+X+1)(X2+X+1) in (Z/2Z)[X] and if p = 3 then f̄ = X4−X2+X = X(X3−X+1)
in (Z/3Z)[X]. In Z[X], f cannot factor as a product of two quadratics (since there is no
quadratic factor mod 3), nor can it have a linear factor (no linear factor mod 2), hence f
is irreducible in Z[X].

Lemma (Eisenstein’s irreducibility criterion) Assume R is a UFD, f =
∑n

i=0 anX
n ∈

R[X], is primitive, and p is a prime such that p ̸ | an, p | ai for i < n and p2 ̸ | a0. Then f
is irreducible in R[X].

Proof. Suppose f = gh. Then ḡh̄ = anX
n in (R/(p))[X]. Thus ḡ = aX i and h̄ = bXj

for some a, b ∈ R/(p) and i + j = n. But deg g + deg h = n and i ≤ deg g, j ≤ deg h.
Hence i = deg g and j = deg h. If g and h are not units in R[X] and f is primitive then
deg g, deg h > 0. Hence ḡ(0) = h̄(0) = 0, so p | g(0), h(0). Thus p2 | g(0)h(0) = f(0) = a0,
a contradiction. Hence f is irreducible.

Exercises

1. Show that for p a prime in Z, f(X) = 1 + X + . . . Xp−1 = (Xp − 1)/(X − 1) is
irreducible in Q[X] [Hint: consider f(X + 1) and use Eisenstein’s criterion].

2. Let f = X3 −X + 1. Show that (Z/3Z)[X]/(f) is a field with 27 elements.
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7261 10. Symmetric Polynomials Fall 2017

A polynomial f(X1, . . . , Xn) ∈ R[X1, . . . , Xn] is called symmetric if

f(X1, . . . , Xn) = f(Xπ(1), . . . , Xπ(n))

for any permutation π ∈ Sn.

Examples X2
1+X2

2+X2
3 and X1X2+X2X3+X3X1 are symmetric polynomials in the ring

Z[X1, X2, X3], however X
2
1X2+X2

2X3+X2
3X1 is not symmetric (consider the permutation

π = (12)).

The elementary symmetric polynomials σr ∈ R[X1, . . . , Xn] are defined by σr =∑
i1<i2<···<ir

Xi1 . . . Xir =
∑

|S|=r

∏
i∈S Xi where in the second expression the sum is over

all subsets S of {1, . . . , n} of size r.

Examples For n = 3, σ0 = 1, σ1 = X1 + X2 + X3, σ2 = X1X2 + X2X3 + X3X1,
σ3 = X1X2X3.

Note: (X +X1)(X +X2) . . . (X +Xn) = Xn + σ1X
n−1 + σ2X

n−2 + · · ·+ σn.

Define the degree of cXa1
1 . . . Xan

n ∈ R[X1, . . . , Xn], c ̸= 0, as the n-tuple (a1, . . . , an).
More generally define the degree of f =

∑
a1,...,an

ca1,...,anX
a1
1 . . . Xan

n as the maximum
value of (a1, . . . , an) over all ca1,...,an ̸= 0, where n-tuples are ordered lexicographically:
(a1, . . . , an) < (b1, . . . , bn) iff there exists an i such that ai < bi and aj = bj for all j < i.

Example In R[X1, X2, X3], deg(X
2
1X

9
2 +X7

1X3) = (7, 0, 1).
In R[X1, . . . , Xn], deg σr = (1, . . . , 1, 0, . . . , 0), where there are r ones and n− r zeros.

Lemma 10.1 The lexicographic ordering on Nn is a well ordering: Nn is totally ordered
and every non-empty S ⊆ Nn has a minimal element.

Proof. To prove every S ̸= ∅ has a minimal element, inductively construct sets Si with
S0 = S and Si equal to the set of elements (a1, . . . , an) of Si−1 for which ai is minimal. It
is clear that Si ̸= ∅ and the (unique) element of Sn is the minimal element of S.

Lemma 10.2 If f ∈ R[X1, . . . , Xn] is symmetric and deg f = (a1, . . . , an) then a1 ≥
a2 ≥ · · · ≥ an.

