Ring Theory

Fall 2017

Paul Balister
University of Memphis

A Ring (with 1) is a set R with two binary operations + and \times such that
R1. $(R,+)$ is an Abelian group under + .
R2. (R, \times) is a Monoid under \times, (so \times is associative and has an identity 1).
R3. The distributive laws hold: $a(b+c)=a b+a c,(b+c) a=b a+c a$.
Many of the standard facts from algebra follow from these axioms. In particular, $0 a=a 0=0, \quad a(-b)=(-a) b=-(a b), \quad-a=(-1) a, \quad\left(\sum_{i} a_{i}\right)\left(\sum_{j} b_{j}\right)=\sum_{i, j} a_{i} b_{j}$.
The ring R is commutative if \times is commutative.
An element of R is a unit if it has a (2-sided) multiplicative inverse.
The set of units R^{\times}(or $U(R)$) is a group under \times.
The trivial ring is the ring $\{0\}$ with $0+0=0.0=0$, and is the only ring in which $1=0$.
A division ring or skew field is a non-trivial ring in which every non-zero element is a unit.
A field is a commutative division ring.
An Integral Domain (ID) is a non-trivial commutative ring in which $a b=0$ implies $a=0$ or $b=0$. Note that any field is an ID.

Examples

1. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ are all rings under the usual + and $\times \mathbb{Q}, \mathbb{R}, \mathbb{C}$ are fields. \mathbb{Z} is an ID.
2. $\mathbb{Z} / n \mathbb{Z}$ is a ring under + and $\times \bmod n$. This ring is an ID iff n is prime. In fact, if n is prime then $\mathbb{Z} / n \mathbb{Z}$ is a field.
3. If R is a ring then the set $M_{n}(R)$ of $n \times n$ matrices with entries in R is a ring under matrix addition and multiplication. $M_{n}(R)$ is non-commutative in general.
4. Let $(A,+)$ be an abelian group and let $\operatorname{End}(A)$ be the set of group homomorphisms $A \rightarrow A$. Define addition pointwise, $(f+g)(a)=f(a)+g(a)$, and multiplication by composition, $f g(a)=f(g(a))$. Then $\operatorname{End}(A)$ is a (usually non-commutative) ring.
5. If $A=\prod_{i \in \mathbb{N}} \mathbb{Z}=\left\{\left(a_{0}, a_{1}, \ldots\right): a_{i} \in \mathbb{Z}\right\}$ then the maps $R\left(\left(a_{0}, \ldots\right)\right)=\left(0, a_{0}, a_{1}, \ldots\right)$ and $L\left(\left(a_{0}, a_{1}, \ldots\right)\right)=\left(a_{1}, a_{2}, \ldots\right)$ lie in $\operatorname{End}(A)$ and $L R=1 \neq R L$. Hence R has a left, but not a right inverse. [Recall that left and right inverses must be equal if they both exist.]
6. Let $C[0,1]$ be the set of continuous functions from $[0,1]$ to \mathbb{R} with addition and multiplication defined pointwise. Then $C[0,1]$ is a ring. It is not an ID (why?).

A subset S of R is a subring iff $(S,+)$ is a subgroup of $(R,+)$ and (S, \times) is a submonoid of (R, \times). Equivalently, $1_{R} \in S$ and $a, b \in S$ implies $a-b, a b \in S$.

A subset I of R is a left ideal iff $(I,+)$ is a subgroup of $(I,+)$ such that for all $r \in R$, $a \in I$, we have $r a \in I$. A subset I of R is a right ideal iff $(I,+)$ is a subgroup of $(I,+)$
such that for all $r \in R, a \in I$, we have $a r \in I$. An ideal is a subset that is both a left ideal and a right ideal. Equivalently, $I \neq \emptyset$ and $a, b \in I, r \in R$, implies $a-b, r a, a r \in I$. The sets $\{0\}$ and R are ideals of R. An ideal I is proper if $I \neq R$, and non-trivial if $I \neq\{0\}$.

Examples

1. $n \mathbb{Z}$ is an ideal of \mathbb{Z} but not a subring (unless $n= \pm 1$).
2. \mathbb{Z} is a subring of \mathbb{R} but not an ideal.
3. The set of the matrices $I=\left\{\left(\begin{array}{ll}0 & b \\ 0 & d\end{array}\right): b, d \in \mathbb{R}\right\}$ is a left ideal, but not a right ideal of $M_{2}(\mathbb{R})$. But I is a 2 -sided ideal of the subring $T=\left\{\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right): a, b, d \in \mathbb{R}\right\}$ of $M_{2}(\mathbb{R})$.
4. The quaternions $\mathbb{H}=\left\{\left(\begin{array}{cc}\alpha & \beta \\ -\bar{\beta} & \bar{\alpha}\end{array}\right): \alpha, \beta \in \mathbb{C}\right\}$ form a subring of $M_{2}(\mathbb{C})$. Any $x \in \mathbb{H}$ can be written uniquely as $x=a+b i+c j+d k$ where $i=\left(\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right), j=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$, $k=\left(\begin{array}{ll}0 & i \\ i & 0\end{array}\right)$. Then $i^{2}=j^{2}=k^{2}=-1, i j=k, j i=-k$, and $(a+b i+c j+d k)^{-1}=$ $(a / r)-(b / r) i-(c / r) j-(d / r) k$ where $r=a^{2}+b^{2}+c^{2}+d^{2}$. Thus \mathbb{H} is a noncommutative division ring.

