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7261 1. Rings Fall 2017

A Ring (with 1) is a set R with two binary operations + and x such that
R1. (R,+) is an Abelian group under +.

R2. (R, x) is a Monoid under X, (so x is associative and has an identity 1).

R3. The distributive laws hold: a(b+ ¢) = ab+ ac, (b+ ¢)a = ba + ca.

Many of the standard facts from algebra follow from these axioms. In particular,
O0a=a0=0, a(—=b)=(—-a)b=—(ab), —a=(-1)a, (O, ai)(zj b;) = Z” ab;.

The ring R is commutative if x is commutative.

An element of R is a unit if it has a (2-sided) multiplicative inverse.

The set of units R* (or U(R)) is a group under x.

The trivial ring is the ring {0} with 0+ 0 = 0.0 = 0, and is the only ring in which 1 = 0.
A division ring or skew field is a non-trivial ring in which every non-zero element is a
unit.

A field is a commutative division ring.

An Integral Domain (ID) is a non-trivial commutative ring in which ab = 0 implies
a =0 or b =0. Note that any field is an ID.

Examples

1. Z, Q, R, C are all rings under the usual + and x. Q, R, C are fields. Z is an ID.

2. Z/nZ is a ring under 4+ and x mod n. This ring is an ID iff n is prime. In fact, if n
is prime then Z/nZ is a field.

3. If R is a ring then the set M, (R) of n x n matrices with entries in R is a ring under
matrix addition and multiplication. M, (R) is non-commutative in general.

4. Let (A, +) be an abelian group and let End(A) be the set of group homomorphisms
A — A. Define addition pointwise, (f + ¢)(a) = f(a) + g(a), and multiplication by
composition, fg(a) = f(g(a)). Then End(A) is a (usually non-commutative) ring.

5. If A= [l;enZ = {(ag,a1,...) : a; € Z} then the maps R((ao,...)) = (0,a9,a1,...)
and L((ag,a1,...)) = (a1,az,...) lie in End(A) and LR =1 # RL. Hence R has a
left, but not a right inverse. [Recall that left and right inverses must be equal if they
both exist.]

6. Let C[0,1] be the set of continuous functions from [0,1] to R with addition and
multiplication defined pointwise. Then C[0,1] is a ring. It is not an ID (why?).

A subset S of R is a subring iff (S5, +) is a subgroup of (R, +) and (.5, x) is a submonoid
of (R, x). Equivalently, 1 € S and a,b € S implies a — b,ab € S.

A subset I of R is a left ideal iff (I,+) is a subgroup of (I,+) such that for all r € R,
a € I, we have ra € I. A subset I of R is a right ideal iff (I, +) is a subgroup of (I, +)



such that for all r € R, a € I, we have ar € I. An ideal is a subset that is both a left ideal
and a right ideal. Equivalently, I # () and a,b € I, r € R, implies a — b,ra,ar € I. The
sets {0} and R are ideals of R. An ideal [ is proper if [ # R, and non-trivial if /#{0}.

Examples
1. nZ is an ideal of Z but not a subring (unless n = £1).

2. Z is a subring of R but not an ideal.
3. The set of the matrices [ = {(0 b) :b,d e R} is a left ideal, but not a right ideal of

0d
M5(R). But [ is a 2-sided ideal of the subring 7" = {(g Z) ta,b,d € R} of Ms(R).

4. The quaternions H = {(_QB g) o, f € C form a subring of My(C). Any x € H

can be written uniquely as * = a + bi + ¢j + dk where ¢ = (6 El)a J= <_01 (1)>’
k= (? 8) Then i? = j2 = k* = —1,ij =k, ji = —k, and (a + bi + ¢j + dk)™ =

(a/r) — (b/r)i — (c/r)j — (d/r)k where r = a® + b* + ¢ + d*>. Thus H is a non-
commutative division ring.

Lemma 1.1 If S,, a € A, are subrings of R then (),c4 Sa is a subring of R.
If 1, are ideals of R then (), c4 1o is an ideal of R.

The ideal (S) generated by a subset S C R is the smallest ideal of R containing S. It can
be defined as the intersection (1;5¢ J of all ideals containing S.

An ideal I is principal if it is generated by a single element, I = (a) for some a € R. An
ideal is finitely generated if it is generated by a finite set, I = (.5), |S| < 0.

We can also define the subring generated by a subset. More generally, if R is a subring
of R and S C R/, then R[S] is the smallest subring of R’ containing R and S (= the
intersection of all subrings of R’ containing R and S).

Exercises

1. Show that an ideal is proper iff it does not contain a unit.

2. Show that (S) = {>_r sl r,1m, € R, s;€ S, neN}.

3. Show that if R is commutative then the principal ideal (a) is {ra : r € R}.
4

. Show that R[a] is the set of all polynomial expressions Y i, a;a" with coefficients
a; € R.
5. Deduce that Z[i] = {a+bi : a,b € Z} as a subring of C and Q[v/2] = {a+b¥/2+cV/4 :
a,b,c € Q} as a subring of R.
6. Describe Z[1/2] as a subring of Q.

7. Let I be the set of continuous functions f € C]0, 1] such that f(0.5) = 0. Show that
I is an ideal of C'[0, 1] that is not principal (or even finitely generated).
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A (ring) homomorphism from the ring R to the ring S is a function f: R — S that is
a group homomorphism (R, +) — (S, +) and a monoid homomorphism (R, x) — (S, X).
Equivalently f(a+b) = f(a) + f(b), f(ab) = f(a)f(b), f(1r) = 1s.

Examples

1. The map f: T — R given by f((g Z)) = a where T' = {(8 Z) :a,b,dGR}.

2. If S is a subring of R then the inclusion map i: S — R, i(r) = r, is a homomorphism.

A (ring) isomorphism is a homomorphism R — S that has a 2-sided inverse map g: S —
R which is also a homomorphism. It is sufficient for f to be a bijective homomorphism.

If I is an ideal of R then the quotient ring R/I is the quotient group (R/I,+) with
multiplication defined by (a + I)(b+ 1) = ab+ I.

Lemma 2.1 The quotient ring R/ is indeed a ring and the projection map m: R — R/I
given by m(a) = a + I is a surjective ring homomorphism.

Example R =Z, I = (n), then R/I = Z/nZ is the integers mod n with addition and
multiplication mod n.