Proof. Assume otherwise and let ai < aj with i > j. Then if π = (ij), f(X1, . . . , Xn) =
f(Xπ(1), . . . , Xπ(n)) has a term with degree (aπ(1), . . . , aπ(n)) which is larger than (a1, . . . , an),
contradicting the definition of the degree.

Lemma 10.3 If f, g ∈ R[X1, . . . , Xn] and f, g are monic (the term with degree equal to
deg f or deg g has coefficient 1) then deg fg = deg f + deg g where addition of degrees is
performed componentwise: (a1, . . . , an) + (b1, . . . , bn) = (a1 + b1, . . . , an + bn).
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Proof. Prove that in the lexicographical ordering, a < b and c ≤ d imply a+ c < b+ d.
The rest of the proof is the same as for the one variable case.

Theorem 10.1 The polynomial f ∈ R[X1, . . . , Xn] is symmetric iff f ∈ R[σ1, . . . , σn].

Clearly σi is symmetric, and the set of symmetric polynomials forms a subring of the ring
R[X1, . . . , Xn]. Hence every element of R[σ1, . . . , σn] is symmetric. We now need to show
every symmetric polynomial can be written as a polynomial in σ1, . . . , σn. We use induction
on deg f . Let f be a counterexample with minimal deg f (using Lemma 1). Let deg f =
(a1, . . . , an) and let the leading term have coefficient c ∈ R. Then g = cσa1−a2

1 σa2−a3
2 . . . σan

n

has deg g = (a1, . . . , an) = deg f (by Lemma 3) and the same leading coefficient c. Thus
deg(f − g) < deg f . Now g is symmetric, so f − g is symmetric. By induction on deg f ,
f − g ∈ R[σ1, . . . , σn]. But g ∈ R[σ1, . . . , σn]. Hence f ∈ R[σ1, . . . , σn], contradicting the
choice of f .

If α ∈ R′ and R is a subring of R′, we call α algebraic over R if the map evα : R[X] →
R′ is not injective, i.e., there exists a non-zero f(X) ∈ R[X] with f(α) = 0. More
generally we say α1, . . . , αn are algebraically dependent if evα1,...,αn : R[X1, . . . , Xn] →
R′ is not injective, or equivalently there exists a non-zero polynomial f ∈ R[X1, . . . , Xn]
with f(α1, . . . , αn) = 0. We say α1, . . . , αn are algebraically independent over R if they
are not algebraically dependent.

Theorem 10.2 The elements σ1, . . . , σn are algebraically independent over R. The ele-
ments Xi are algebraic over R[σ1, . . . , σn].

Proof. Assume
∑

ca1,...,anσ
a1
1 . . . σan

n = 0 in R[X1, . . . , Xn]. Among the (finite set of)
(b1, . . . , bn) such that cb1,...,bn ̸= 0, pick one such that (b1 + · · · + bn, b2 + · · · + bn, . . . , bn)
is maximal in the lexicographical ordering. The map sending (a1, . . . , an) to (a1 + · · · +
an, a2 + · · · + an, . . . , an) is an injection Nd to Nd, so this (b1, . . . , bn) is uniquely deter-
mined. Now deg

∑
ca1,...,anσ

a1
1 . . . σan

n = (b1 + · · · + bn, b2 + · · · + bn, . . . , bn) contradicting∑
ca1,...,anσ

a1
1 . . . σan

n = 0. Thus σ1, . . . , σn are algebraically independent. The elements Xi

are algebraic over R[σ1, . . . , σn] since they are roots of Xn − σ1X
n−1 + · · · ± σn = 0.

As a consequence of Theorem 2, any symmetric polynomial f ∈ R[X1, . . . , Xn] can be
written as g(σ1, . . . , σn) with g a unique element of R[X1, . . . , Xn]. For example, X2

1 +
X2

2 +X2
3 = σ2

1 − 2σ2.

Exercises

1. Let δ =
∏

i<j(Xi − Xj) ∈ Z[X1, . . . , Xn]. Show that δ2 is symmetric and for n = 3

express δ2 in terms of σ1, σ2, σ3.

2. Let f(X) = X3 − 3X + 5 have complex roots α1, α2, α3. Find a polynomial with
complex roots α2

1, α
2
2, α

2
3.
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