Lemma 1.1 If $S_{\alpha}, \alpha \in A$, are subrings of R then $\bigcap_{\alpha \in A} S_{\alpha}$ is a subring of R. If I_{α} are ideals of R then $\bigcap_{\alpha \in A} I_{\alpha}$ is an ideal of R.

The ideal (S) generated by a subset $S \subseteq R$ is the smallest ideal of R containing S. It can be defined as the intersection $\bigcap_{J \supseteq S} J$ of all ideals containing S.
An ideal I is principal if it is generated by a single element, $I=(a)$ for some $a \in R$. An ideal is finitely generated if it is generated by a finite set, $I=(S),|S|<\infty$.

We can also define the subring generated by a subset. More generally, if R is a subring of R^{\prime} and $S \subseteq R^{\prime}$, then $R[S]$ is the smallest subring of R^{\prime} containing R and $S(=$ the intersection of all subrings of R^{\prime} containing R and S).

Exercises

1. Show that an ideal is proper iff it does not contain a unit.
2. Show that $(S)=\left\{\sum_{i=1}^{n} r_{i} s_{i} r_{i}^{\prime}: r_{i}, r_{i}^{\prime} \in R, s_{i} \in S, n \in \mathbb{N}\right\}$.
3. Show that if R is commutative then the principal ideal (a) is $\{r a: r \in R\}$.
4. Show that $R[\alpha]$ is the set of all polynomial expressions $\sum_{i=0}^{n} a_{i} \alpha^{i}$ with coefficients $a_{i} \in R$.
5. Deduce that $\mathbb{Z}[i]=\{a+b i: a, b \in \mathbb{Z}\}$ as a subring of \mathbb{C} and $\mathbb{Q}[\sqrt[3]{2}]=\{a+b \sqrt[3]{2}+c \sqrt[3]{4}$: $a, b, c \in \mathbb{Q}\}$ as a subring of \mathbb{R}.
6. Describe $\mathbb{Z}[1 / 2]$ as a subring of \mathbb{Q}.
7. Let I be the set of continuous functions $f \in C[0,1]$ such that $f(0.5)=0$. Show that I is an ideal of $C[0,1]$ that is not principal (or even finitely generated).

A (ring) homomorphism from the ring R to the ring S is a function $f: R \rightarrow S$ that is a group homomorphism $(R,+) \rightarrow(S,+)$ and a monoid homomorphism $(R, \times) \rightarrow(S, \times)$. Equivalently $f(a+b)=f(a)+f(b), f(a b)=f(a) f(b), f\left(1_{R}\right)=1_{S}$.

Examples

1. The map $f: T \rightarrow \mathbb{R}$ given by $f\left(\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right)\right)=a$ where $T=\left\{\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right): a, b, d \in \mathbb{R}\right\}$.
2. If S is a subring of R then the inclusion map $i: S \rightarrow R, i(r)=r$, is a homomorphism.

A (ring) isomorphism is a homomorphism $R \rightarrow S$ that has a 2-sided inverse map $g: S \rightarrow$ R which is also a homomorphism. It is sufficient for f to be a bijective homomorphism.

If I is an ideal of R then the quotient ring R / I is the quotient group $(R / I,+)$ with multiplication defined by $(a+I)(b+I)=a b+I$.

Lemma 2.1 The quotient ring R / I is indeed a ring and the projection map $\pi: R \rightarrow R / I$ given by $\pi(a)=a+I$ is a surjective ring homomorphism.

Example $R=\mathbb{Z}, I=(n)$, then $R / I=\mathbb{Z} / n \mathbb{Z}$ is the integers $\bmod n$ with addition and multiplication $\bmod n$.

Theorem (1st Isomorphism Theorem) If $f: R \rightarrow S$ then $\operatorname{Ker} f=\{r: f(r)=0\}$ is an ideal of $R, \operatorname{Im} f=\{f(r): r \in R\}$ is a subring of S and $f=i \circ \tilde{f} \circ \pi$ where

- $\pi: R \rightarrow R / \operatorname{Ker} f$ is the (surjective) projection homomorphism. $R \xrightarrow{f} S$
- $\tilde{f}: R / I \rightarrow \operatorname{Im} f$ is a (bijective) ring isomorphism.

- $i: \operatorname{Im} f \rightarrow S$ is the (injective) inclusion homomorphism. $\quad R / \operatorname{Ker} f \xrightarrow{\tilde{f}^{\prime}} \operatorname{Im} f$

Theorem (2nd Isomorphism Theorem) If I is an ideal of R then there is a bijection
$\{$ subgroups H of $(R,+)$ with $I \leq H \leq R\} \leftrightarrow\{$ subgroups of $(R / I,+)\}$,
where H corresponds to H / I. In this correspondence subrings correspond to subrings and ideals correspond to ideals. Moreover, if J is an ideal with $I \leq J \leq R$ then there is an isomorphism $R / J \cong(R / I) /(J / I)$.

