Ring Theory

Fall 2017

Paul Balister University of Memphis

7261 1. Rings

Fall 2017

A **Ring** (with 1) is a set R with two binary operations + and \times such that

R1. (R, +) is an Abelian group under +.

R2. (R, \times) is a Monoid under \times , (so \times is associative and has an identity 1).

R3. The distributive laws hold: a(b+c) = ab + ac, (b+c)a = ba + ca.

Many of the standard facts from algebra follow from these axioms. In particular, 0a = a0 = 0, a(-b) = (-a)b = -(ab), -a = (-1)a, $(\sum_i a_i)(\sum_j b_j) = \sum_{i,j} a_i b_j$.

The ring R is **commutative** if \times is commutative.

An element of R is a **unit** if it has a (2-sided) multiplicative inverse.

The set of units R^{\times} (or U(R)) is a group under \times .

The **trivial ring** is the ring $\{0\}$ with 0 + 0 = 0.0 = 0, and is the only ring in which 1 = 0. A **division ring** or **skew field** is a non-trivial ring in which every non-zero element is a unit.

A field is a commutative division ring.

An Integral Domain (ID) is a non-trivial commutative ring in which ab = 0 implies a = 0 or b = 0. Note that any field is an ID.

Examples

- 1. \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} are all rings under the usual + and ×. \mathbb{Q} , \mathbb{R} , \mathbb{C} are fields. \mathbb{Z} is an ID.
- 2. $\mathbb{Z}/n\mathbb{Z}$ is a ring under + and × mod n. This ring is an ID iff n is prime. In fact, if n is prime then $\mathbb{Z}/n\mathbb{Z}$ is a field.
- 3. If R is a ring then the set $M_n(R)$ of $n \times n$ matrices with entries in R is a ring under matrix addition and multiplication. $M_n(R)$ is non-commutative in general.
- 4. Let (A, +) be an abelian group and let $\operatorname{End}(A)$ be the set of group homomorphisms $A \to A$. Define addition pointwise, (f + g)(a) = f(a) + g(a), and multiplication by composition, fg(a) = f(g(a)). Then $\operatorname{End}(A)$ is a (usually non-commutative) ring.
- 5. If $A = \prod_{i \in \mathbb{N}} \mathbb{Z} = \{(a_0, a_1, \dots) : a_i \in \mathbb{Z}\}$ then the maps $R((a_0, \dots)) = (0, a_0, a_1, \dots)$ and $L((a_0, a_1, \dots)) = (a_1, a_2, \dots)$ lie in End(A) and $LR = 1 \neq RL$. Hence R has a left, but not a right inverse. [Recall that left and right inverses must be equal if they both exist.]
- 6. Let C[0,1] be the set of continuous functions from [0,1] to \mathbb{R} with addition and multiplication defined pointwise. Then C[0,1] is a ring. It is not an ID (why?).

A subset S of R is a **subring** iff (S, +) is a subgroup of (R, +) and (S, \times) is a submonoid of (R, \times) . Equivalently, $1_R \in S$ and $a, b \in S$ implies $a - b, ab \in S$.

A subset I of R is a **left ideal** iff (I, +) is a subgroup of (I, +) such that for all $r \in R$, $a \in I$, we have $ra \in I$. A subset I of R is a **right ideal** iff (I, +) is a subgroup of (I, +)

such that for all $r \in R$, $a \in I$, we have $ar \in I$. An **ideal** is a subset that is both a left ideal and a right ideal. Equivalently, $I \neq \emptyset$ and $a, b \in I$, $r \in R$, implies $a - b, ra, ar \in I$. The sets $\{0\}$ and R are ideals of R. An ideal I is **proper** if $I \neq R$, and **non-trivial** if $I \neq \{0\}$.

Examples

- 1. $n\mathbb{Z}$ is an ideal of \mathbb{Z} but not a subring (unless $n = \pm 1$).
- 2. \mathbb{Z} is a subring of \mathbb{R} but not an ideal.
- 3. The set of the matrices $I = \left\{ \begin{pmatrix} 0 & b \\ 0 & d \end{pmatrix} : b, d \in \mathbb{R} \right\}$ is a left ideal, but not a right ideal of $M_2(\mathbb{R})$. But I is a 2-sided ideal of the subring $T = \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} : a, b, d \in \mathbb{R} \right\}$ of $M_2(\mathbb{R})$.
- 4. The quaternions $\mathbb{H} = \left\{ \begin{pmatrix} \alpha & \beta \\ -\bar{\beta} & \bar{\alpha} \end{pmatrix} : \alpha, \beta \in \mathbb{C} \right\}$ form a subring of $M_2(\mathbb{C})$. Any $x \in \mathbb{H}$ can be written uniquely as x = a + bi + cj + dk where $i = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, j = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, k = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$. Then $i^2 = j^2 = k^2 = -1$, ij = k, ji = -k, and $(a + bi + cj + dk)^{-1} = (a/r) (b/r)i (c/r)j (d/r)k$ where $r = a^2 + b^2 + c^2 + d^2$. Thus \mathbb{H} is a non-commutative division ring.

Lemma 1.1 If S_{α} , $\alpha \in A$, are subrings of R then $\bigcap_{\alpha \in A} S_{\alpha}$ is a subring of R. If I_{α} are ideals of R then $\bigcap_{\alpha \in A} I_{\alpha}$ is an ideal of R.

The ideal (S) generated by a subset $S \subseteq R$ is the smallest ideal of R containing S. It can be defined as the intersection $\bigcap_{J\supset S} J$ of all ideals containing S.

An ideal I is **principal** if it is generated by a single element, I = (a) for some $a \in R$. An ideal is **finitely generated** if it is generated by a finite set, I = (S), $|S| < \infty$.

We can also define the subring generated by a subset. More generally, if R is a subring of R' and $S \subseteq R'$, then R[S] is the smallest subring of R' containing R and S (= the intersection of all subrings of R' containing R and S).

- 1. Show that an ideal is proper iff it does not contain a unit.
- 2. Show that $(S) = \{\sum_{i=1}^{n} r_i s_i r'_i : r_i, r'_i \in R, s_i \in S, n \in \mathbb{N}\}.$
- 3. Show that if R is commutative then the principal ideal (a) is $\{ra : r \in R\}$.
- 4. Show that $R[\alpha]$ is the set of all polynomial expressions $\sum_{i=0}^{n} a_i \alpha^i$ with coefficients $a_i \in R$.
- 5. Deduce that $\mathbb{Z}[i] = \{a+bi: a, b \in \mathbb{Z}\}$ as a subring of \mathbb{C} and $\mathbb{Q}[\sqrt[3]{2}] = \{a+b\sqrt[3]{2}+c\sqrt[3]{4}: a, b, c \in \mathbb{Q}\}$ as a subring of \mathbb{R} .
- 6. Describe $\mathbb{Z}[1/2]$ as a subring of \mathbb{Q} .
- 7. Let I be the set of continuous functions $f \in C[0, 1]$ such that f(0.5) = 0. Show that I is an ideal of C[0, 1] that is not principal (or even finitely generated).

2. Ring homomorphisms Fall 2017 7261

A (ring) homomorphism from the ring R to the ring S is a function $f: R \to S$ that is a group homomorphism $(R, +) \to (S, +)$ and a monoid homomorphism $(R, \times) \to (S, \times)$. Equivalently f(a + b) = f(a) + f(b), f(ab) = f(a)f(b), $f(1_R) = 1_S$.

Examples

- 1. The map $f: T \to \mathbb{R}$ given by $f(\begin{pmatrix} a & b \\ 0 & d \end{pmatrix}) = a$ where $T = \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} : a, b, d \in \mathbb{R} \right\}$.
- 2. If S is a subring of R then the inclusion map $i: S \to R, i(r) = r$, is a homomorphism.

A (ring) isomorphism is a homomorphism $R \to S$ that has a 2-sided inverse map $q: S \to S$ R which is also a homomorphism. It is sufficient for f to be a bijective homomorphism.

If I is an ideal of R then the **quotient ring** R/I is the quotient group (R/I, +) with multiplication defined by (a + I)(b + I) = ab + I.

Lemma 2.1 The quotient ring R/I is indeed a ring and the projection map $\pi: R \to R/I$ given by $\pi(a) = a + I$ is a surjective ring homomorphism.

Example $R = \mathbb{Z}, I = (n)$, then $R/I = \mathbb{Z}/n\mathbb{Z}$ is the integers mod n with addition and multiplication mod n.

Theorem (1st Isomorphism Theorem) If $f: R \to S$ then Ker $f = \{r: f(r) = 0\}$ is an ideal of R, Im $f = \{f(r) : r \in R\}$ is a subring of S and $f = i \circ \tilde{f} \circ \pi$ where

- $\pi \colon R \to R/\operatorname{Ker} f$ is the (surjective) projection homomorphism. $\begin{array}{cccc} R & \stackrel{f}{\longrightarrow} & S \\ \pi \downarrow & & \uparrow i \end{array}$
- $\tilde{f}: R/I \to \text{Im } f$ is a (bijective) ring isomorphism. $R/\operatorname{Ker} f \xrightarrow{\widetilde{f}} \operatorname{Im} f$
- i: Im $f \to S$ is the (injective) inclusion homomorphism.