Theorem (1st Isomorphism Theorem) If f: R — S then Ker f = {r : f(r) = 0} is
an ideal of R, Im f = {f(r) : r € R} is a subring of S and f =io fom where

o m: R — R/Ker f is the (surjective) projection homomorphism. g Hf IS
o f:R/I —1Im [ is a (bijective) ring isomorphism. T T

e i: Im f— S is the (injective) inclusion homomorphism. R/ Ker f _, Im f

Theorem (2nd Isomorphism Theorem) If I is an ideal of R then there is a bijection
{subgroups H of (R,+) with [ < H < R} <> {subgroups of (R/I,+)},

where H corresponds to H/I. In this correspondence subrings correspond to subrings and
ideals correspond to ideals. Moreover, if J is an ideal with I < J < R then there is an
isomorphism R/J = (R/I)/(J/I).

Theorem (3rd Isomorphism Theorem) If I is an ideal of R and S is a subring of R
then S+ I is a subring of R, SN 1 is an ideal of S, and (S+1)/I=S/(SNI).

Example For any ring R define f: Z — Rby f(n) =n.lg (n.lg = 1g+---+1g defined as
for additive groups). Then f is a ring homomorphism. The kernel is a subgroup of (Z, +)
so is nZ for some n > 0. The image S = {n.1g : n € Z} is called the prime subring of
R and is isomorphic to Z/nZ. The characteristic of R, char(R), is the integer n. E.g.,
char(R) = 0, char(Z/nZ) = n, char({0}) = 1.
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A maximal ideal is a proper ideal M of R such that for any ideal I, M C I C R implies
I=MorlI=R.

Example The ideal (n) is a maximal ideal of Z iff n is prime.

A non-trivial ring is simple if the only ideals of R are (0) and R. Equivalently, (0) is
maximal.

Lemma 2.2 Let R be a commutative ring. Then R is simple iff R is a field.

Proof. 1f R is a field and I # (0) is an ideal then u € I for some u # 0. But u is a unit
so (ru " u =r €[ for all r € R. Thus I = R. Conversely, if a # 0 and «a is not a unit
then (a) = {ra : r € R} is a non-trivial proper ideal of R. O

Note that if R is a division ring then R is simple. However the converse fails:

Lemma 2.3 Let D be a division ring. Then M, (D) is a simple ring for any n > 1.

Proof. Let I be a non-zero ideal of M, (D) and let A = (a;;) € I, A # 0. In particular
ap # 0 for some k, . Let E;; be the matrix with 1 in entry (7,j) and zeros elsewhere.
Then Ej AE;; = awli; € 1. Since ay € D and D is a division ring, a,;ll € D, so
a;' I € M,(D). Now (ay,'I)(anFEij) = Eij € I. But any matrix B = (b;;) is a linear
combination Y (b;;I)E;;, so B € I and I = M, (D). O

So by the 2nd Isomorphism Theorem, for commutative R, M is maximal iff R/M is a field,
but for non-commutative R, M may be maximal without R/M being a division ring.

Fixercises
1. Show that any finite ID is a field.

2. An element a of a ring is nilpotent if a” = 0 for some n € N. Show that if a is
nilpotent then 1 4 a is a unit.

3. Show that if R is commutative then the set of nilpotent elements forms an ideal of
R. [Hint: make sure you check that a,b nilpotent implies a — b is nilpotent.]

4. Show that if » € R lies in the intersection of all maximal ideals of R then 1+ r is a
unit.

5. Show that any homomorphism f: F' — R from a field F' to a non-trivial ring R is
injective, so in particular R contains a subring isomorphic to F.
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A partial ordering on a set X is a relation < satisfying the properties:
Ol. Va: z <z,
02. Va,y: if xr <y and y <z then z =y,
03. Va,y,z: ifx <y and y < z then z < 2.

A total ordering is a partial ordering which also satisfies:

O4. Va,y: either x <y ory < x.

Example Any collection of sets with C as the ordering forms a partially ordered set that
is not in general totally ordered.

If (X,<) is a partially ordered set, a chain in X is a non-empty subset C C X" that is
totally ordered by <.

If S C X, and z € X, we say x is an upper bound for S if y < z for all y € S. [Note
that we do not require x to be an element of S.]

A maximal element of X is an element = such that for any y € X, x <y implies x = .
[Note: This does not imply that y < x for all y since < is only a partial order. In particular
there may be many maximal elements.]

Theorem (Zorn’s Lemma) If (X, <) is a non-empty partially ordered set for which
every chain has an upper bound then X has a maximal element.

This result follows from (and is equivalent to) the Axiom of choice, which states that if
X; are non-empty sets then []._, X; is non-empty. [I will not give the proof here as it is
rather long.]

el

Note: If we had defined things so that () were a chain, we would not need the condition that
X # () in Zorn’s Lemma since the existence of an upper bound for @ is just the condition
that an element of X exists. However, in practice it is easier to check X # () and then
check separately that each non-empty totally ordered subset has an upper bound.

Theorem 3.1 If I is a proper ideal of a ring R (with 1) then there exists a mazximal ideal
M such that I C M.

Proof. If an ideal J contains 1 then J = R, so an ideal is proper iff it does not contain
1. Let X be the set of proper ideals J of R with [ C J. The partial order on X will be
C. Since I € X, X # (). Now let C be a chain in X, i.e., a set of ideals {J,} such that for
every Jo, Jg € C either J, C Jg or Jg C J,. Let K = UJQEC Jo. We shall show that K is
an upper bound for C.



Firstly C # 0, so some ideal J, lies in C and I C J, € K. In particular K # (). If
z,y € K then z € J,, y € Jg, say. Since C is totally ordered, we can assume without loss
of generality that J, C Jz. Thus z,y € Jg,and oz —y € Jg C K. If x € K, r € R, then
x € Jy, say, so ar,rz € J, C K. Hence K is an ideal with I C K. However 1 ¢ J, for
each J, € C, so 1 ¢ K. Hence K is proper. Therefore K € X and is clearly an upper
bound for C.

The conditions of Zorn’s Lemma apply, so X has a maximal element M, say. Now M is a
proper ideal containing I and is maximal, since if M C J C R then J € X and M would
not be maximal in X. O

We now give an example from linear algebra. Let V be a vector space (possibly infinite
dimensional).

A set S C V is called linearly independent if there are no non-trivial finite linear
combinations that give 0. In other words if Z?zl A;s; = 0 and the s; are distinct elements
of S then \; = 0 for each i.

A set S C V is called spanning if every element v € V' can be written as a finite linear
combinations of elements of S, v = Z?:l AiS;.

A set S C V is called a basis if it is a linearly independent spanning set. Note that every
element v € V can be written as a linear combination of elements of a basis in a unique
way. [Spanning implies existence, linear independence implies uniqueness.|

Theorem 3.2 FEuvery vector space has a basis.

Proof. Let X be the set of all linearly independent sets in V' partially ordered by C. Since
0 is linearly independent, & # . Let C be a chain in X and let S = (Jg .o Sa. We shall
show that S is linearly independent.