Theorem (3rd Isomorphism Theorem) If I is an ideal of R and S is a subring of R then $S+I$ is a subring of $R, S \cap I$ is an ideal of S, and $(S+I) / I \cong S /(S \cap I)$.

Example For any ring R define $f: \mathbb{Z} \rightarrow R$ by $f(n)=n .1_{R}\left(n \cdot 1_{R}=1_{R}+\cdots+1_{R}\right.$ defined as for additive groups). Then f is a ring homomorphism. The kernel is a subgroup of $(\mathbb{Z},+)$ so is $n \mathbb{Z}$ for some $n \geq 0$. The image $S=\left\{n .1_{R}: n \in \mathbb{Z}\right\}$ is called the prime subring of R and is isomorphic to $\mathbb{Z} / n \mathbb{Z}$. The characteristic of R, $\operatorname{char}(R)$, is the integer n. E.g., $\operatorname{char}(\mathbb{R})=0, \operatorname{char}(\mathbb{Z} / n \mathbb{Z})=n, \operatorname{char}(\{0\})=1$.

A maximal ideal is a proper ideal M of R such that for any ideal $I, M \subseteq I \subseteq R$ implies $I=M$ or $I=R$.

Example The ideal (n) is a maximal ideal of \mathbb{Z} iff n is prime.
A non-trivial ring is simple if the only ideals of R are (0) and R. Equivalently, (0) is maximal.

Lemma 2.2 Let R be a commutative ring. Then R is simple iff R is a field.
Proof. If R is a field and $I \neq(0)$ is an ideal then $u \in I$ for some $u \neq 0$. But u is a unit so $\left(r u^{-1}\right) u=r \in I$ for all $r \in R$. Thus $I=R$. Conversely, if $a \neq 0$ and a is not a unit then $(a)=\{r a: r \in R\}$ is a non-trivial proper ideal of R.

Note that if R is a division ring then R is simple. However the converse fails:
Lemma 2.3 Let D be a division ring. Then $M_{n}(D)$ is a simple ring for any $n \geq 1$.
Proof. Let I be a non-zero ideal of $M_{n}(D)$ and let $A=\left(a_{i j}\right) \in I, A \neq 0$. In particular $a_{k l} \neq 0$ for some k, l. Let $E_{i j}$ be the matrix with 1 in entry (i, j) and zeros elsewhere. Then $E_{i k} A E_{l j}=a_{k l} E_{i j} \in I$. Since $a_{k l} \in D$ and D is a division ring, $a_{k l}^{-1} \in D$, so $a_{k l}^{-1} I \in M_{n}(D)$. Now $\left(a_{k l}^{-1} I\right)\left(a_{k l} E_{i j}\right)=E_{i j} \in I$. But any matrix $B=\left(b_{i j}\right)$ is a linear combination $\sum\left(b_{i j} I\right) E_{i j}$, so $B \in I$ and $I=M_{n}(D)$.

So by the 2 nd Isomorphism Theorem, for commutative R, M is maximal iff R / M is a field, but for non-commutative R, M may be maximal without R / M being a division ring.

Exercises

1. Show that any finite ID is a field.
2. An element a of a ring is nilpotent if $a^{n}=0$ for some $n \in \mathbb{N}$. Show that if a is nilpotent then $1+a$ is a unit.
3. Show that if R is commutative then the set of nilpotent elements forms an ideal of R. [Hint: make sure you check that a, b nilpotent implies $a-b$ is nilpotent.]
4. Show that if $r \in R$ lies in the intersection of all maximal ideals of R then $1+r$ is a unit.
5. Show that any homomorphism $f: F \rightarrow R$ from a field F to a non-trivial ring R is injective, so in particular R contains a subring isomorphic to F.

7261 3. Zorn's Lemma

A partial ordering on a set \mathcal{X} is a relation \leq satisfying the properties:
O1. $\forall x: x \leq x$,
O2. $\forall x, y$: if $x \leq y$ and $y \leq x$ then $x=y$,
O3. $\forall x, y, z$: if $x \leq y$ and $y \leq z$ then $x \leq z$.
A total ordering is a partial ordering which also satisfies:
O4. $\forall x, y$: either $x \leq y$ or $y \leq x$.
Example Any collection of sets with \subseteq as the ordering forms a partially ordered set that is not in general totally ordered.

If (\mathcal{X}, \leq) is a partially ordered set, a chain in \mathcal{X} is a non-empty subset $\mathcal{C} \subseteq \mathcal{X}$ that is totally ordered by \leq.

If $\mathcal{S} \subseteq \mathcal{X}$, and $x \in \mathcal{X}$, we say x is an upper bound for \mathcal{S} if $y \leq x$ for all $y \in \mathcal{S}$. [Note that we do not require x to be an element of \mathcal{S}.]