Theorem (2nd Isomorphism Theorem) If I is an ideal of R then there is a bijection

{subgroups H of (R, +) with $I \leq H \leq R$ } \leftrightarrow {subgroups of (R/I, +)},

where H corresponds to H/I. In this correspondence subrings correspond to subrings and ideals correspond to ideals. Moreover, if J is an ideal with I < J < R then there is an isomorphism $R/J \cong (R/I)/(J/I)$.

Theorem (3rd Isomorphism Theorem) If I is an ideal of R and S is a subring of R then S + I is a subring of $R, S \cap I$ is an ideal of S, and $(S + I)/I \cong S/(S \cap I)$.

Example For any ring R define $f: \mathbb{Z} \to R$ by $f(n) = n \cdot 1_R$ $(n \cdot 1_R) = 1_R + \cdots + 1_R$ defined as for additive groups). Then f is a ring homomorphism. The kernel is a subgroup of $(\mathbb{Z}, +)$ so is $n\mathbb{Z}$ for some $n \geq 0$. The image $S = \{n, 1_R : n \in \mathbb{Z}\}$ is called the **prime subring** of R and is isomorphic to $\mathbb{Z}/n\mathbb{Z}$. The **characteristic** of R, char(R), is the integer n. E.g., $\operatorname{char}(\mathbb{R}) = 0, \operatorname{char}(\mathbb{Z}/n\mathbb{Z}) = n, \operatorname{char}(\{0\}) = 1.$

A maximal ideal is a proper ideal M of R such that for any ideal $I, M \subseteq I \subseteq R$ implies I = M or I = R.

Example The ideal (n) is a maximal ideal of \mathbb{Z} iff n is prime.

A non-trivial ring is **simple** if the only ideals of R are (0) and R. Equivalently, (0) is maximal.

Lemma 2.2 Let R be a commutative ring. Then R is simple iff R is a field.

Proof. If R is a field and $I \neq (0)$ is an ideal then $u \in I$ for some $u \neq 0$. But u is a unit so $(ru^{-1})u = r \in I$ for all $r \in R$. Thus I = R. Conversely, if $a \neq 0$ and a is not a unit then $(a) = \{ra : r \in R\}$ is a non-trivial proper ideal of R.

Note that if R is a division ring then R is simple. However the converse fails:

Lemma 2.3 Let D be a division ring. Then $M_n(D)$ is a simple ring for any $n \ge 1$.

Proof. Let I be a non-zero ideal of $M_n(D)$ and let $A = (a_{ij}) \in I$, $A \neq 0$. In particular $a_{kl} \neq 0$ for some k, l. Let E_{ij} be the matrix with 1 in entry (i, j) and zeros elsewhere. Then $E_{ik}AE_{lj} = a_{kl}E_{ij} \in I$. Since $a_{kl} \in D$ and D is a division ring, $a_{kl}^{-1} \in D$, so $a_{kl}^{-1}I \in M_n(D)$. Now $(a_{kl}^{-1}I)(a_{kl}E_{ij}) = E_{ij} \in I$. But any matrix $B = (b_{ij})$ is a linear combination $\sum (b_{ij}I)E_{ij}$, so $B \in I$ and $I = M_n(D)$.

So by the 2nd Isomorphism Theorem, for commutative R, M is maximal iff R/M is a field, but for non-commutative R, M may be maximal without R/M being a division ring.

- 1. Show that any finite ID is a field.
- 2. An element a of a ring is **nilpotent** if $a^n = 0$ for some $n \in \mathbb{N}$. Show that if a is nilpotent then 1 + a is a unit.
- 3. Show that if R is commutative then the set of nilpotent elements forms an ideal of R. [Hint: make sure you check that a, b nilpotent implies a b is nilpotent.]
- 4. Show that if $r \in R$ lies in the intersection of all maximal ideals of R then 1 + r is a unit.
- 5. Show that any homomorphism $f: F \to R$ from a field F to a non-trivial ring R is injective, so in particular R contains a subring isomorphic to F.

7261 3. Zorn's Lemma

A partial ordering on a set \mathcal{X} is a relation \leq satisfying the properties:

O1. $\forall x \colon x \leq x$,

O2. $\forall x, y$: if $x \leq y$ and $y \leq x$ then x = y,

O3. $\forall x, y, z$: if $x \leq y$ and $y \leq z$ then $x \leq z$.

A total ordering is a partial ordering which also satisfies:

O4. $\forall x, y$: either $x \leq y$ or $y \leq x$.

Example Any collection of sets with \subseteq as the ordering forms a partially ordered set that is not in general totally ordered.

If (\mathcal{X}, \leq) is a partially ordered set, a **chain** in \mathcal{X} is a non-empty subset $\mathcal{C} \subseteq \mathcal{X}$ that is totally ordered by \leq .

If $S \subseteq \mathcal{X}$, and $x \in \mathcal{X}$, we say x is an **upper bound** for S if $y \leq x$ for all $y \in S$. [Note that we do not require x to be an element of S.]

A maximal element of \mathcal{X} is an element x such that for any $y \in \mathcal{X}$, $x \leq y$ implies x = y. [Note: This does not imply that $y \leq x$ for all y since \leq is only a partial order. In particular there may be many maximal elements.]

Theorem (Zorn's Lemma) If (\mathcal{X}, \leq) is a non-empty partially ordered set for which every chain has an upper bound then \mathcal{X} has a maximal element.

This result follows from (and is equivalent to) the Axiom of choice, which states that if X_i are non-empty sets then $\prod_{i \in I} X_i$ is non-empty. [I will not give the proof here as it is rather long.]

Note: If we had defined things so that \emptyset were a chain, we would not need the condition that $\mathcal{X} \neq \emptyset$ in Zorn's Lemma since the existence of an upper bound for \emptyset is just the condition that an element of \mathcal{X} exists. However, in practice it is easier to check $\mathcal{X} \neq \emptyset$ and then check separately that each *non-empty* totally ordered subset has an upper bound.

Theorem 3.1 If I is a proper ideal of a ring R (with 1) then there exists a maximal ideal M such that $I \subseteq M$.

Proof. If an ideal J contains 1 then J = R, so an ideal is proper iff it does not contain 1. Let \mathcal{X} be the set of proper ideals J of R with $I \subseteq J$. The partial order on \mathcal{X} will be \subseteq . Since $I \in \mathcal{X}, \mathcal{X} \neq \emptyset$. Now let \mathcal{C} be a chain in \mathcal{X} , i.e., a set of ideals $\{J_{\alpha}\}$ such that for every $J_{\alpha}, J_{\beta} \in \mathcal{C}$ either $J_{\alpha} \subseteq J_{\beta}$ or $J_{\beta} \subseteq J_{\alpha}$. Let $K = \bigcup_{J_{\alpha} \in \mathcal{C}} J_{\alpha}$. We shall show that K is an upper bound for \mathcal{C} . Firstly $\mathcal{C} \neq \emptyset$, so some ideal J_{α} lies in \mathcal{C} and $I \subseteq J_{\alpha} \subseteq K$. In particular $K \neq \emptyset$. If $x, y \in K$ then $x \in J_{\alpha}, y \in J_{\beta}$, say. Since \mathcal{C} is totally ordered, we can assume without loss of generality that $J_{\alpha} \subseteq J_{\beta}$. Thus $x, y \in J_{\beta}$, and $x - y \in J_{\beta} \subseteq K$. If $x \in K, r \in R$, then $x \in J_{\alpha}$, say, so $xr, rx \in J_{\alpha} \subseteq K$. Hence K is an ideal with $I \subseteq K$. However $1 \notin J_{\alpha}$ for each $J_{\alpha} \in \mathcal{C}$, so $1 \notin K$. Hence K is proper. Therefore $K \in \mathcal{X}$ and is clearly an upper bound for \mathcal{C} .

The conditions of Zorn's Lemma apply, so \mathcal{X} has a maximal element M, say. Now M is a proper ideal containing I and is maximal, since if $M \subset J \subset R$ then $J \in \mathcal{X}$ and M would not be maximal in \mathcal{X} .

We now give an example from linear algebra. Let V be a vector space (possibly infinite dimensional).

A set $S \subseteq V$ is called **linearly independent** if there are no non-trivial *finite* linear combinations that give 0. In other words if $\sum_{i=1}^{n} \lambda_i s_i = 0$ and the s_i are distinct elements of S then $\lambda_i = 0$ for each i.

A set $S \subseteq V$ is called **spanning** if every element $v \in V$ can be written as a *finite* linear combinations of elements of $S, v = \sum_{i=1}^{n} \lambda_i s_i$.

A set $S \subseteq V$ is called a **basis** if it is a linearly independent spanning set. Note that every element $v \in V$ can be written as a linear combination of elements of a basis in a unique way. [Spanning implies existence, linear independence implies uniqueness.]

Theorem 3.2 Every vector space has a basis.