Suppose Y A;s; = 0 and s; € S,, € C (the s; are distinct but the o; need not be).
Then by total ordering of the S,,, there must be one S, that contains all the others
(use induction on n). But then ) 7 | A\;s; = 0 is a linear relation in S,, which is linearly
independent. Thus \; = 0 for all 7. Hence S is linearly independent, so S € X and is an
upper bound for C.

Now apply Zorn’s Lemma to give a maximal linearly independent set M. We shall show
that M spans V and so is a basis. Clearly any element of M is a linear combination
of elements of M, so pick any v ¢ M and consider M U {v}. By maximality of M this
cannot be linearly independent. Hence there is a linear combination Av + Y"1 | A;s; = 0,
s; € M, with not all the A’s zero. If A = 0 this gives a linear relation in M, contradicting
linear independence of M. Hence A # 0 and v = > " (—=A;/A)s; is a linear combination
of elements of M. O
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Anti-isomorphisms

An anti-homomorphism is a map f: R — S such that f(a+0b) = f(a)+ f(b), f(1) =1,
and f(ab) = f(b)f(a). An anti-isomorphism is an invertible anti-homomorphism.

Examples The transpose map 7: M,(R) — M, (R).
The map H — H given by f(a + bi+ ¢j + dk) = a — bi — ¢j — dk.

The opposite ring R° of R is the ring R with multiplication defined by axg.b = bxp a.
Note that R = R.

Lemma 4.1 A map f: R — S is an anti-homomorphism iff it is a homomorphism viewed
as a map R — S° (or R° — S).

Example M,(R)° is isomorphic to M, (RR), one isomorphism being the transpose map .

Rngs (Rings without 1s)

A Rng (or “ring which does not necessarily have a 17) is a set R with + and x defined
so that (R,+) is an abelian group, (R, x) is a semigroup (x is associative), and the
distributive laws hold. However, R need not contain a multiplicative identity.

Subrngs, rng-homomorphisms etc., can be defined without the conditions involving 1. The
definition of an ideal is the same, and an ideal is a special case of a subrng. The theory
of rngs is similar to that of rings, although they are more awkward to deal with later on.
The following lemma shows that we can regard a rng as an ideal of a bigger ring.

Lemma 4.2 Let R be a g and define Ry = Z x R with addition (n,r) + (m,s) =
(n4+m,r+s) and multiplication (n,r)(m,s) = (nm,n.s+m.r+rs), where n.s = s+---+s
etc.. Then Ry is a ring containing an ideal {0} X R isomorphic to R.

Direct sums and the Chinese Remainder Theorem

If Ry and Ry are rings, define the ring R & Ry as the set Ry X Ry with addition (aq, as) +
(b1,b2) = (a1 + b1, as + by) and multiplication (ay, as)(by,bs) = (aiby, asby). The identity is
(1,1). The direct sum Ry @ - -- @ R, is defined similarly. Note that even if R; and Ry are
IDs, R; & Ry will not be since (1,0)(0,1) = (0,0).

If Ris aring and I and J are ideals of R, we can define the following ideals.
e /[+J={a+b:acl, beJ}
e INJ={c:cel, ceJ}
o [J={>" abi:a; €I, b €J, neN}



It is easily checked that each of these is indeed an ideal. Note that in general I.J # {ab :
a €I, be J}, but 1.J is the ideal generated by all the products ab, a € I, b € J.

Example For R=7Z,1=(x)={ax:a€Z}, J=(y) ={by:beZ}

1. I+ J = (ged(z,y)).
Note ged(z,y) = ax + by for some a,b € Z, so ged(z,y) € I + J. Conversely
I+ J={ax+by:a,beZ} and ax + by is always a multiple of ged(z, ).

2. InJ = (lem(z,y)).
mel < xz|mandm € J <= y | m. Henceif m € I NJ then m must
be a common multiple of x and y. Thus m € (lem(z,y)) Conversely lem(z,y) is a
common multiple of z and y so lies in I N J. Hence I N J = (lem(x, y)).

3. IJ = (xy).
IJ ={>"axby : a;,b; € Z} C (xy). Conversely zy € I.J, so (xy) C IJ.

Ideals I and J are relatively prime if [ + J = R. Equivalently da € I,.be J:a+b=1
(recall that an ideal equals R iff it contains 1).

Lemma 4.3 1J C INJ. Moreover, if R is commutative and I +J = R then IJ =1NJ.

Proof. 1f a; € I then Y a;b; € 1. If b; € J then Y a;b; € J. Hence IJ C 1IN J.
Now let I +J = Rsothat a+b=1forsomea e I,be J. Thenifce INJ, ac+cbe IJ.
But ac+cb=cla+b)=c,socelJ. Thus INJ C[Jandso [J=1NJ. O

Theorem (Chinese Remainder Theorem) If I and J are ideals of a commutative
ring R and I +J = R then R/IJ = R/I ® R/J.

Proof. Let f: R — R/I ® R/J be defined by f(r) = (r + I, + J). Then f(r +s) =
(r+s+IL,r+s+J)=r+1Lr+J)+(s+1,s+J)= f(r)+f(s), f(rs) = (rs+I1,rs+J) =
(r+I,r+J)(s+1,s+J) = f(r)f(s),and f(1) = (1+1,14J) is the identity in R/I SR/ J.
NowKer f={r:r+I=1,r+J=J} =1INJsoKer f = 1J by Lemma 4.3. For the image
of f, write 1 = a+bwitha € I,b € J. Then f(sa+rb) = (sa+r(1—a)+1,s(1=b)+rb+J) =
(r+1,s+J). Thus f is surjective. Hence R/IJ = R/I & R/J. O

Example If gcd(n,m) =1 then Z/nmZ = Z/nZ & Z/mZL.

Exercises
1. Show that composing two anti-homomorphisms gives a homomorphism and compos-
ing an anti-homomorphism with a homomorphism gives an anti-homomorphism.
2. Define ¢(n) = |(Z/nZ)*|. Show that if ged(n,m) = 1 then ¢(nm) = ¢(n)p(m). If
n = p{'...p» is the prime factorization of n, deduce that ¢(n) = [T, p¥ " (pi — 1).

3. Generalize the CRT: if Iy,..., I, are ideals of a commutative ring R and for each ¢
and j, [; + I; = R, show that R/I1I... [, =L ® L& - & I,,.
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Throughout this section we shall assume R is a commutative ring.

Recall: An Integral Domain (ID) is a non-trivial ring in which ab = 0 implies either
a=0orb=0.

A prime ideal of a commutative ring R is a proper ideal such that ab € P implies either
ac PorbeP.

Lemma 5.1 An ideal P is prime iff R/P is an ID.