A maximal element of \mathcal{X} is an element x such that for any $y \in \mathcal{X}, x \leq y$ implies $x=y$. [Note: This does not imply that $y \leq x$ for all y since \leq is only a partial order. In particular there may be many maximal elements.]

Theorem (Zorn's Lemma) If (\mathcal{X}, \leq) is a non-empty partially ordered set for which every chain has an upper bound then \mathcal{X} has a maximal element.

This result follows from (and is equivalent to) the Axiom of choice, which states that if X_{i} are non-empty sets then $\prod_{i \in I} X_{i}$ is non-empty. [I will not give the proof here as it is rather long.]

Note: If we had defined things so that \emptyset were a chain, we would not need the condition that $\mathcal{X} \neq \emptyset$ in Zorn's Lemma since the existence of an upper bound for \emptyset is just the condition that an element of \mathcal{X} exists. However, in practice it is easier to check $\mathcal{X} \neq \emptyset$ and then check separately that each non-empty totally ordered subset has an upper bound.

Theorem 3.1 If I is a proper ideal of a ring R (with 1) then there exists a maximal ideal M such that $I \subseteq M$.

Proof. If an ideal J contains 1 then $J=R$, so an ideal is proper iff it does not contain 1. Let \mathcal{X} be the set of proper ideals J of R with $I \subseteq J$. The partial order on \mathcal{X} will be \subseteq. Since $I \in \mathcal{X}, \mathcal{X} \neq \emptyset$. Now let \mathcal{C} be a chain in \mathcal{X}, i.e., a set of ideals $\left\{J_{\alpha}\right\}$ such that for every $J_{\alpha}, J_{\beta} \in \mathcal{C}$ either $J_{\alpha} \subseteq J_{\beta}$ or $J_{\beta} \subseteq J_{\alpha}$. Let $K=\bigcup_{J_{\alpha} \in \mathcal{C}} J_{\alpha}$. We shall show that K is an upper bound for \mathcal{C}.

Firstly $\mathcal{C} \neq \emptyset$, so some ideal J_{α} lies in \mathcal{C} and $I \subseteq J_{\alpha} \subseteq K$. In particular $K \neq \emptyset$. If $x, y \in K$ then $x \in J_{\alpha}, y \in J_{\beta}$, say. Since \mathcal{C} is totally ordered, we can assume without loss of generality that $J_{\alpha} \subseteq J_{\beta}$. Thus $x, y \in J_{\beta}$, and $x-y \in J_{\beta} \subseteq K$. If $x \in K, r \in R$, then $x \in J_{\alpha}$, say, so $x r, r x \in J_{\alpha} \subseteq K$. Hence K is an ideal with $I \subseteq K$. However $1 \notin J_{\alpha}$ for each $J_{\alpha} \in \mathcal{C}$, so $1 \notin K$. Hence K is proper. Therefore $K \in \mathcal{X}$ and is clearly an upper bound for \mathcal{C}.

The conditions of Zorn's Lemma apply, so \mathcal{X} has a maximal element M, say. Now M is a proper ideal containing I and is maximal, since if $M \subset J \subset R$ then $J \in \mathcal{X}$ and M would not be maximal in \mathcal{X}.

We now give an example from linear algebra. Let V be a vector space (possibly infinite dimensional).

A set $S \subseteq V$ is called linearly independent if there are no non-trivial finite linear combinations that give 0 . In other words if $\sum_{i=1}^{n} \lambda_{i} s_{i}=0$ and the s_{i} are distinct elements of S then $\lambda_{i}=0$ for each i.

A set $S \subseteq V$ is called spanning if every element $v \in V$ can be written as a finite linear combinations of elements of $S, v=\sum_{i=1}^{n} \lambda_{i} s_{i}$.

A set $S \subseteq V$ is called a basis if it is a linearly independent spanning set. Note that every element $v \in V$ can be written as a linear combination of elements of a basis in a unique way. [Spanning implies existence, linear independence implies uniqueness.]

Theorem 3.2 Every vector space has a basis.
Proof. Let \mathcal{X} be the set of all linearly independent sets in V partially ordered by \subseteq. Since \emptyset is linearly independent, $\mathcal{X} \neq \emptyset$. Let \mathcal{C} be a chain in \mathcal{X} and let $S=\bigcup_{S_{\alpha} \in \mathcal{C}} S_{\alpha}$. We shall show that S is linearly independent.

Suppose $\sum_{i=1}^{n} \lambda_{i} s_{i}=0$ and $s_{i} \in S_{\alpha_{i}} \in \mathcal{C}$ (the s_{i} are distinct but the α_{i} need not be). Then by total ordering of the $S_{\alpha_{i}}$, there must be one $S_{\alpha_{j}}$ that contains all the others (use induction on n). But then $\sum_{i=1}^{n} \lambda_{i} s_{i}=0$ is a linear relation in $S_{\alpha_{j}}$ which is linearly independent. Thus $\lambda_{i}=0$ for all i. Hence S is linearly independent, so $S \in \mathcal{X}$ and is an upper bound for \mathcal{C}.