Proof. Let \mathcal{X} be the set of all linearly independent sets in V partially ordered by \subseteq . Since \emptyset is linearly independent, $\mathcal{X} \neq \emptyset$. Let \mathcal{C} be a chain in \mathcal{X} and let $S = \bigcup_{S_{\alpha} \in \mathcal{C}} S_{\alpha}$. We shall show that S is linearly independent.

Suppose $\sum_{i=1}^{n} \lambda_i s_i = 0$ and $s_i \in S_{\alpha_i} \in \mathcal{C}$ (the s_i are distinct but the α_i need not be). Then by total ordering of the S_{α_i} , there must be one S_{α_j} that contains all the others (use induction on n). But then $\sum_{i=1}^{n} \lambda_i s_i = 0$ is a linear relation in S_{α_j} which is linearly independent. Thus $\lambda_i = 0$ for all i. Hence S is linearly independent, so $S \in \mathcal{X}$ and is an upper bound for \mathcal{C} .

Now apply Zorn's Lemma to give a maximal linearly independent set M. We shall show that M spans V and so is a basis. Clearly any element of M is a linear combination of elements of M, so pick any $v \notin M$ and consider $M \cup \{v\}$. By maximality of M this cannot be linearly independent. Hence there is a linear combination $\lambda v + \sum_{i=1}^{n} \lambda_i s_i = 0$, $s_i \in M$, with not all the λ 's zero. If $\lambda = 0$ this gives a linear relation in M, contradicting linear independence of M. Hence $\lambda \neq 0$ and $v = \sum_{i=1}^{n} (-\lambda_i/\lambda) s_i$ is a linear combination of elements of M.

7261 4. Miscellaneous topics

Fall 2017

Anti-isomorphisms

An **anti-homomorphism** is a map $f: R \to S$ such that f(a+b) = f(a) + f(b), f(1) = 1, and f(ab) = f(b)f(a). An **anti-isomorphism** is an invertible anti-homomorphism.

Examples The transpose map $^T \colon M_n(\mathbb{R}) \to M_n(\mathbb{R})$. The map $\mathbb{H} \to \mathbb{H}$ given by f(a + bi + cj + dk) = a - bi - cj - dk.

The **opposite ring** R^o of R is the ring R with multiplication defined by $a \times_{R^o} b = b \times_R a$. Note that $R^{oo} = R$.

Lemma 4.1 A map $f: R \to S$ is an anti-homomorphism iff it is a homomorphism viewed as a map $R \to S^o$ (or $R^o \to S$).

Example $M_n(\mathbb{R})^o$ is isomorphic to $M_n(\mathbb{R})$, one isomorphism being the transpose map ^T.

Rngs (Rings without 1s)

A **Rng** (or "ring which does not necessarily have a 1") is a set R with + and \times defined so that (R, +) is an abelian group, (R, \times) is a semigroup (\times is associative), and the distributive laws hold. However, R need not contain a multiplicative identity.

Subrngs, rng-homomorphisms etc., can be defined without the conditions involving 1. The definition of an ideal is the same, and an ideal is a special case of a subrng. The theory of rngs is similar to that of rings, although they are more awkward to deal with later on. The following lemma shows that we can regard a rng as an ideal of a bigger ring.

Lemma 4.2 Let R be a rng and define $R_1 = \mathbb{Z} \times R$ with addition (n, r) + (m, s) = (n+m, r+s) and multiplication (n, r)(m, s) = (nm, n.s+m.r+rs), where $n.s = s+\cdots+s$ etc.. Then R_1 is a ring containing an ideal $\{0\} \times R$ isomorphic to R.

Direct sums and the Chinese Remainder Theorem

If R_1 and R_2 are rings, define the ring $R_1 \oplus R_2$ as the set $R_1 \times R_2$ with addition $(a_1, a_2) + (b_1, b_2) = (a_1 + b_1, a_2 + b_2)$ and multiplication $(a_1, a_2)(b_1, b_2) = (a_1b_1, a_2b_2)$. The identity is (1, 1). The direct sum $R_1 \oplus \cdots \oplus R_n$ is defined similarly. Note that even if R_1 and R_2 are IDs, $R_1 \oplus R_2$ will not be since (1, 0)(0, 1) = (0, 0).

If R is a ring and I and J are ideals of R, we can define the following ideals.

- $I + J = \{a + b : a \in I, b \in J\}$
- $I \cap J = \{c : c \in I, c \in J\}$
- $IJ = \{\sum_{i=1}^{n} a_i b_i : a_i \in I, \ b_i \in J, \ n \in \mathbb{N}\}$

It is easily checked that each of these is indeed an ideal. Note that in general $IJ \neq \{ab : a \in I, b \in J\}$, but IJ is the ideal generated by all the products $ab, a \in I, b \in J$.

Example For $R = \mathbb{Z}$, $I = (x) = \{ax : a \in \mathbb{Z}\}$, $J = (y) = \{by : b \in \mathbb{Z}\}$

- 1. I + J = (gcd(x, y)). Note gcd(x, y) = ax + by for some $a, b \in \mathbb{Z}$, so $gcd(x, y) \in I + J$. Conversely $I + J = \{ax + by : a, b \in \mathbb{Z}\}$ and ax + by is always a multiple of gcd(x, y).
- 2. $I \cap J = (\operatorname{lcm}(x, y))$. $m \in I \iff x \mid m \text{ and } m \in J \iff y \mid m$. Hence if $m \in I \cap J$ then m must be a common multiple of x and y. Thus $m \in (\operatorname{lcm}(x, y))$ Conversely $\operatorname{lcm}(x, y)$ is a common multiple of x and y so lies in $I \cap J$. Hence $I \cap J = (\operatorname{lcm}(x, y))$.
- 3. IJ = (xy). $IJ = \{\sum a_i x b_i y : a_i, b_i \in \mathbb{Z}\} \subseteq (xy)$. Conversely $xy \in IJ$, so $(xy) \subseteq IJ$.

Ideals I and J are **relatively prime** if I + J = R. Equivalently $\exists a \in I, b \in J : a + b = 1$ (recall that an ideal equals R iff it contains 1).

Lemma 4.3 $IJ \subseteq I \cap J$. Moreover, if R is commutative and I + J = R then $IJ = I \cap J$.

Proof. If $a_i \in I$ then $\sum a_i b_i \in I$. If $b_i \in J$ then $\sum a_i b_i \in J$. Hence $IJ \subseteq I \cap J$. Now let I + J = R so that a + b = 1 for some $a \in I$, $b \in J$. Then if $c \in I \cap J$, $ac + cb \in IJ$. But ac + cb = c(a + b) = c, so $c \in IJ$. Thus $I \cap J \subseteq IJ$ and so $IJ = I \cap J$.

Theorem (Chinese Remainder Theorem) If I and J are ideals of a commutative ring R and I + J = R then $R/IJ \cong R/I \oplus R/J$.

Proof. Let $f: R \to R/I \oplus R/J$ be defined by f(r) = (r + I, r + J). Then f(r + s) = (r + s + I, r + s + J) = (r + I, r + J) + (s + I, s + J) = f(r) + f(s), f(rs) = (rs + I, rs + J) = (r + I, r + J)(s + I, s + J) = f(r)f(s), and f(1) = (1 + I, 1 + J) is the identity in $R/I \oplus R/J$. Now Ker $f = \{r: r + I = I, r + J = J\} = I \cap J$ so Ker f = IJ by Lemma 4.3. For the image of f, write 1 = a + b with $a \in I, b \in J$. Then f(sa + rb) = (sa + r(1 - a) + I, s(1 - b) + rb + J) = (r + I, s + J). Thus f is surjective. Hence $R/IJ \cong R/I \oplus R/J$.

Example If gcd(n,m) = 1 then $\mathbb{Z}/nm\mathbb{Z} \cong \mathbb{Z}/n\mathbb{Z} \oplus \mathbb{Z}/m\mathbb{Z}$.

- 1. Show that composing two anti-homomorphisms gives a homomorphism and composing an anti-homomorphism with a homomorphism gives an anti-homomorphism.
- 2. Define $\phi(n) = |(\mathbb{Z}/n\mathbb{Z})^{\times}|$. Show that if gcd(n,m) = 1 then $\phi(nm) = \phi(n)\phi(m)$. If $n = p_1^{a_1} \dots p_r^{a_r}$ is the prime factorization of n, deduce that $\phi(n) = \prod_i p_i^{a_i-1}(p_i-1)$.
- 3. Generalize the CRT: if I_1, \ldots, I_n are ideals of a commutative ring R and for each i and j, $I_i + I_j = R$, show that $R/I_1I_2 \ldots I_n \cong I_1 \oplus I_2 \oplus \cdots \oplus I_n$.

7261 5. Primes and Localization Fall 2017

Throughout this section we shall assume R is a commutative ring.

Recall: An Integral Domain (ID) is a non-trivial ring in which ab = 0 implies either a = 0 or b = 0.

A **prime** ideal of a commutative ring R is a proper ideal such that $ab \in P$ implies either $a \in P$ or $b \in P$.

Lemma 5.1 An ideal P is prime iff R/P is an ID.