Proof. Assume P is prime. Then R/P is non-trivial since P is proper. If (a4 P)(b+ P) =
0+ P then ab+ P = P and so ab € P. Thus either a € P or b € P, so either a+ P = P or
b+ P = P. Thus R/P is an ID. Conversely, if R/P is an ID then P is proper since R/P
is non-trivial. If a,b ¢ P, then a+ P,b+ P # 0+ P,so (a+ P)(b+ P)=ab+ P #0+ P,
so ab ¢ P. Thus P is a prime ideal. O

Corollary 5.2 Any mazimal ideal of a commutative ring is also a prime ideal.

Proof. M maximal = R/M is a field = R/M is an ID = M is prime. O

The converse does not hold: (0) is prime but not maximal in Z.
Examples of prime ideals: (p) in Z, (0) in any ID. The ideal (X) in the ring Z[X] of
polynomials in X with coefficients in Z. This last example is also not maximal.

Every field is an ID. Furthermore, every subring of a field is an ID (e.g., Z C Q). We shall
show that conversely, every ID can be embedded as a subring of a field.

Assume R is a commutative ring and S C R is a submonoid of (R, x). In other words,
1 € S and a,b € S implies ab € S. For example, set S = R\ P for any prime P. One
particularly important case is when R is an ID and S = R\ {0}.

Define S7!R as (R x S)/~, where (r,s) ~ (r', &) iff Ju € S: urs’ = ur's. We write r/s

for the equivalence class (r,s) € S™IR.

Note: if S contains no zero-divisors then (r,s) ~ (r',s') iff rs' = 1's.

Lemma 5.3 The relation ~ defined above is an equivalence relation and S™'R can be
made into a ring so that the map i: R — SR, i(r) = r/1 is a homomorphism. Also
i(S) C (ST'R)* and the map i is injective iff S contains no zero-divisors.

Proof. Reflexivity and symmetry of ~ are immediate. For transitivity, if (r, s) ~ (1, §') ~

(r”,s") then Ju, v’ : urs’ = ur's, u'r's" = u'r"s’. Hence (uu's’)(rs") = u's"us'r =

w's"usr’ = usu'r's” = usu'r"s’ = (uu's")(r"s). But wu's’ € S, so (r,s) ~ (r",s").
Define addition by r1/s1472/82 = (r182+7251)/(s152) and multiplication by (r1/s1)(r2/s2) =
(r17m2)/(s152). A long and rather tedious check shows that under these operations S™'R

becomes a commutative ring with identity 1/1.
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The map i(r) = r/1 is a ring homomorphism since i(r) +i(r') =r/1+7'/1 = (r +1")/1 =
i(r+1"),i(r)i(r") = (r/1)(r" /1) = (rr'")/1 = i(rr'), and (1) = 1/1.

The element 1/s € S7'R is the inverse of i(s) = s/1, so i(S) C (ST'R)*.

The kernel of ¢ is {r € R:r/1=0/1} ={r € R:3Ju € S : ur = 0}. Thus Keri = {0} iff
S contains no zero-divisors. O

Lemma 5.4 S~'R satisfies the following universal property: If f: R — R Lr
R' is a homomorphism with f(S) C (R')* then f factors uniquely as |
f=hoi where h: ST'R — R’ is a homomorphism. S IR

Proof. Any such f must satisfy f(r/s)f(s/1) = f(r/1) and f(t/1) f(t). Hence

F(r/5)(s) = f(r) and J(r/s) = f(r)7(5)" Comversel, defining (r/s) = f(r)(s)"
gives a homomorphism S™'R — R’ (check this!). O

Notation: If S = R\ P for some prime ideal P, we also write ST'R as Rp and call it the
localization of R at P.

Lemma 5.5 If R is an ID then (R\ {0})"'R = Ry is a field containing a subring
1somorphic to R.

Proof. Let S = R\ {0}. If /s # 0/1 then r # 0, so s/r € ST'R and (s/r)(r/s) = 1/1.
Hence any non-zero element of S~!'R is invertible. The map i is injective, so Imi is a
subring of S~!R isomorphic to R. O

In this case we call R = SR the field of fractions of R, or Frac R. For example
Frac(Z) = Q.

Exercises

1. Show that the units of Rp consists of the elements r/s where r ¢ P and there is a
unique maximal ideal of Rp consisting of all the non-unit elements. [Rings that have
a unique maximal ideal are called local rings.]

2. Show that if R is an ID, then for any prime ideal P, Rp is isomorphic to a subring
of Frac R.

3. Describe Z) explicitly as a subring of Q.
4. What is the field of fractions of a field?

5. What is the field of fractions of the ring of entire functions (holomorphic functions

fiC—Q)?

6. What is the field of fraction of the ring of polynomial functions C[X] = {>"" ja; X" :
a; € C, n € N}?

10
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Assume that R is a commutative ring. We wish to construct the ring R[X]| of polynomials
in X with coefficients in R.

Define R[X] as the set of sequences (ag, ay, . .. ) with the property that all but finitely many
of the a;s are zero. Define (ag,...) 4 (bo,...) = (ag + by, ar +by,...) (so R[X] = P,y R
as group under +) and define (ao,...)(bo,...) = (co,c1,...) where ¢; = > . a;bi—;.
We call R[X]| the ring of polynomials in X over R. Let i: R — R[X] be defined by
i(a) = (a,0,0,...) and let X € R[X] be the element X = (0,1,0,0,...). Note that
X(ag,ay,...)=(0,a9,a1,...) and i(a)(ap, ai,...) = (aap, aa, . ..).

Lemma 6.1 R[X] is a ring, i: R — R[X] is an injective ring homomorphism, and if
a; =0 for all i > n then (ag,a1,...) =Y 1 i(a;) X"

We shall normally identify i(a) with a and write polynomials f(X) € R[X] in the form
> oa;i X" The degree deg f(X) of a polynomial is the largest n such that a, # 0, (or
—o0 if f =0). The leading coefficient of f(X) is a,, where n = deg f, (or 0 if f =0). A
polynomial is monic if the leading coefficient is 1.

Lemma 6.2 If f, g € R[X] then

1. deg(f + g) < max{deg f,deg g},
2. deg(fg) < deg f + degg, with equality holding if R is an ID.
Lemma 6.3 If R is an ID then R[X] is an ID and (R[X])* = R*.

Proof. 1f f,g € R[X] and f,g # 0 then deg(fg) = deg f+degg > 0,s0 fg #0. If fg=1
then 0 = deg(fg) = deg f + degg so deg f = degg =0 and f,g € R. Hence f € (R[X])*
implies f € R*. Conversely f € R* clearly implies f € (R[X])*. O

Theorem (Universal property of polynomial rings) If ¢: R — R’ is a ring homo-
morphism and o € R' then there exists a unique homomorphism evyo: R[X| — R’ such
that evgo(a) [=evgal(i(a))] = ¢(a) for alla € R and evyo(X) = .