Now apply Zorn's Lemma to give a maximal linearly independent set M. We shall show that M spans V and so is a basis. Clearly any element of M is a linear combination of elements of M, so pick any $v \notin M$ and consider $M \cup\{v\}$. By maximality of M this cannot be linearly independent. Hence there is a linear combination $\lambda v+\sum_{i=1}^{n} \lambda_{i} s_{i}=0$, $s_{i} \in M$, with not all the λ 's zero. If $\lambda=0$ this gives a linear relation in M, contradicting linear independence of M. Hence $\lambda \neq 0$ and $v=\sum_{i=1}^{n}\left(-\lambda_{i} / \lambda\right) s_{i}$ is a linear combination of elements of M.

7261 4. Miscellaneous topics

Anti-isomorphisms

An anti-homomorphism is a map $f: R \rightarrow S$ such that $f(a+b)=f(a)+f(b), f(1)=1$, and $f(a b)=f(b) f(a)$. An anti-isomorphism is an invertible anti-homomorphism.

Examples The transpose map ${ }^{T}: M_{n}(\mathbb{R}) \rightarrow M_{n}(\mathbb{R})$.
The map $\mathbb{H} \rightarrow \mathbb{H}$ given by $f(a+b i+c j+d k)=a-b i-c j-d k$.
The opposite ring R^{o} of R is the ring R with multiplication defined by $a \times_{R^{o}} b=b \times_{R} a$. Note that $R^{o o}=R$.

Lemma 4.1 A map $f: R \rightarrow S$ is an anti-homomorphism iff it is a homomorphism viewed as a map $R \rightarrow S^{o}$ (or $R^{o} \rightarrow S$).

Example $M_{n}(\mathbb{R})^{o}$ is isomorphic to $M_{n}(\mathbb{R})$, one isomorphism being the transpose map ${ }^{T}$.
Rngs (Rings without 1s)
A Rng (or "ring which does not necessarily have a 1 ") is a set R with + and \times defined so that $(R,+)$ is an abelian group, (R, \times) is a semigroup (\times is associative), and the distributive laws hold. However, R need not contain a multiplicative identity.

Subrngs, rng-homomorphisms etc., can be defined without the conditions involving 1. The definition of an ideal is the same, and an ideal is a special case of a subrng. The theory of rngs is similar to that of rings, although they are more awkward to deal with later on. The following lemma shows that we can regard a rng as an ideal of a bigger ring.

Lemma 4.2 Let R be a rng and define $R_{1}=\mathbb{Z} \times R$ with addition $(n, r)+(m, s)=$ $(n+m, r+s)$ and multiplication $(n, r)(m, s)=(n m, n . s+m . r+r s)$, where $n . s=s+\cdots+s$ etc.. Then R_{1} is a ring containing an ideal $\{0\} \times R$ isomorphic to R.

Direct sums and the Chinese Remainder Theorem

If R_{1} and R_{2} are rings, define the ring $R_{1} \oplus R_{2}$ as the set $R_{1} \times R_{2}$ with addition $\left(a_{1}, a_{2}\right)+$ $\left(b_{1}, b_{2}\right)=\left(a_{1}+b_{1}, a_{2}+b_{2}\right)$ and multiplication $\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right)=\left(a_{1} b_{1}, a_{2} b_{2}\right)$. The identity is $(1,1)$. The direct sum $R_{1} \oplus \cdots \oplus R_{n}$ is defined similarly. Note that even if R_{1} and R_{2} are IDs, $R_{1} \oplus R_{2}$ will not be since $(1,0)(0,1)=(0,0)$.

If R is a ring and I and J are ideals of R, we can define the following ideals.

- $I+J=\{a+b: a \in I, b \in J\}$
- $I \cap J=\{c: c \in I, c \in J\}$
- $I J=\left\{\sum_{i=1}^{n} a_{i} b_{i}: a_{i} \in I, b_{i} \in J, n \in \mathbb{N}\right\}$

It is easily checked that each of these is indeed an ideal. Note that in general $I J \neq\{a b:$ $a \in I, b \in J\}$, but $I J$ is the ideal generated by all the products $a b, a \in I, b \in J$.

Example For $R=\mathbb{Z}, I=(x)=\{a x: a \in \mathbb{Z}\}, J=(y)=\{b y: b \in \mathbb{Z}\}$

1. $I+J=(\operatorname{gcd}(x, y))$.

Note $\operatorname{gcd}(x, y)=a x+b y$ for some $a, b \in \mathbb{Z}$, so $\operatorname{gcd}(x, y) \in I+J$. Conversely $I+J=\{a x+b y: a, b \in \mathbb{Z}\}$ and $a x+b y$ is always a multiple of $\operatorname{gcd}(x, y)$.
2. $I \cap J=(\operatorname{lcm}(x, y))$.
$m \in I \Longleftrightarrow x \mid m$ and $m \in J \Longleftrightarrow y \mid m$. Hence if $m \in I \cap J$ then m must be a common multiple of x and y. Thus $m \in(\operatorname{lcm}(x, y))$ Conversely $\operatorname{lcm}(x, y)$ is a common multiple of x and y so lies in $I \cap J$. Hence $I \cap J=(\operatorname{lcm}(x, y))$.
3. $I J=(x y)$.
$I J=\left\{\sum a_{i} x b_{i} y: a_{i}, b_{i} \in \mathbb{Z}\right\} \subseteq(x y)$. Conversely $x y \in I J$, so $(x y) \subseteq I J$.
Ideals I and J are relatively prime if $I+J=R$. Equivalently $\exists a \in I, b \in J: a+b=1$ (recall that an ideal equals R iff it contains 1).