Proof. Assume P is prime. Then R/P is non-trivial since P is proper. If (a+P)(b+P) = 0 + P then ab + P = P and so $ab \in P$. Thus either $a \in P$ or $b \in P$, so either a + P = P or b + P = P. Thus R/P is an ID. Conversely, if R/P is an ID then P is proper since R/P is non-trivial. If $a, b \notin P$, then $a + P, b + P \neq 0 + P$, so $(a + P)(b + P) = ab + P \neq 0 + P$, so $ab \notin P$. Thus P is a prime ideal.

Corollary 5.2 Any maximal ideal of a commutative ring is also a prime ideal.

Proof. M maximal $\Rightarrow R/M$ is a field $\Rightarrow R/M$ is an ID $\Rightarrow M$ is prime.

The converse does not hold: (0) is prime but not maximal in \mathbb{Z} .

Examples of prime ideals: (p) in \mathbb{Z} , (0) in any ID. The ideal (X) in the ring $\mathbb{Z}[X]$ of polynomials in X with coefficients in \mathbb{Z} . This last example is also not maximal.

Every field is an ID. Furthermore, every subring of a field is an ID (e.g., $\mathbb{Z} \subseteq \mathbb{Q}$). We shall show that conversely, every ID can be embedded as a subring of a field.

Assume R is a commutative ring and $S \subseteq R$ is a submonoid of (R, \times) . In other words, $1 \in S$ and $a, b \in S$ implies $ab \in S$. For example, set $S = R \setminus P$ for any prime P. One particularly important case is when R is an ID and $S = R \setminus \{0\}$.

Define $S^{-1}R$ as $(R \times S)/\sim$, where $(r, s) \sim (r', s')$ iff $\exists u \in S : urs' = ur's$. We write r/s for the equivalence class $(r, s) \in S^{-1}R$.

Note: if S contains no zero-divisors then $(r, s) \sim (r', s')$ iff rs' = r's.

Lemma 5.3 The relation ~ defined above is an equivalence relation and $S^{-1}R$ can be made into a ring so that the map $i: R \to S^{-1}R$, i(r) = r/1 is a homomorphism. Also $i(S) \subseteq (S^{-1}R)^{\times}$ and the map i is injective iff S contains no zero-divisors.

Proof. Reflexivity and symmetry of ~ are immediate. For transitivity, if $(r, s) \sim (r', s') \sim (r'', s'')$ then $\exists u, u' : urs' = ur's, u'r's'' = u'r''s'$. Hence (uu's')(rs'') = u's''us'r = u's''usr' = usu'r's' = (uu's')(r''s). But $uu's' \in S$, so $(r, s) \sim (r'', s'')$.

Define addition by $r_1/s_1+r_2/s_2 = (r_1s_2+r_2s_1)/(s_1s_2)$ and multiplication by $(r_1/s_1)(r_2/s_2) = (r_1r_2)/(s_1s_2)$. A long and rather tedious check shows that under these operations $S^{-1}R$ becomes a commutative ring with identity 1/1.

The map i(r) = r/1 is a ring homomorphism since i(r) + i(r') = r/1 + r'/1 = (r+r')/1 = i(r+r'), i(r)i(r') = (r/1)(r'/1) = (rr')/1 = i(rr'), and i(1) = 1/1. The element $1/s \in S^{-1}R$ is the inverse of i(s) = s/1, so $i(S) \subseteq (S^{-1}R)^{\times}$. The kernel of i is $\{r \in R : r/1 = 0/1\} = \{r \in R : \exists u \in S : ur = 0\}$. Thus Ker $i = \{0\}$ iff S contains no zero-divisors.

Lemma 5.4 $S^{-1}R$ satisfies the following universal property: If $f: R \to R \xrightarrow{f} R'$ R' is a homomorphism with $f(S) \subseteq (R')^{\times}$ then f factors uniquely as $i \downarrow \nearrow h$ $f = h \circ i$ where $h: S^{-1}R \to R'$ is a homomorphism. $S^{-1}R$

Proof. Any such \tilde{f} must satisfy $\tilde{f}(r/s)\tilde{f}(s/1) = \tilde{f}(r/1)$ and $\tilde{f}(t/1) = f(t)$. Hence $\tilde{f}(r/s)f(s) = f(r)$ and $\tilde{f}(r/s) = f(r)f(s)^{-1}$. Conversely, defining $\tilde{f}(r/s) = f(r)f(s)^{-1}$ gives a homomorphism $S^{-1}R \to R'$ (check this!).

Notation: If $S = R \setminus P$ for some prime ideal P, we also write $S^{-1}R$ as R_P and call it the **localization of** R at P.

Lemma 5.5 If R is an ID then $(R \setminus \{0\})^{-1}R = R_{(0)}$ is a field containing a subring isomorphic to R.

Proof. Let $S = R \setminus \{0\}$. If $r/s \neq 0/1$ then $r \neq 0$, so $s/r \in S^{-1}R$ and (s/r)(r/s) = 1/1. Hence any non-zero element of $S^{-1}R$ is invertible. The map *i* is injective, so Im *i* is a subring of $S^{-1}R$ isomorphic to R.

In this case we call $R_{(0)} = S^{-1}R$ the **field of fractions** of R, or Frac R. For example $\operatorname{Frac}(\mathbb{Z}) = \mathbb{Q}$.

- 1. Show that the units of R_P consists of the elements r/s where $r \notin P$ and there is a unique maximal ideal of R_P consisting of all the non-unit elements. [Rings that have a unique maximal ideal are called **local rings**.]
- 2. Show that if R is an ID, then for any prime ideal P, R_P is isomorphic to a subring of Frac R.
- 3. Describe $\mathbb{Z}_{(2)}$ explicitly as a subring of \mathbb{Q} .
- 4. What is the field of fractions of a field?
- 5. What is the field of fractions of the ring of entire functions (holomorphic functions $f: \mathbb{C} \to \mathbb{C}$)?
- 6. What is the field of fraction of the ring of polynomial functions $\mathbb{C}[X] = \{\sum_{i=0}^{n} a_i X^i : a_i \in \mathbb{C}, n \in \mathbb{N}\}$?

7261 6. Polynomial rings

Fall 2017

Assume that R is a commutative ring. We wish to construct the ring R[X] of polynomials in X with coefficients in R.

Define R[X] as the set of sequences (a_0, a_1, \ldots) with the property that all but finitely many of the a_i s are zero. Define $(a_0, \ldots) + (b_0, \ldots) = (a_0 + b_0, a_1 + b_1, \ldots)$ (so $R[X] = \bigoplus_{i \in \mathbb{N}} R$ as group under +) and define $(a_0, \ldots)(b_0, \ldots) = (c_0, c_1, \ldots)$ where $c_i = \sum_{0 \leq j \leq i} a_j b_{i-j}$. We call R[X] the ring of polynomials in X over R. Let $i: R \to R[X]$ be defined by $i(a) = (a, 0, 0, \ldots)$ and let $X \in R[X]$ be the element $X = (0, 1, 0, 0, \ldots)$. Note that $X(a_0, a_1, \ldots) = (0, a_0, a_1, \ldots)$ and $i(a)(a_0, a_1, \ldots) = (aa_0, aa_1, \ldots)$.

Lemma 6.1 R[X] is a ring, $i: R \to R[X]$ is an injective ring homomorphism, and if $a_i = 0$ for all i > n then $(a_0, a_1, \ldots) = \sum_{i=0}^n i(a_i) X^i$

We shall normally identify i(a) with a and write polynomials $f(X) \in R[X]$ in the form $\sum_{i=0}^{n} a_i X^i$. The **degree** deg f(X) of a polynomial is the largest n such that $a_n \neq 0$, (or $-\infty$ if f = 0). The **leading coefficient** of f(X) is a_n where $n = \deg f$, (or 0 if f = 0). A polynomial is **monic** if the leading coefficient is 1.

Lemma 6.2 If $f, g \in R[X]$ then

- 1. $\deg(f+g) \le \max\{\deg f, \deg g\},\$
- 2. $\deg(fg) \leq \deg f + \deg g$, with equality holding if R is an ID.

Lemma 6.3 If R is an ID then R[X] is an ID and $(R[X])^{\times} = R^{\times}$.

Proof. If $f, g \in R[X]$ and $f, g \neq 0$ then $\deg(fg) = \deg f + \deg g \ge 0$, so $fg \neq 0$. If fg = 1 then $0 = \deg(fg) = \deg f + \deg g$ so $\deg f = \deg g = 0$ and $f, g \in R$. Hence $f \in (R[X])^{\times}$ implies $f \in R^{\times}$. Conversely $f \in R^{\times}$ clearly implies $f \in (R[X])^{\times}$.

Theorem (Universal property of polynomial rings) If $\phi: R \to R'$ is a ring homomorphism and $\alpha \in R'$ then there exists a unique homomorphism $ev_{\phi,\alpha}: R[X] \to R'$ such that $ev_{\phi,\alpha}(a) [= ev_{\phi,\alpha}(i(a))] = \phi(a)$ for all $a \in R$ and $ev_{\phi,\alpha}(X) = \alpha$.