If R is a subring of R’ and ¢ is the inclusion map we write f(«) for evy o (f). More generally,
if just R is a subring of R" we write ¢(f)(a) for evy o(f).

Lemma 6.4 If R is a subring of R and o € R’ then R|a] is isomorphic to a quotient
R[X]/I where I is an ideal of R[X] containing no non-zero constants: 1 N R = {0}.

Proof.  Apply 1st Isomorphism Theorem to ev,: R[X] — R'. O

We say a € R’ is transcendental over R C R’ if the map ev,, is injective. In other words,
if f(a) =0 implies f(X) = 0. Otherwise we say that « is algebraic over R.
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Examples The element 7 € R is transcendental over Z, so Z[r| = Z[X]. The elements

1, \/5, V3 € C are all algebraic over Z. However 7 is algebraic over R (since it is a root of
X —7m e R[X]).

Theorem (Division Algorithm) If f,g € R[X]| and the leading coefficient of g is a
unit in R, then there exist unique q,r € R[X]| such that f = qg +r and degr < degg (or
r=20).

If a,b € R, we say a divides b, a | b, if there exists ¢ € R such that b = ca.
Examples In any ring, v |1 iff u€ R*;a|0foralla. InZ, 7|21. In Q, 21| 7.

Lemma 6.5 If a € R and f € R[X] then f(X) = (X —a)q(X)+ f(«) for some q € R[X].
In particular, X — o | fiff f(a) =0.

Lemma 6.6 If R is an ID and f € R[X], f #0, then [{a € R: f(a) =0} < deg f.

Lemma 6.7 If R is an ID and G is a finite subgroup of R* then G is cyclic.

Proof. G is a finite abelian group, so G = Cy, X --- x Cg.. But then 2% = 1 for all
r € G. Thus the polynomial X% — 1 has |G| zeros. Thus |G| = didy...d, < di, so
dy=---=d,=1and G = (y, is cyclic. O

We can generalize polynomial rings to polynomials in many variables. If {X;};cs is a set
(possibly infinite) of indeterminates, define a term ¢ to be a function I — N which is
non-zero for only finitely many 7 € I. We think of ¢ as corresponding to a finite product
[Lic; Xf(l). Let T" be the set of terms. Now define the ring

R{ X} ier] = @ R = {(a¢)ier | a; = 0 for all but finitely many ¢},
teT
with addition of coefficients componentwise (a;)+(b:) = (a;+b;) and multiplication defined
by (a;)(b;) = (c;) where ¢, = > ., a.bs (note that this is a finite sum). As for R[X] we
can identify R as a subring of R[{X;}ics] and define elements X; so that (a;)er is equal
to the (finite) sum Y, pa; ][, X1,

Theorem (Universal property of polynomial rings) If ¢: R — R is a ring
homomorphism and «; € R' for all i € I then there exists a unique homomorphism
eVe (a,): R{Xi}ier] = R’ such that evy a,)(a) = ¢(a) for all a € R and evy o) (X;) = o
forall i € I.

If [ is finite then we can also identify R[X;,..., X, ] with R[X},..., X,,1][X,] (use uni-
versal properties to define the isomorphism).

12



7261 7. Euclidean Domains and PIDs Fall 2017

A Euclidean Domain is an ID for which there is a function d: R\ {0} — N such that if
a,b € R, b # 0 then there exists ¢, € R such that a = ¢b + r with either d(r) < d(b) or
r = 0.

Examples

1. Z with d(a) = |al.

2. F[X], where F is a field, d(f) = deg f.
3. F, where F is a field, d(a) = 0.
4.

Zli], with d(a+1b) = |a+1b|* = a®* +b*. [Write a/b = x +iy and let ¢ = 2’ + 4y’ with
[z—a'|, [y=y/| < 3. Thend(r) = |gb—al* = |g—a/b?[b]* = ((z—2")*+(y—y/)*)d(b) <
2d(b)]

2

A Principal Ideal Domain (PID) is an ID in which every ideal I is principal, i.e., I = (a)
for some a € R.

Theorem 7.1 FEwvery Euclidean Domain is a PID.

Proof. If R is Euclidean then R is an ID, so it is enough to show that any ideal I is
principal. Let I be an ideal of R and assume I # (0). Pick b € I'\ {0} with minimal value
of d(b) (by well ordering of N). If a € I then a = ¢b + r with d(r) < d(b) or » = 0. But
r =a—gb € I, so by choice of b we must have r = 0. Thus a = ¢b € (b). Thus I C (b).
But b € I, so (b) C I. Thus I = (b) is principal. O

Note: PID #- Euclidean.

If I = (a) is a principal ideal then b € I implies there exists a ¢ € R with b = ca. Thus
b € I is equivalent to a | b. In particular (b) C (a) <= a | b. If (a) = (b) then b = ua
and @ = vb. Thus either a = b =0 or uv = 1 and u,v € R*. Conversely, if a = ub with

u € R* then (a) = (b).

The elements a,b € R are called associates if b = ua for some u € R*. Equivalently, a | b
and b | a both hold, or (a) = (b). Write a ~ b if @ and b are associates.

A greatest common divisor (gcd) of a set of elements S C R is an element d € R such
that

Gl. d| afor all a € S, and
G2. if ¢ | a for all @ € S then ¢ | d.

Greatest common divisors are unique up to multiplication by units. To see this, let d, d’
be two geds. Then condition G2 with ¢ = d and G1 with d = d imply d' | d. Similarly
d|d,sod = ud for some unit u € R*.

13



Lemma 7.2 If R is a PID then geds of any S C R exist. Indeed, if (S) = (d) then d is
a ged of S and hence can be written in the form d =", ¢;a;, for some a; € S, ¢; € R.

Proof. Since R is a PID, (S) = (d) for some d. If a € S then a € (S) = (d), so d | a. If
c|laforallaes, then a € (c) forall a € S, s0 (S) = (d) C (c). Hence ¢ | d. Thus d is a
ged of S. O

Note: In an arbitrary ID, gcds may not exist, and even if they do, they may not be a
linear combination of elements of S. For example the elements 2 and X in Z[X] have
1 as a ged, but 1 is not of the form 2c¢; + Xeg, ¢1,¢0 € Z[X]. For an example where
the ged does not exist, consider R = Z[v/=5]. If a € R then |a|?> € Z. Hence if a | b
in R then |a|?> | |b|*> in Z. Now let z = —3(3 — /=5) = (1 + 2/=5)(1 + /=5) and
y=—7(1++v-5) = (1-2y/-5)(3—+/-5). Then 1+ +/—5 and 3 — /=5 are two common
factors of z and y. If d is a ged of x and y, then |d|* must be a factor of |z|*> = 2.32.7
and |y|*> = 2.3.72. On the other hand, |d|> must be a multiple of |1 + /—5|> = 2.3 and
|3—+1/=5|?> = 2.7. Thus |d|? = 2.3.7 = 42. However, if d = a+ /=5 then |d|? = o® + 532,
which is never equal to 42.