Lemma 4.3 $I J \subseteq I \cap J$. Moreover, if R is commutative and $I+J=R$ then $I J=I \cap J$.
Proof. If $a_{i} \in I$ then $\sum a_{i} b_{i} \in I$. If $b_{i} \in J$ then $\sum a_{i} b_{i} \in J$. Hence $I J \subseteq I \cap J$.
Now let $I+J=R$ so that $a+b=1$ for some $a \in I, b \in J$. Then if $c \in I \cap J, a c+c b \in I J$. But $a c+c b=c(a+b)=c$, so $c \in I J$. Thus $I \cap J \subseteq I J$ and so $I J=I \cap J$.

Theorem (Chinese Remainder Theorem) If I and J are ideals of a commutative ring R and $I+J=R$ then $R / I J \cong R / I \oplus R / J$.

Proof. Let $f: R \rightarrow R / I \oplus R / J$ be defined by $f(r)=(r+I, r+J)$. Then $f(r+s)=$ $(r+s+I, r+s+J)=(r+I, r+J)+(s+I, s+J)=f(r)+f(s), f(r s)=(r s+I, r s+J)=$ $(r+I, r+J)(s+I, s+J)=f(r) f(s)$, and $f(1)=(1+I, 1+J)$ is the identity in $R / I \oplus R / J$. Now $\operatorname{Ker} f=\{r: r+I=I, r+J=J\}=I \cap J$ so $\operatorname{Ker} f=I J$ by Lemma 4.3. For the image of f, write $1=a+b$ with $a \in I, b \in J$. Then $f(s a+r b)=(s a+r(1-a)+I, s(1-b)+r b+J)=$ $(r+I, s+J)$. Thus f is surjective. Hence $R / I J \cong R / I \oplus R / J$.

Example If $\operatorname{gcd}(n, m)=1$ then $\mathbb{Z} / n m \mathbb{Z} \cong \mathbb{Z} / n \mathbb{Z} \oplus \mathbb{Z} / m \mathbb{Z}$.

Exercises

1. Show that composing two anti-homomorphisms gives a homomorphism and composing an anti-homomorphism with a homomorphism gives an anti-homomorphism.
2. Define $\phi(n)=\left|(\mathbb{Z} / n \mathbb{Z})^{\times}\right|$. Show that if $\operatorname{gcd}(n, m)=1$ then $\phi(n m)=\phi(n) \phi(m)$. If $n=p_{1}^{a_{1}} \ldots p_{r}^{a_{r}}$ is the prime factorization of n, deduce that $\phi(n)=\prod_{i} p_{i}^{a_{i}-1}\left(p_{i}-1\right)$.
3. Generalize the CRT: if I_{1}, \ldots, I_{n} are ideals of a commutative ring R and for each i and $j, I_{i}+I_{j}=R$, show that $R / I_{1} I_{2} \ldots I_{n} \cong I_{1} \oplus I_{2} \oplus \cdots \oplus I_{n}$.

Throughout this section we shall assume R is a commutative ring.
Recall: An Integral Domain (ID) is a non-trivial ring in which $a b=0$ implies either $a=0$ or $b=0$.

A prime ideal of a commutative ring R is a proper ideal such that $a b \in P$ implies either $a \in P$ or $b \in P$.

Lemma 5.1 An ideal P is prime iff R / P is an $I D$.
Proof. Assume P is prime. Then R / P is non-trivial since P is proper. If $(a+P)(b+P)=$ $0+P$ then $a b+P=P$ and so $a b \in P$. Thus either $a \in P$ or $b \in P$, so either $a+P=P$ or $b+P=P$. Thus R / P is an ID. Conversely, if R / P is an ID then P is proper since R / P is non-trivial. If $a, b \notin P$, then $a+P, b+P \neq 0+P$, so $(a+P)(b+P)=a b+P \neq 0+P$, so $a b \notin P$. Thus P is a prime ideal.

Corollary 5.2 Any maximal ideal of a commutative ring is also a prime ideal.
Proof. M maximal $\Rightarrow R / M$ is a field $\Rightarrow R / M$ is an ID $\Rightarrow M$ is prime.
The converse does not hold: (0) is prime but not maximal in \mathbb{Z}.
Examples of prime ideals: (p) in $\mathbb{Z},(0)$ in any ID. The ideal (X) in the ring $\mathbb{Z}[X]$ of polynomials in X with coefficients in \mathbb{Z}. This last example is also not maximal.

Every field is an ID. Furthermore, every subring of a field is an ID (e.g., $\mathbb{Z} \subseteq \mathbb{Q}$). We shall show that conversely, every ID can be embedded as a subring of a field.