If R is a subring of R' and ϕ is the inclusion map we write $f(\alpha)$ for $ev_{\phi,\alpha}(f)$. More generally, if just R is a subring of R' we write $\phi(f)(\alpha)$ for $ev_{\phi,\alpha}(f)$.

Lemma 6.4 If R is a subring of R' and $\alpha \in R'$ then $R[\alpha]$ is isomorphic to a quotient R[X]/I where I is an ideal of R[X] containing no non-zero constants: $I \cap R = \{0\}$.

Proof. Apply 1st Isomorphism Theorem to $ev_{\alpha} \colon R[X] \to R'$.

We say $\alpha \in R'$ is **transcendental over** $R \subseteq R'$ if the map ev_{α} is injective. In other words, if $f(\alpha) = 0$ implies f(X) = 0. Otherwise we say that α is **algebraic over** R.

Examples The element $\pi \in \mathbb{R}$ is transcendental over \mathbb{Z} , so $\mathbb{Z}[\pi] \cong \mathbb{Z}[X]$. The elements $i, \sqrt{2}, \sqrt[4]{3} \in \mathbb{C}$ are all algebraic over \mathbb{Z} . However π is algebraic over \mathbb{R} (since it is a root of $X - \pi \in \mathbb{R}[X]$).

Theorem (Division Algorithm) If $f, g \in R[X]$ and the leading coefficient of g is a unit in R, then there exist unique $q, r \in R[X]$ such that f = qg + r and $\deg r < \deg g$ (or r = 0).

If $a, b \in R$, we say a **divides** $b, a \mid b$, if there exists $c \in R$ such that b = ca.

Examples In any ring, $u \mid 1$ iff $u \in \mathbb{R}^{\times}$, $a \mid 0$ for all a. In \mathbb{Z} , $7 \mid 21$. In \mathbb{Q} , $21 \mid 7$.

Lemma 6.5 If $\alpha \in R$ and $f \in R[X]$ then $f(X) = (X - \alpha)q(X) + f(\alpha)$ for some $q \in R[X]$. In particular, $X - \alpha \mid f$ iff $f(\alpha) = 0$.

Lemma 6.6 If R is an ID and $f \in R[X]$, $f \neq 0$, then $|\{\alpha \in R : f(\alpha) = 0\}| \leq \deg f$.

Lemma 6.7 If R is an ID and G is a finite subgroup of R^{\times} then G is cyclic.

Proof. G is a finite abelian group, so $G \cong C_{d_1} \times \cdots \times C_{d_r}$. But then $x^{d_1} = 1$ for all $x \in G$. Thus the polynomial $X^{d_1} - 1$ has |G| zeros. Thus $|G| = d_1 d_2 \ldots d_r \leq d_1$, so $d_2 = \cdots = d_r = 1$ and $G \cong C_{d_1}$ is cyclic.

We can generalize polynomial rings to polynomials in many variables. If $\{X_i\}_{i\in I}$ is a set (possibly infinite) of indeterminates, define a **term** t to be a function $I \to \mathbb{N}$ which is non-zero for only finitely many $i \in I$. We think of t as corresponding to a *finite* product $\prod_{i\in I} X_i^{t(i)}$. Let T be the set of terms. Now define the ring

$$R[\{X_i\}_{i \in I}] = \bigoplus_{t \in T} R = \{(a_t)_{t \in T} \mid a_t = 0 \text{ for all but finitely many } t\},\$$

with addition of coefficients componentwise $(a_t) + (b_t) = (a_t + b_t)$ and multiplication defined by $(a_t)(b_t) = (c_t)$ where $c_t = \sum_{r+s=t} a_r b_s$ (note that this is a finite sum). As for R[X] we can identify R as a subring of $R[\{X_i\}_{i \in I}]$ and define elements X_i so that $(a_t)_{t \in T}$ is equal to the (finite) sum $\sum_{t \in T} a_t \prod_{i \in I} X_i^{t(i)}$.

Theorem (Universal property of polynomial rings) If $\phi: R \to R'$ is a ring homomorphism and $\alpha_i \in R'$ for all $i \in I$ then there exists a unique homomorphism $\operatorname{ev}_{\phi,(\alpha_i)}: R[\{X_i\}_{i\in I}] \to R'$ such that $\operatorname{ev}_{\phi,(\alpha_i)}(a) = \phi(a)$ for all $a \in R$ and $\operatorname{ev}_{\phi,(\alpha_i)}(X_i) = \alpha_i$ for all $i \in I$.

If I is finite then we can also identify $R[X_1, \ldots, X_n]$ with $R[X_1, \ldots, X_{n-1}][X_n]$ (use universal properties to define the isomorphism).

7261 7. Euclidean Domains and PIDs Fall 2017

A Euclidean Domain is an ID for which there is a function $d: R \setminus \{0\} \to \mathbb{N}$ such that if $a, b \in R, b \neq 0$ then there exists $q, r \in R$ such that a = qb + r with either d(r) < d(b) or r = 0.

Examples

- 1. \mathbb{Z} with d(a) = |a|.
- 2. F[X], where F is a field, $d(f) = \deg f$.
- 3. F, where F is a field, d(a) = 0.
- 4. $\mathbb{Z}[i]$, with $d(a+ib) = |a+ib|^2 = a^2 + b^2$. [Write a/b = x + iy and let q = x' + iy' with $|x-x'|, |y-y'| \le \frac{1}{2}$. Then $d(r) = |qb-a|^2 = |q-a/b|^2|b|^2 = ((x-x')^2 + (y-y')^2)d(b) \le \frac{1}{2}d(b)$.]

A **Principal Ideal Domain** (PID) is an ID in which every ideal I is principal, i.e., I = (a) for some $a \in R$.

Theorem 7.1 Every Euclidean Domain is a PID.

Proof. If R is Euclidean then R is an ID, so it is enough to show that any ideal I is principal. Let I be an ideal of R and assume $I \neq (0)$. Pick $b \in I \setminus \{0\}$ with minimal value of d(b) (by well ordering of \mathbb{N}). If $a \in I$ then a = qb + r with d(r) < d(b) or r = 0. But $r = a - qb \in I$, so by choice of b we must have r = 0. Thus $a = qb \in (b)$. Thus $I \subseteq (b)$. But $b \in I$, so $(b) \subseteq I$. Thus I = (b) is principal.

Note: PID \Rightarrow Euclidean.

If I = (a) is a principal ideal then $b \in I$ implies there exists a $c \in R$ with b = ca. Thus $b \in I$ is equivalent to $a \mid b$. In particular $(b) \subseteq (a) \iff a \mid b$. If (a) = (b) then b = ua and a = vb. Thus either a = b = 0 or uv = 1 and $u, v \in R^{\times}$. Conversely, if a = ub with $u \in R^{\times}$ then (a) = (b).

The elements $a, b \in R$ are called **associates** if b = ua for some $u \in R^{\times}$. Equivalently, $a \mid b$ and $b \mid a$ both hold, or (a) = (b). Write $a \sim b$ if a and b are associates.

A greatest common divisor (gcd) of a set of elements $S \subseteq R$ is an element $d \in R$ such that

G1. $d \mid a$ for all $a \in S$, and

G2. if $c \mid a$ for all $a \in S$ then $c \mid d$.

Greatest common divisors are unique up to multiplication by units. To see this, let d, d' be two gcds. Then condition G2 with c = d' and G1 with d = d' imply $d' \mid d$. Similarly $d \mid d'$, so d' = ud for some unit $u \in R^{\times}$.

Lemma 7.2 If R is a PID then gcds of any $S \subseteq R$ exist. Indeed, if (S) = (d) then d is a gcd of S and hence can be written in the form $d = \sum_{i=1}^{n} c_i a_i$, for some $a_i \in S$, $c_i \in R$.

Proof. Since R is a PID, (S) = (d) for some d. If $a \in S$ then $a \in (S) = (d)$, so $d \mid a$. If $c \mid a$ for all $a \in S$, then $a \in (c)$ for all $a \in S$, so $(S) = (d) \subseteq (c)$. Hence $c \mid d$. Thus d is a gcd of S.

Note: In an arbitrary ID, gcds may not exist, and even if they do, they may not be a linear combination of elements of S. For example the elements 2 and X in $\mathbb{Z}[X]$ have 1 as a gcd, but 1 is not of the form $2c_1 + Xc_2$, $c_1, c_2 \in \mathbb{Z}[X]$. For an example where the gcd does not exist, consider $R = \mathbb{Z}[\sqrt{-5}]$. If $a \in R$ then $|a|^2 \in \mathbb{Z}$. Hence if $a \mid b$ in R then $|a|^2 \mid |b|^2$ in \mathbb{Z} . Now let $x = -3(3 - \sqrt{-5}) = (1 + 2\sqrt{-5})(1 + \sqrt{-5})$ and $y = -7(1 + \sqrt{-5}) = (1 - 2\sqrt{-5})(3 - \sqrt{-5})$. Then $1 + \sqrt{-5}$ and $3 - \sqrt{-5}$ are two common factors of x and y. If d is a gcd of x and y, then $|d|^2$ must be a factor of $|x|^2 = 2.3^2.7$ and $|y|^2 = 2.3.7^2$. On the other hand, $|d|^2$ must be a multiple of $|1 + \sqrt{-5}|^2 = 2.3$ and $|3 - \sqrt{-5}|^2 = 2.7$. Thus $|d|^2 = 2.3.7 = 42$. However, if $d = \alpha + \beta\sqrt{-5}$ then $|d|^2 = \alpha^2 + 5\beta^2$, which is never equal to 42.