The Euclidean Algorithm

We can turn Lemma 1 into an algorithm in the case when R is FEuclidean. Assume we
need to find the ged of ag = a and a; = b. Inductively define a,, for n > 1 and a,, # 0 by

Ap_1 = Qnlp + Apit, d(any1) < d(ay) or any =0

Since the d(a,) are a sequence of decreasing non-negative integers, eventually a, ;3 = 0.
However a;11 € (a;,a;,—1) and a;_1 € (a;,a;+1) imply the two ideals (a;_1,a;) and (a;, a;41)
are equal. Hence (ag,a1) = (an, ans1) = (a,) and a, is a ged of ag and a;.

This algorithm is called the Euclidean Algorithm. For more than two elements, one can

calculate the ged inductively by using ged(ey, ¢a, - .., ¢,) = ged(eq, ged(ea, . . ., ¢)).

Exercises

1. Prove that ged(cy,...,¢) = ged(eq, ged(cy, ..., ¢.)) provided the geds on the RHS
exist. What is ged(0)?

2. Let R = Z|w] where w = 1(1 4 +/=3). Show that R = {a + bw : a,b € Z} and that
R is Euclidean.

3. Use the Euclidean algorithm to find the ged of 7 — 3i and 5 + 37 in Z[i].
4. Determine ((Z/nZ)[X])*. [Hint: Consider the case n = p" first.|

5. Solve the congruences
r=imod1-+1 r=1mod2—1

in Z[i] (use Chinese Remainder Theorem).
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7261 8. Unique Factorization Fall 2017

An element a € R is irreducible if a # 0, a ¢ R*, and a = bc implies b € R* or ¢ € R*.
An element a € R is a prime if a # 0, a ¢ R and a | bc implies a | b or a | c.

Lemma 8.1 Let R be an ID, and a € R. Then

1. a is a prime element iff (a) is a non-zero prime ideal,

2. a is irreducible iff (a) is mazximal among proper principal ideals

(i.e., (a) C (b) implies (b) = (a) or (b) = R),
3. if a is prime then a s irreducible,

4. if a s irreducible and R is a PID then a is prime.

Proof.

1. If a is prime and bc € (a) then a | be. Hence a | b or a | ¢, so either b € (a) or ¢ € (a).
Also, a # 0, a ¢ R* implies (a) # (0), R. Conversely, if (a) is a prime ideal and a | bc,
then be € (a), so either b € (a) or ¢ € (a), so either a | b or a | ¢ and (a) # (0), R implies
a#0,a¢ R*.

2. If a € R be irreducible and (a) C (b) then a = be, so either ¢ € R* and (b) = (a) or
b€ R* and (b) = R. Conversely if (a) is maximal among all proper principal ideals and
a = be then (a) C (b), so either (a) = (b) and ¢ is a unit or (b) = R and b is a unit.

3. If a is a prime and a = bc then a | be. Thus either a | band ¢ € R*, ora | cand b € R*.
4. By part 2, (a) is a maximal ideal. Hence (a) is prime and so a is prime. O

A ring R is a Unique Factorization Domain (UFD) if R is an ID such that

Ul. Every a € R\ {0} can be written in the form a = up; ...p, where u € R* and the
p; are irreducible.

U2. Any two such factorizations are unique in the sense that if up; ...p, = vq ... qs then
r = s and there is a permutation 7 € S, such that p; ~ g for all <.

Lemma 8.2 R is a UFD iff R is an ID satisfying

A. there is no infinite sequence (a;)ien with a1 | a; and a;1q # a;, and

B. every irreducible is prime.

Proof.

A = Ul. Suppose a; € R has no such factorization. Then a; is neither a unit nor
irreducible, so a; = be, b, c ¢ R*, and either b or ¢ also has no factorization into irreducibles.
Assume b has no factorization into irreducibles and set as = b. Repeating this process we
get a sequence a; with a;1 | a; and a;41 % a;.

B = U2. Since p; is prime and p; | vq; ...qs, we must have p; | ¢; for some i. But ¢; is
irreducible, so p; ~ ¢;. Cancelling a factor of p; from both sides (R is an ID) and using

induction on r gives the result.
Ul and U2 = A and B is clear. O
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A ring is Noetherian if every sequence of ideals I; with I; C I;,, is eventually constant,
I,=1,.1=..., for some n.

Lemma 8.3 R is Noetherian iff every ideal is finitely generated.

Proof. <«: Let I = UI,. Then [ is an ideal, so I = (dy, ..., d,) for some d; € R. But then
there is an n; with d; € I,,. Let n = maxmn;, so that [ = (dy,...,d,) CI, C I, C---C1,
andso I, = [,,1=....

=: Assume [ is not finitely generated. Then (using Axiom of choice), pick inductively
d, € I\ (dy,...,d,—1). Then I, = (dy,...d,) is a strictly increasing sequence of ideals. O

Theorem Fuvery PID is a UFD.

Proof. Every ideal in a PID is finitely generated (by one element), so PID = Noethe-
rian. By considering the ideals (a;), Noetherian rings satisfy condition A of Lemma 8.2.
Lemma 8.1 part 4 implies condition B of Lemma 8.2, so PID = UFD. O

GCDs and factorizations

Lemma 8.4 If Ris a UFD and S C R then a gcd of S exists.

Proof. The relation ~ is an equivalence relation on the set of irreducibles in R. So by
choosing a representative irreducible from each equivalence class we can construct a set P
of pairwise non-associate irreducible elements of R. We can write any element a € R as
ull,epp™ and if b = v [ cop™ then U2 implies a | b iff n, < m, for all p. Write each
a; €S as a; = u; Hpep pir. If we let d = Hpep p™ with m, = ming,, s n;, then it is clear
that d is a ged for S. O

A partial converse to Lemma 8.4 is true.

Lemma 8.5 If R is an ID in which the gcd of any pair of elements exists then every
wrreducible is prime.

Proof.  First we prove that if geds exist then ged(ab, ac) ~ aged(b, ¢). Let e = ged(ab, ac)
and d = ged(b, ¢). Then d | b, ¢, so ad | ab, ac, so ad | e. Writing e = adu then e | ab, ac, so
du|b,c,s0du|d. Thusu € R* and e ~ ad (or d =0 =e).