Assume R is a commutative ring and $S \subseteq R$ is a submonoid of (R, \times). In other words, $1 \in S$ and $a, b \in S$ implies $a b \in S$. For example, set $S=R \backslash P$ for any prime P. One particularly important case is when R is an ID and $S=R \backslash\{0\}$.

Define $S^{-1} R$ as $(R \times S) / \sim$, where $(r, s) \sim\left(r^{\prime}, s^{\prime}\right)$ iff $\exists u \in S: u r s^{\prime}=u r^{\prime} s$. We write r / s for the equivalence class $\overline{(r, s)} \in S^{-1} R$.

Note: if S contains no zero-divisors then $(r, s) \sim\left(r^{\prime}, s^{\prime}\right)$ iff $r s^{\prime}=r^{\prime} s$.
Lemma 5.3 The relation \sim defined above is an equivalence relation and $S^{-1} R$ can be made into a ring so that the map $i: R \rightarrow S^{-1} R, i(r)=r / 1$ is a homomorphism. Also $i(S) \subseteq\left(S^{-1} R\right)^{\times}$and the map i is injective iff S contains no zero-divisors.

Proof. Reflexivity and symmetry of \sim are immediate. For transitivity, if $(r, s) \sim\left(r^{\prime}, s^{\prime}\right) \sim$ $\left(r^{\prime \prime}, s^{\prime \prime}\right)$ then $\exists u, u^{\prime}: u r s^{\prime}=u r^{\prime} s, u^{\prime} r^{\prime} s^{\prime \prime}=u^{\prime} r^{\prime \prime} s^{\prime}$. Hence $\left(u u^{\prime} s^{\prime}\right)\left(r s^{\prime \prime}\right)=u^{\prime} s^{\prime \prime} u s^{\prime} r=$ $u^{\prime} s^{\prime \prime} u s r^{\prime}=u s u^{\prime} r^{\prime} s^{\prime \prime}=u s u^{\prime} r^{\prime \prime} s^{\prime}=\left(u u^{\prime} s^{\prime}\right)\left(r^{\prime \prime} s\right)$. But $u u^{\prime} s^{\prime} \in S$, so $(r, s) \sim\left(r^{\prime \prime}, s^{\prime \prime}\right)$.
Define addition by $r_{1} / s_{1}+r_{2} / s_{2}=\left(r_{1} s_{2}+r_{2} s_{1}\right) /\left(s_{1} s_{2}\right)$ and multiplication by $\left(r_{1} / s_{1}\right)\left(r_{2} / s_{2}\right)=$ $\left(r_{1} r_{2}\right) /\left(s_{1} s_{2}\right)$. A long and rather tedious check shows that under these operations $S^{-1} R$ becomes a commutative ring with identity $1 / 1$.

The map $i(r)=r / 1$ is a ring homomorphism since $i(r)+i\left(r^{\prime}\right)=r / 1+r^{\prime} / 1=\left(r+r^{\prime}\right) / 1=$ $i\left(r+r^{\prime}\right), i(r) i\left(r^{\prime}\right)=(r / 1)\left(r^{\prime} / 1\right)=\left(r r^{\prime}\right) / 1=i\left(r r^{\prime}\right)$, and $i(1)=1 / 1$.
The element $1 / s \in S^{-1} R$ is the inverse of $i(s)=s / 1$, so $i(S) \subseteq\left(S^{-1} R\right)^{\times}$.
The kernel of i is $\{r \in R: r / 1=0 / 1\}=\{r \in R: \exists u \in S: u r=0\}$. Thus Ker $i=\{0\}$ iff S contains no zero-divisors.

Lemma 5.4 $S^{-1} R$ satisfies the following universal property: If $f: R \rightarrow \quad R \quad \xrightarrow{f} R^{\prime}$ R^{\prime} is a homomorphism with $f(S) \subseteq\left(R^{\prime}\right)^{\times}$then f factors uniquely as $i \downarrow \quad \lambda_{h}$ $f=h \circ i$ where $h: S^{-1} R \rightarrow R^{\prime}$ is a homomorphism.

$$
S^{-1} R
$$

Proof. Any such \tilde{f} must satisfy $\tilde{f}(r / s) \tilde{f}(s / 1)=\tilde{f}(r / 1)$ and $\tilde{f}(t / 1)=f(t)$. Hence $\tilde{f}(r / s) f(s)=f(r)$ and $\tilde{f}(r / s)=f(r) f(s)^{-1}$. Conversely, defining $\tilde{f}(r / s)=f(r) f(s)^{-1}$ gives a homomorphism $S^{-1} R \rightarrow R^{\prime}$ (check this!).

Notation: If $S=R \backslash P$ for some prime ideal P, we also write $S^{-1} R$ as R_{P} and call it the localization of R at P.

Lemma 5.5 If R is an ID then $(R \backslash\{0\})^{-1} R=R_{(0)}$ is a field containing a subring isomorphic to R.

Proof. Let $S=R \backslash\{0\}$. If $r / s \neq 0 / 1$ then $r \neq 0$, so $s / r \in S^{-1} R$ and $(s / r)(r / s)=1 / 1$. Hence any non-zero element of $S^{-1} R$ is invertible. The map i is injective, so $\operatorname{Im} i$ is a subring of $S^{-1} R$ isomorphic to R.