The Euclidean Algorithm

We can turn Lemma 1 into an algorithm in the case when R is Euclidean. Assume we need to find the gcd of $a_0 = a$ and $a_1 = b$. Inductively define a_{n+1} for $n \ge 1$ and $a_n \ne 0$ by

$$a_{n-1} = q_n a_n + a_{n+1}, \qquad d(a_{n+1}) < d(a_n) \text{ or } a_{n+1} = 0$$

Since the $d(a_n)$ are a sequence of decreasing non-negative integers, eventually $a_{n+1} = 0$. However $a_{i+1} \in (a_i, a_{i-1})$ and $a_{i-1} \in (a_i, a_{i+1})$ imply the two ideals (a_{i-1}, a_i) and (a_i, a_{i+1}) are equal. Hence $(a_0, a_1) = (a_n, a_{n+1}) = (a_n)$ and a_n is a gcd of a_0 and a_1 .

This algorithm is called the **Euclidean Algorithm**. For more than two elements, one can calculate the gcd inductively by using $gcd(c_1, c_2, \ldots, c_r) = gcd(c_1, gcd(c_2, \ldots, c_r))$.

Exercises

- 1. Prove that $gcd(c_1, \ldots, c_r) = gcd(c_1, gcd(c_2, \ldots, c_r))$ provided the gcds on the RHS exist. What is $gcd(\emptyset)$?
- 2. Let $R = \mathbb{Z}[\omega]$ where $\omega = \frac{1}{2}(1 + \sqrt{-3})$. Show that $R = \{a + b\omega : a, b \in \mathbb{Z}\}$ and that R is Euclidean.
- 3. Use the Euclidean algorithm to find the gcd of 7 3i and 5 + 3i in $\mathbb{Z}[i]$.
- 4. Determine $((\mathbb{Z}/n\mathbb{Z})[X])^{\times}$. [Hint: Consider the case $n = p^r$ first.]
- 5. Solve the congruences

 $x \equiv i \mod 1 + i$ $x \equiv 1 \mod 2 - i$

in $\mathbb{Z}[i]$ (use Chinese Remainder Theorem).

7261 8. Unique Factorization

Fall 2017

An element $a \in R$ is **irreducible** if $a \neq 0$, $a \notin R^{\times}$, and a = bc implies $b \in R^{\times}$ or $c \in R^{\times}$. An element $a \in R$ is a **prime** if $a \neq 0$, $a \notin R^{\times}$ and $a \mid bc$ implies $a \mid b$ or $a \mid c$.

Lemma 8.1 Let R be an ID, and $a \in R$. Then

1. a is a prime element iff (a) is a non-zero prime ideal,

- 2. a is irreducible iff (a) is maximal among proper principal ideals (i.e., $(a) \subseteq (b)$ implies (b) = (a) or (b) = R),
- 3. if a is prime then a is irreducible,

4. if a is irreducible and R is a PID then a is prime.

Proof.

1. If a is prime and $bc \in (a)$ then $a \mid bc$. Hence $a \mid b$ or $a \mid c$, so either $b \in (a)$ or $c \in (a)$. Also, $a \neq 0$, $a \notin R^{\times}$ implies $(a) \neq (0), R$. Conversely, if (a) is a prime ideal and $a \mid bc$, then $bc \in (a)$, so either $b \in (a)$ or $c \in (a)$, so either $a \mid b$ or $a \mid c$ and $(a) \neq (0), R$ implies $a \neq 0, a \notin R^{\times}$.

2. If $a \in R$ be irreducible and $(a) \subseteq (b)$ then a = bc, so either $c \in R^{\times}$ and (b) = (a) or $b \in R^{\times}$ and (b) = R. Conversely if (a) is maximal among all proper principal ideals and a = bc then $(a) \subseteq (b)$, so either (a) = (b) and c is a unit or (b) = R and b is a unit.

3. If a is a prime and a = bc then $a \mid bc$. Thus either $a \mid b$ and $c \in R^{\times}$, or $a \mid c$ and $b \in R^{\times}$. 4. By part 2, (a) is a maximal ideal. Hence (a) is prime and so a is prime.

A ring R is a Unique Factorization Domain (UFD) if R is an ID such that

- U1. Every $a \in R \setminus \{0\}$ can be written in the form $a = up_1 \dots p_r$ where $u \in R^{\times}$ and the p_i are irreducible.
- U2. Any two such factorizations are unique in the sense that if $up_1 \dots p_r = vq_1 \dots q_s$ then r = s and there is a permutation $\pi \in S_r$ such that $p_i \sim q_{\pi(i)}$ for all *i*.

Lemma 8.2 R is a UFD iff R is an ID satisfying

- A. there is no infinite sequence $(a_i)_{i\in\mathbb{N}}$ with $a_{i+1} \mid a_i$ and $a_{i+1} \not\sim a_i$, and
- B. every irreducible is prime.

Proof.

A \Rightarrow U1. Suppose $a_1 \in R$ has no such factorization. Then a_1 is neither a unit nor irreducible, so $a_1 = bc$, $b, c \notin R^{\times}$, and either b or c also has no factorization into irreducibles. Assume b has no factorization into irreducibles and set $a_2 = b$. Repeating this process we get a sequence a_i with $a_{i+1} \mid a_i$ and $a_{i+1} \not\sim a_i$.

 $B \Rightarrow U2$. Since p_1 is prime and $p_1 | vq_1 \dots q_s$, we must have $p_1 | q_i$ for some *i*. But q_i is irreducible, so $p_1 \sim q_i$. Cancelling a factor of p_1 from both sides (*R* is an ID) and using induction on *r* gives the result.

U1 and U2 \Rightarrow A and B is clear.

A ring is **Noetherian** if every sequence of ideals I_i with $I_i \subseteq I_{i+1}$ is eventually constant, $I_n = I_{n+1} = \dots$, for some n.

Lemma 8.3 R is Noetherian iff every ideal is finitely generated.

Proof. ⇐: Let $I = \bigcup I_n$. Then I is an ideal, so $I = (d_1, \ldots, d_r)$ for some $d_i \in R$. But then there is an n_i with $d_i \in I_n$. Let $n = \max n_i$, so that $I = (d_1, \ldots, d_r) \subseteq I_n \subseteq I_{n+1} \subseteq \cdots \subseteq I$, and so $I_n = I_{n+1} = \ldots$ \Rightarrow : Assume I is not finitely generated. Then (using Axiom of choice), pick inductively $d_n \in I \setminus (d_1, \ldots, d_{n-1})$. Then $I_n = (d_1, \ldots, d_n)$ is a strictly increasing sequence of ideals. \Box

Theorem Every PID is a UFD.

Proof. Every ideal in a PID is finitely generated (by one element), so PID \Rightarrow Noetherian. By considering the ideals (a_i) , Noetherian rings satisfy condition A of Lemma 8.2. Lemma 8.1 part 4 implies condition B of Lemma 8.2, so PID \Rightarrow UFD.

GCDs and factorizations

Lemma 8.4 If R is a UFD and $S \subseteq R$ then a gcd of S exists.

Proof. The relation \sim is an equivalence relation on the set of irreducibles in R. So by choosing a representative irreducible from each equivalence class we can construct a set P of pairwise non-associate irreducible elements of R. We can write any element $a \in R$ as $u \prod_{p \in P} p^{n_p}$ and if $b = v \prod_{p \in S} p^{m_p}$ then U2 implies $a \mid b$ iff $n_p \leq m_p$ for all p. Write each $a_i \in S$ as $a_i = u_i \prod_{p \in P} p^{n_{i,p}}$. If we let $d = \prod_{p \in P} p^{m_p}$ with $m_p = \min_{a_i \in S} n_{i,p}$ then it is clear that d is a gcd for S.

A partial converse to Lemma 8.4 is true.

Lemma 8.5 If R is an ID in which the gcd of any pair of elements exists then every irreducible is prime.

Proof. First we prove that if gcds exist then $gcd(ab, ac) \sim a gcd(b, c)$. Let e = gcd(ab, ac) and d = gcd(b, c). Then $d \mid b, c$, so $ad \mid ab, ac$, so $ad \mid e$. Writing e = adu then $e \mid ab, ac$, so $du \mid b, c$, so $du \mid d$. Thus $u \in R^{\times}$ and $e \sim ad$ (or d = 0 = e).