Now let p be an irreducible and assume p } a,b. Then ged(p,b) ~ 1 since the ged must
be a factor or p and p f b. Hence ged(p,ab) | ged(ap,ab) ~ a. But ged(p,ab) | p, so
ged(p, ab) | ged(a, p) ~ 1. Hence ged(p, ab) ~ 1 and p f ab. Hence p is prime. O

Lemma 8.6 If R is an ID wn which every set S has a gcd which can be written in the
form > r;a; for some a; €S, r; € R, then R is a PID.

Proof. Let I be an ideal and write I = (S) for some S (e.g., S = I). Let d = ) _r;a; be
a ged of S. Then d | a for all a € S. Hence a € (d), so S C (d). Thus I C (d). However
d=>Y ma; € I. Then (d) C I. Hence I = (d) is principal. O
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7261 9. Factorization of Polynomials Fall 2017

Assume throughout this section that R is a UFD.

Let f(X) = > ,a;.X" € R[X]. Define the content of f(X) tobe ¢(f) = ged{ao, a1, ..., an}.
Note that if f # 0 then ¢(f) # 0. We call f primitive iff ¢(f) ~ 1.

Note that monic polynomials are primitive, but not conversely, e.g. 2X + 3 € Z[X].

Lemma (Gauss) If R is a UFD and f,g € R[X] are primitive, then so is fg.

Proof. Assume otherwise and let p be a prime dividing c( fg). Reducing the polynomials
mod p we get f,g € (R/(p))[X] with f,g # 0, but fg = fg = 0 (the map f > f
R[X] — (R/(p))[X] is a special case of the evaluation homomorphism ev, x where X is
sent to X and ev, x acts as the projection map 7: R — R/(p) on constants). Now p
is prime, so (p) is a prime ideal and R/(p) is an ID. Hence f,g # 0 implies fg # 0, a
contradiction. O

Corollary 9.1 If R is a UFD then c(fg) ~ c(f)c(g).

Proof. The result clearly holds if f or g is zero, so assume f,g # 0 and hence ¢(f) #
0. Since ged{aa;} ~ aged{a;}, claf) ~ ac(f) for all a € R. But f/c(f) € R[X], so
c(fe(f/e(f)) = c(f) and so f/e(f) is primitive. Now fg/(c(f)c(g)) = (f/c(f))(g/c(g)) is
primitive. Hence (fg) ~ c(f)e(g)el fg/e(f)e(g)) ~ c(F)e(g). 0

Lemma 9.2 If degf > 0 and [ is irreducible in R[X] then f is irreducible in F[X],
where F' = Frac R is the field of fractions of R.

Proof. Suppose f = gh in F[X]. By multiplying by denominators, there exist non-zero
a,b € R with ag,bh € R[X]. Thus abf = (ag)(bh) € R[X] and c(abf) ~ c(ag)c(bh). But
[ =c(f)(f/c(f)) is a factorization of f in R[X] and if deg f > 0, f/c(f) ¢ (R[X])* =
R*. Thus ¢(f) € R* and so c(abf) ~ ab. Now ab/c(ag)c(bh) = v € R* and f =
(u"tag/c(ag))(bh/c(bh)) is a factorization of f in R[X]. Hence either degg = 0 or deg f = 0
and so g or h is a unit in F[X]. O

Lemma 9.3 If R is a UFD then f € R[X] is irreducible iff either
(a) f € R is an irreducible in R, or (b) f is primitive in R[X] and irreducible in F[X].

Proof.  Assume first that deg f = 0. If f = abin R, f = abin R[X]. Conversely, if f = gh
in R[X] then degg = degh = 0, so f = gh in R. Since R* = (R[X])*, irreducibility in
R[X] is equivalent to irreducibility in R. Assume now that deg f > 0. If f is irreducible
in R[X] then by the previous lemma, f is irreducible in F[X]. Also, f = ¢(f)(f/c(f)), so
c(f) € (R[X])* = R* and f is primitive. Conversely, if f is primitive and irreducible in
F[X] and f = gh in R[X], then f = gh in F[X], so wlog g € (F[X])* N R[X] = R. But
then g | ¢(f) in R, so g € R* = (R[X])*. Thus f is irreducible in R[X]. O
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Theorem 9.4 If R is a UFD then R[X]| is a UFD.

Proof. Write f = c(f)f where f’ is primitive. Now ¢(f) = up; ...p, where u € R* =
(R[X])* and p; are irreducible in R. If f' = gh with g,h ¢ (R[X])* = R* then
c(g)e(h) ~ 1, so g, h are primitive and degg,degh > 0 (since otherwise either g or h
would lie in R*). By induction on the degree, f’ is the product of irreducible primitive
polynomials f =[] f;- Hence f has a factorization into irreducibles.

Now assume f = upi...pofi... fr = vq1...¢s01 .9, Where u,v € R*, py,q; are irre-
ducible in R and f;, g; are primitive and irreducible in F[X]. The ring F[X] is a PID,
so is a UFD. The elements up; ...p, and vq ...qs are units in F[X], so t = u and wlog
fi = 7gi for some v; € (F[X])* = F \ {0}. Write v, = a;/b; with a;,0; € R. Now
bifi = a;g;, so b; ~ c(b;f;) = c(a;g;) ~ a;. Thus 7; € R* and f; ~ ¢; in R[X]|. Now
c(f) ~upy...pr ~vq...qs, so by unique factorization in R, r = s and wlog p; ~ ¢; in R
and hence in R[X]. Hence the factorization of f is unique in R[X]. O

Factorization methods
Evaluation method: If g | f in R[X] then g(c) | f(¢) in R for all ¢ € R.

Example: If f = X3 —4X +1 € Z[X], then f(£2) = 1. If f = gh then we can assume wlog
that g is linear. But then g(£2) = 1. The only linear polynomials with this property are
+X/2 which do not lie in Z[X]. Hence f is irreducible in Z[X] (and hence also in Q[X]).

Reduction mod p: If f = gh in R[X] and p is a prime then f = gh in (R/(p))[X].

Example: If f = X* — X? +4X + 3 € Z[X], then if p =2, f=X"+X24+1 =
(X2+X+1)(X2+X+1)in (Z/2Z)[X] and if p= 3 then f = X1 - X2+ X = X (X?— X +1)
in (Z/3Z)[X]. In Z[X], f cannot factor as a product of two quadratics (since there is no

quadratic factor mod 3), nor can it have a linear factor (no linear factor mod 2), hence f
is irreducible in Z[X].

Lemma (Eisenstein’s irreducibility criterion) Assume R isa UFD, f =" ;a, X" €
R[X], is primitive, and p is a prime such that p } a,, p | a; for i <mn and p* f ag. Then f
is irreducible in R[X].

Proof. Suppose f = gh. Then gh = a,X™ in (R/(p))[X]. Thus § = aX® and h = bX’
for some a,b € R/(p) and i + j = n. But degg + degh = n and i < degg, j < degh.
Hence i = degg and j = degh. If g and h are not units in R[X| and f is primitive then
deg g,deg h > 0. Hence §(0) = h(0) = 0, so p | g(0), h(0). Thus p* | g(0)h(0) = £(0) = aq,
a contradiction. Hence f is irreducible. O

Exercises

1. Show that for p a prime in Z, f(X) =14+ X + ... XP71 = (XP - 1)/(X — 1) is
irreducible in Q[X] [Hint: consider f(X + 1) and use Eisenstein’s criterion].

2. Let f = X3 — X + 1. Show that (Z/3Z)[X]/(f) is a field with 27 elements.
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7261 10. Symmetric Polynomials Fall 2017

A polynomial f(Xi,...,X,) € R[X\,...,X,] is called symmetric if
f(X17 cee 7Xn) = f(Xﬂ'(l)7 s aXﬂ(n))

for any permutation 7w € S,,.

Examples X12—|—X22 —i—Xg and X1 Xo+ X5 X3+ X3X; are symmetric polynomials in the ring
Z|X1, Xo, X3], however X2 X, + X3 X3+ X2X] is not symmetric (consider the permutation
T = (12)).

The elementary symmetric polynomials o, € R[Xi,...,X,] are defined by o, =
D ir<igemci, Xiy - Xip = Z|S|:r [I;cs Xi where in the second expression the sum is over
all subsets S of {1,...,n} of size r.

Examples For n = 3, og = 1, o1 = X1 + X2 + Xg, 09 — X1X2 + X2X3 + XgXl,
03 = XlXQXg.

Note: (X +X1)(X +Xy)... (X +X,) = X"+ X" ' + 0 X"+ + 0,

Define the degree of cX{' ... X% € R[X,...,X,], ¢ # 0, as the n-tuple (aq,...,a,).
More generally define the degree of f = an X1t ... X2 as the maximum
value of (ai,...,a,) over all cq,,
(a1,...,a,) < (b1,...,b,) iff there exists an ¢ such that a;, < b; and a; = b; for all j < i.

Q7 yeeey Qp Ylyees

Example In R[X1, Xz, X3, deg( X7 X3 + X{X3) = (7,0,1).
In R[Xy,...,X,], dego, = (1,...,1,0,...,0), where there are r ones and n — r zeros.

Lemma 10.1 The lexicographic ordering on N" is a well ordering: N"™ s totally ordered
and every non-empty S C N™ has a minimal element.

Proof. To prove every S # () has a minimal element, inductively construct sets S; with
So = S and S; equal to the set of elements (ay,...,a,) of S;_; for which a; is minimal. It
is clear that S; # () and the (unique) element of S, is the minimal element of S. O

Lemma 10.2 [If f € R[Xy,...,X,] is symmetric and deg f = (aq,...,a,) then a; >
ag 2 -+ 2 Qy.

Proof.  Assume otherwise and let a; < a; with ¢ > j. Then if 7 = (ij), f(X1,...,X,)
f( Xz - -+, Xa(n)) has a term with degree (ar(1, . . ., Gr(»)) which is larger than (a1, ..., an
contradicting the definition of the degree.

~—

a

Lemma 10.3 If f,g € R[Xy,...,X,] and f,g are monic (the term with degree equal to
deg f or degg has coefficient 1) then deg fg = deg f + deg g where addition of degrees is
performed componentwise: (ay,...,a,) + (b1,...,b,) = (a1 +b1,...,a, + by).
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Proof. Prove that in the lexicographical ordering, a < b and ¢ < d imply a+c < b+d.
The rest of the proof is the same as for the one variable case. O

Theorem 10.1 The polynomial f € R[Xy,...,X,] is symmetric iff f € R[oy,...,04].

Clearly o; is symmetric, and the set of symmetric polynomials forms a subring of the ring
R[X1,...,X,]. Hence every element of R[oy,...,0,] is symmetric. We now need to show
every symmetric polynomial can be written as a polynomial in o4, ..., 0,. We use induction
on deg f. Let f be a counterexample with minimal deg f (using Lemma 1). Let deg f =
(a1,...,a,) and let the leading term have coefficient ¢ € R. Then g = coy'™"205*™ " ... glr
has deg g = (ay,...,a,) = deg f (by Lemma 3) and the same leading coefficient ¢. Thus
deg(f — g) < deg f . Now g is symmetric, so f — g is symmetric. By induction on deg f,
f—g € Rloy,...,0,]. But g € Rloy,...,0,]. Hence f € R[oy,...,0,], contradicting the
choice of f.

If « € R and R is a subring of R, we call a algebraic over R if the map ev,: R[X]| —
R’ is not injective, i.e., there exists a non-zero f(X) € R[X]| with f(a) = 0. More
generally we say a,...,q, are algebraically dependent if ev,, .. : R[Xi,...,X,] —
R’ is not injective, or equivalently there exists a non-zero polynomial f € R[X7,..., X,]
with f(aq,...,a,) =0. Wesay a, ..., «, are algebraically independent over R if they
are not algebraically dependent.

Theorem 10.2 The elements oy,...,0, are algebraically independent over R. The ele-
ments X; are algebraic over Roy,. .., 0y).

Proof. Assume Y ¢q. . 4,07 ...0% = 0 in R[Xy,...,X,]. Among the (finite set of)
(by,...,by,) such that ¢, ;, # 0, pick one such that (by + -+ + by, bo + -+ + by, ..., by)
is maximal in the lexicographical ordering. The map sending (ay,...,a,) to (a; + -+ +
Uny Qo + -+ + @y, ..., a,) is an injection N? to N¢, so this (by,...,b,) is uniquely deter-
mined. Now deg ¢4y, 0,00 ... 0% = (by+ -+ + by, bo+ -+ + by,...,b,) contradicting
> Cayoan0yt ..ol = 0. Thus o0y,...,0, are algebraically independent. The elements X
are algebraic over R[al, ...,0p,) since they are roots of X,, — oy X" 1 + ...+ 0, =0. O

As a consequence of Theorem 2, any symmetric polynomial f € R[Xj,...,X,] can be
written as g(oy,...,0,) with g a unique element of R[X,...,X,]. For example, X7 +
X2+ X2 = 0% — 20,.

Exercises

L Let 0 = [[,.;(Xi — Xj) € Z[Xy, ..., X,]. Show that §* is symmetric and for n = 3

express 02 in terms of o1, 09, 03.

2. Let f(X) = X3 —3X + 5 have complex roots aj, as,as. Find a polynomial with
complex roots a?, a3, a3.
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