Now let p be an irreducible and assume $p \not\mid a, b$. Then $gcd(p, b) \sim 1$ since the gcd must be a factor or p and $p \not\mid b$. Hence $gcd(p, ab) \mid gcd(ap, ab) \sim a$. But $gcd(p, ab) \mid p$, so $gcd(p, ab) \mid gcd(a, p) \sim 1$. Hence $gcd(p, ab) \sim 1$ and $p \not\mid ab$. Hence p is prime. \Box

Lemma 8.6 If R is an ID in which every set S has a gcd which can be written in the form $\sum r_i a_i$ for some $a_i \in S$, $r_i \in R$, then R is a PID.

Proof. Let I be an ideal and write I = (S) for some S (e.g., S = I). Let $d = \sum r_i a_i$ be a gcd of S. Then $d \mid a$ for all $a \in S$. Hence $a \in (d)$, so $S \subseteq (d)$. Thus $I \subseteq (d)$. However $d = \sum r_i a_i \in I$. Then $(d) \subseteq I$. Hence I = (d) is principal.

7261 9. Factorization of Polynomials Fall 2017

Assume throughout this section that R is a UFD.

Let $f(X) = \sum_{i=0}^{n} a_i X^i \in R[X]$. Define the **content** of f(X) to be $c(f) = \gcd\{a_0, a_1, \ldots, a_n\}$. Note that if $f \neq 0$ then $c(f) \neq 0$. We call f **primitive** iff $c(f) \sim 1$.

Note that monic polynomials are primitive, but not conversely, e.g. $2X + 3 \in \mathbb{Z}[X]$.

Lemma (Gauss) If R is a UFD and $f, g \in R[X]$ are primitive, then so is fg.

Proof. Assume otherwise and let p be a prime dividing c(fg). Reducing the polynomials mod p we get $\overline{f}, \overline{g} \in (R/(p))[X]$ with $\overline{f}, \overline{g} \neq 0$, but $\overline{f}\overline{g} = \overline{fg} = 0$ (the map $f \mapsto \overline{f}$ $R[X] \to (R/(p))[X]$ is a special case of the evaluation homomorphism $ev_{\pi,X}$ where X is sent to X and $ev_{\pi,X}$ acts as the projection map $\pi \colon R \to R/(p)$ on constants). Now pis prime, so (p) is a prime ideal and R/(p) is an ID. Hence $\overline{f}, \overline{g} \neq 0$ implies $\overline{f}\overline{g} \neq 0$, a contradiction.

Corollary 9.1 If R is a UFD then $c(fg) \sim c(f)c(g)$.

Proof. The result clearly holds if f or g is zero, so assume $f, g \neq 0$ and hence $c(f) \neq 0$. 0. Since $gcd\{aa_i\} \sim a gcd\{a_i\}, c(af) \sim ac(f)$ for all $a \in R$. But $f/c(f) \in R[X]$, so c(f)c(f/c(f)) = c(f) and so f/c(f) is primitive. Now fg/(c(f)c(g)) = (f/c(f))(g/c(g)) is primitive. Hence $c(fg) \sim c(f)c(g)c(fg/c(f)c(g)) \sim c(f)c(g)$.

Lemma 9.2 If deg f > 0 and f is irreducible in R[X] then f is irreducible in F[X], where F = Frac R is the field of fractions of R.

Proof. Suppose f = gh in F[X]. By multiplying by denominators, there exist non-zero $a, b \in R$ with $ag, bh \in R[X]$. Thus $abf = (ag)(bh) \in R[X]$ and $c(abf) \sim c(ag)c(bh)$. But f = c(f)(f/c(f)) is a factorization of f in R[X] and if deg f > 0, $f/c(f) \notin (R[X])^{\times} = R^{\times}$. Thus $c(f) \in R^{\times}$ and so $c(abf) \sim ab$. Now $ab/c(ag)c(bh) = u \in R^{\times}$ and $f = (u^{-1}ag/c(ag))(bh/c(bh))$ is a factorization of f in R[X]. Hence either deg g = 0 or deg f = 0 and so g or h is a unit in F[X].

Lemma 9.3 If R is a UFD then $f \in R[X]$ is irreducible iff either (a) $f \in R$ is an irreducible in R, or (b) f is primitive in R[X] and irreducible in F[X].

Proof. Assume first that deg f = 0. If f = ab in R, f = ab in R[X]. Conversely, if f = gh in R[X] then deg $g = \deg h = 0$, so f = gh in R. Since $R^{\times} = (R[X])^{\times}$, irreducibility in R[X] is equivalent to irreducibility in R. Assume now that deg f > 0. If f is irreducible in R[X] then by the previous lemma, f is irreducible in F[X]. Also, f = c(f)(f/c(f)), so $c(f) \in (R[X])^{\times} = R^{\times}$ and f is primitive. Conversely, if f is primitive and irreducible in F[X] and f = gh in R[X], then f = gh in F[X], so wlog $g \in (F[X])^{\times} \cap R[X] = R$. But then $g \mid c(f)$ in R, so $g \in R^{\times} = (R[X])^{\times}$. Thus f is irreducible in R[X].

Theorem 9.4 If R is a UFD then R[X] is a UFD.

Proof. Write f = c(f)f' where f' is primitive. Now $c(f) = up_1 \dots p_r$ where $u \in R^{\times} = (R[X])^{\times}$ and p_i are irreducible in R. If f' = gh with $g, h \notin (R[X])^{\times} = R^{\times}$ then $c(g)c(h) \sim 1$, so g, h are primitive and $\deg g, \deg h > 0$ (since otherwise either g or h would lie in R^{\times}). By induction on the degree, f' is the product of irreducible primitive polynomials $f' = \prod f_i$. Hence f has a factorization into irreducibles.

Now assume $f = up_1 \dots p_r f_1 \dots f_t = vq_1 \dots q_s g_1 \dots g_u$ where $u, v \in \mathbb{R}^{\times}$, p_1, q_j are irreducible in R and f_i, g_j are primitive and irreducible in F[X]. The ring F[X] is a PID, so is a UFD. The elements $up_1 \dots p_r$ and $vq_1 \dots q_s$ are units in F[X], so t = u and wlog $f_i = \gamma_i g_i$ for some $\gamma_i \in (F[X])^{\times} = F \setminus \{0\}$. Write $\gamma_i = a_i/b_i$ with $a_i, b_i \in R$. Now $b_i f_i = a_i g_i$, so $b_i \sim c(b_i f_i) = c(a_i g_i) \sim a_i$. Thus $\gamma_i \in \mathbb{R}^{\times}$ and $f_i \sim g_i$ in $\mathbb{R}[X]$. Now $c(f) \sim up_1 \dots p_r \sim vq_1 \dots q_s$, so by unique factorization in R, r = s and wlog $p_i \sim q_i$ in \mathbb{R} and hence in $\mathbb{R}[X]$. Hence the factorization of f is unique in $\mathbb{R}[X]$.

Factorization methods

Evaluation method: If $g \mid f$ in R[X] then $g(c) \mid f(c)$ in R for all $c \in R$.

Example: If $f = X^3 - 4X + 1 \in \mathbb{Z}[X]$, then $f(\pm 2) = 1$. If f = gh then we can assume wlog that g is linear. But then $g(\pm 2) = \pm 1$. The only linear polynomials with this property are $\pm X/2$ which do not lie in $\mathbb{Z}[X]$. Hence f is irreducible in $\mathbb{Z}[X]$ (and hence also in $\mathbb{Q}[X]$).

Reduction mod p: If f = gh in R[X] and p is a prime then $\overline{f} = \overline{g}\overline{h}$ in (R/(p))[X].

Example: If $f = X^4 - X^2 + 4X + 3 \in \mathbb{Z}[X]$, then if p = 2, $\overline{f} = X^4 + X^2 + 1 = (X^2 + X + 1)(X^2 + X + 1)$ in $(\mathbb{Z}/2\mathbb{Z})[X]$ and if p = 3 then $\overline{f} = X^4 - X^2 + X = X(X^3 - X + 1)$ in $(\mathbb{Z}/3\mathbb{Z})[X]$. In $\mathbb{Z}[X]$, f cannot factor as a product of two quadratics (since there is no quadratic factor mod 3), nor can it have a linear factor (no linear factor mod 2), hence f is irreducible in $\mathbb{Z}[X]$.

Lemma (Eisenstein's irreducibility criterion) Assume R is a UFD, $f = \sum_{i=0}^{n} a_n X^n \in R[X]$, is primitive, and p is a prime such that $p \not\mid a_n, p \mid a_i \text{ for } i < n \text{ and } p^2 \not\mid a_0$. Then f is irreducible in R[X].

Proof. Suppose f = gh. Then $\bar{g}\bar{h} = a_nX^n$ in (R/(p))[X]. Thus $\bar{g} = aX^i$ and $\bar{h} = bX^j$ for some $a, b \in R/(p)$ and i + j = n. But deg $g + \deg h = n$ and $i \leq \deg g$, $j \leq \deg h$. Hence $i = \deg g$ and $j = \deg h$. If g and h are not units in R[X] and f is primitive then deg $g, \deg h > 0$. Hence $\bar{g}(0) = \bar{h}(0) = 0$, so $p \mid g(0), h(0)$. Thus $p^2 \mid g(0)h(0) = f(0) = a_0$, a contradiction. Hence f is irreducible.

- 1. Show that for p a prime in \mathbb{Z} , $f(X) = 1 + X + \dots X^{p-1} = (X^p 1)/(X 1)$ is irreducible in $\mathbb{Q}[X]$ [Hint: consider f(X + 1) and use Eisenstein's criterion].
- 2. Let $f = X^3 X + 1$. Show that $(\mathbb{Z}/3\mathbb{Z})[X]/(f)$ is a field with 27 elements.

7261 10. Symmetric Polynomials

A polynomial $f(X_1, \ldots, X_n) \in R[X_1, \ldots, X_n]$ is called **symmetric** if

$$f(X_1,\ldots,X_n) = f(X_{\pi(1)},\ldots,X_{\pi(n)})$$

for any permutation $\pi \in S_n$.

Examples $X_1^2 + X_2^2 + X_3^2$ and $X_1X_2 + X_2X_3 + X_3X_1$ are symmetric polynomials in the ring $\mathbb{Z}[X_1, X_2, X_3]$, however $X_1^2X_2 + X_2^2X_3 + X_3^2X_1$ is not symmetric (consider the permutation $\pi = (12)$).

The elementary symmetric polynomials $\sigma_r \in R[X_1, \ldots, X_n]$ are defined by $\sigma_r = \sum_{i_1 < i_2 < \cdots < i_r} X_{i_1} \ldots X_{i_r} = \sum_{|S|=r} \prod_{i \in S} X_i$ where in the second expression the sum is over all subsets S of $\{1, \ldots, n\}$ of size r.

Examples For n = 3, $\sigma_0 = 1$, $\sigma_1 = X_1 + X_2 + X_3$, $\sigma_2 = X_1X_2 + X_2X_3 + X_3X_1$, $\sigma_3 = X_1X_2X_3$.

Note: $(X + X_1)(X + X_2) \dots (X + X_n) = X^n + \sigma_1 X^{n-1} + \sigma_2 X^{n-2} + \dots + \sigma_n$.

Define the **degree** of $cX_1^{a_1} \ldots X_n^{a_n} \in R[X_1, \ldots, X_n]$, $c \neq 0$, as the *n*-tuple (a_1, \ldots, a_n) . More generally define the degree of $f = \sum_{a_1,\ldots,a_n} c_{a_1,\ldots,a_n} X_1^{a_1} \ldots X_n^{a_n}$ as the maximum value of (a_1, \ldots, a_n) over all $c_{a_1,\ldots,a_n} \neq 0$, where *n*-tuples are ordered lexicographically: $(a_1, \ldots, a_n) < (b_1, \ldots, b_n)$ iff there exists an *i* such that $a_i < b_i$ and $a_j = b_j$ for all j < i.

Example In $R[X_1, X_2, X_3]$, deg $(X_1^2 X_2^9 + X_1^7 X_3) = (7, 0, 1)$. In $R[X_1, \ldots, X_n]$, deg $\sigma_r = (1, \ldots, 1, 0, \ldots, 0)$, where there are r ones and n - r zeros.

Lemma 10.1 The lexicographic ordering on \mathbb{N}^n is a well ordering: \mathbb{N}^n is totally ordered and every non-empty $S \subseteq \mathbb{N}^n$ has a minimal element.

Proof. To prove every $S \neq \emptyset$ has a minimal element, inductively construct sets S_i with $S_0 = S$ and S_i equal to the set of elements (a_1, \ldots, a_n) of S_{i-1} for which a_i is minimal. It is clear that $S_i \neq \emptyset$ and the (unique) element of S_n is the minimal element of S.

Lemma 10.2 If $f \in R[X_1, \ldots, X_n]$ is symmetric and deg $f = (a_1, \ldots, a_n)$ then $a_1 \ge a_2 \ge \cdots \ge a_n$.

Proof. Assume otherwise and let $a_i < a_j$ with i > j. Then if $\pi = (ij)$, $f(X_1, \ldots, X_n) = f(X_{\pi(1)}, \ldots, X_{\pi(n)})$ has a term with degree $(a_{\pi(1)}, \ldots, a_{\pi(n)})$ which is larger than (a_1, \ldots, a_n) , contradicting the definition of the degree.

Lemma 10.3 If $f, g \in R[X_1, ..., X_n]$ and f, g are monic (the term with degree equal to deg f or deg g has coefficient 1) then deg fg = deg f + deg g where addition of degrees is performed componentwise: $(a_1, ..., a_n) + (b_1, ..., b_n) = (a_1 + b_1, ..., a_n + b_n)$.

Proof. Prove that in the lexicographical ordering, $\mathbf{a} < \mathbf{b}$ and $\mathbf{c} \leq \mathbf{d}$ imply $\mathbf{a} + \mathbf{c} < \mathbf{b} + \mathbf{d}$. The rest of the proof is the same as for the one variable case.

Theorem 10.1 The polynomial $f \in R[X_1, \ldots, X_n]$ is symmetric iff $f \in R[\sigma_1, \ldots, \sigma_n]$.

Clearly σ_i is symmetric, and the set of symmetric polynomials forms a subring of the ring $R[X_1, \ldots, X_n]$. Hence every element of $R[\sigma_1, \ldots, \sigma_n]$ is symmetric. We now need to show every symmetric polynomial can be written as a polynomial in $\sigma_1, \ldots, \sigma_n$. We use induction on deg f. Let f be a counterexample with minimal deg f (using Lemma 1). Let deg $f = (a_1, \ldots, a_n)$ and let the leading term have coefficient $c \in R$. Then $g = c\sigma_1^{a_1-a_2}\sigma_2^{a_2-a_3}\ldots\sigma_n^{a_n}$ has deg $g = (a_1, \ldots, a_n) = \deg f$ (by Lemma 3) and the same leading coefficient c. Thus deg $(f - g) < \deg f$. Now g is symmetric, so f - g is symmetric. By induction on deg f, $f - g \in R[\sigma_1, \ldots, \sigma_n]$. But $g \in R[\sigma_1, \ldots, \sigma_n]$. Hence $f \in R[\sigma_1, \ldots, \sigma_n]$, contradicting the choice of f.

If $\alpha \in R'$ and R is a subring of R', we call α algebraic over R if the map $ev_{\alpha} \colon R[X] \to R'$ is not injective, i.e., there exists a non-zero $f(X) \in R[X]$ with $f(\alpha) = 0$. More generally we say $\alpha_1, \ldots, \alpha_n$ are algebraically dependent if $ev_{\alpha_1,\ldots,\alpha_n} \colon R[X_1,\ldots,X_n] \to R'$ is not injective, or equivalently there exists a non-zero polynomial $f \in R[X_1,\ldots,X_n]$ with $f(\alpha_1,\ldots,\alpha_n) = 0$. We say α_1,\ldots,α_n are algebraically independent over R if they are not algebraically dependent.

Theorem 10.2 The elements $\sigma_1, \ldots, \sigma_n$ are algebraically independent over R. The elements X_i are algebraic over $R[\sigma_1, \ldots, \sigma_n]$.

Proof. Assume $\sum c_{a_1,\dots,a_n} \sigma_1^{a_1} \dots \sigma_n^{a_n} = 0$ in $R[X_1,\dots,X_n]$. Among the (finite set of) (b_1,\dots,b_n) such that $c_{b_1,\dots,b_n} \neq 0$, pick one such that $(b_1+\dots+b_n,b_2+\dots+b_n,\dots,b_n)$ is maximal in the lexicographical ordering. The map sending (a_1,\dots,a_n) to $(a_1+\dots+a_n,a_2+\dots+a_n,\dots,a_n)$ is an injection \mathbb{N}^d to \mathbb{N}^d , so this (b_1,\dots,b_n) is uniquely determined. Now deg $\sum c_{a_1,\dots,a_n} \sigma_1^{a_1} \dots \sigma_n^{a_n} = (b_1+\dots+b_n,b_2+\dots+b_n,\dots,b_n)$ contradicting $\sum c_{a_1,\dots,a_n} \sigma_1^{a_1} \dots \sigma_n^{a_n} = 0$. Thus σ_1,\dots,σ_n are algebraically independent. The elements X_i are algebraic over $R[\sigma_1,\dots,\sigma_n]$ since they are roots of $X_n - \sigma_1 X^{n-1} + \dots \pm \sigma_n = 0$.

As a consequence of Theorem 2, any symmetric polynomial $f \in R[X_1, \ldots, X_n]$ can be written as $g(\sigma_1, \ldots, \sigma_n)$ with g a unique element of $R[X_1, \ldots, X_n]$. For example, $X_1^2 + X_2^2 + X_3^2 = \sigma_1^2 - 2\sigma_2$.

- 1. Let $\delta = \prod_{i < j} (X_i X_j) \in \mathbb{Z}[X_1, \dots, X_n]$. Show that δ^2 is symmetric and for n = 3 express δ^2 in terms of $\sigma_1, \sigma_2, \sigma_3$.
- 2. Let $f(X) = X^3 3X + 5$ have complex roots $\alpha_1, \alpha_2, \alpha_3$. Find a polynomial with complex roots $\alpha_1^2, \alpha_2^2, \alpha_3^2$.