In this case we call $R_{(0)}=S^{-1} R$ the field of fractions of R, or Frac R. For example $\operatorname{Frac}(\mathbb{Z})=\mathbb{Q}$.

Exercises

1. Show that the units of R_{P} consists of the elements r / s where $r \notin P$ and there is a unique maximal ideal of R_{P} consisting of all the non-unit elements. [Rings that have a unique maximal ideal are called local rings.]
2. Show that if R is an ID, then for any prime ideal P, R_{P} is isomorphic to a subring of Frac R.
3. Describe $\mathbb{Z}_{(2)}$ explicitly as a subring of \mathbb{Q}.
4. What is the field of fractions of a field?
5. What is the field of fractions of the ring of entire functions (holomorphic functions $f: \mathbb{C} \rightarrow \mathbb{C})$?
6. What is the field of fraction of the ring of polynomial functions $\mathbb{C}[X]=\left\{\sum_{i=0}^{n} a_{i} X^{i}\right.$: $\left.a_{i} \in \mathbb{C}, n \in \mathbb{N}\right\}$?

Assume that R is a commutative ring. We wish to construct the ring $R[X]$ of polynomials in X with coefficients in R.

Define $R[X]$ as the set of sequences $\left(a_{0}, a_{1}, \ldots\right)$ with the property that all but finitely many of the a_{i} s are zero. Define $\left(a_{0}, \ldots\right)+\left(b_{0}, \ldots\right)=\left(a_{0}+b_{0}, a_{1}+b_{1}, \ldots\right)$ (so $R[X]=\bigoplus_{i \in \mathbb{N}} R$ as group under +) and define $\left(a_{0}, \ldots\right)\left(b_{0}, \ldots\right)=\left(c_{0}, c_{1}, \ldots\right)$ where $c_{i}=\sum_{0 \leq j \leq i} a_{j} b_{i-j}$. We call $R[X]$ the ring of polynomials in X over R. Let $i: R \rightarrow R[X]$ be defined by $i(a)=(a, 0,0, \ldots)$ and let $X \in R[X]$ be the element $X=(0,1,0,0, \ldots)$. Note that $X\left(a_{0}, a_{1}, \ldots\right)=\left(0, a_{0}, a_{1}, \ldots\right)$ and $i(a)\left(a_{0}, a_{1}, \ldots\right)=\left(a a_{0}, a a_{1}, \ldots\right)$.

Lemma 6.1 $R[X]$ is a ring, $i: R \rightarrow R[X]$ is an injective ring homomorphism, and if $a_{i}=0$ for all $i>n$ then $\left(a_{0}, a_{1}, \ldots\right)=\sum_{i=0}^{n} i\left(a_{i}\right) X^{i}$

We shall normally identify $i(a)$ with a and write polynomials $f(X) \in R[X]$ in the form $\sum_{i=0}^{n} a_{i} X^{i}$. The degree $\operatorname{deg} f(X)$ of a polynomial is the largest n such that $a_{n} \neq 0$, (or $-\infty$ if $f=0$). The leading coefficient of $f(X)$ is a_{n} where $n=\operatorname{deg} f$, (or 0 if $f=0$). A polynomial is monic if the leading coefficient is 1 .

Lemma 6.2 If $f, g \in R[X]$ then

1. $\operatorname{deg}(f+g) \leq \max \{\operatorname{deg} f, \operatorname{deg} g\}$,
2. $\operatorname{deg}(f g) \leq \operatorname{deg} f+\operatorname{deg} g$, with equality holding if R is an $I D$.

Lemma 6.3 If R is an ID then $R[X]$ is an $I D$ and $(R[X])^{\times}=R^{\times}$.
Proof. If $f, g \in R[X]$ and $f, g \neq 0$ then $\operatorname{deg}(f g)=\operatorname{deg} f+\operatorname{deg} g \geq 0$, so $f g \neq 0$. If $f g=1$ then $0=\operatorname{deg}(f g)=\operatorname{deg} f+\operatorname{deg} g$ so $\operatorname{deg} f=\operatorname{deg} g=0$ and $f, g \in R$. Hence $f \in(R[X])^{\times}$ implies $f \in R^{\times}$. Conversely $f \in R^{\times}$clearly implies $f \in(R[X])^{\times}$.

Theorem (Universal property of polynomial rings) If $\phi: R \rightarrow R^{\prime}$ is a ring homomorphism and $\alpha \in R^{\prime}$ then there exists a unique homomorphism $\mathrm{ev}_{\phi, \alpha}: R[X] \rightarrow R^{\prime}$ such that $\mathrm{ev}_{\phi, \alpha}(a)\left[=\mathrm{ev}_{\phi, \alpha}(i(a))\right]=\phi(a)$ for all $a \in R$ and $\mathrm{ev}_{\phi, \alpha}(X)=\alpha$.

If R is a subring of R^{\prime} and ϕ is the inclusion map we write $f(\alpha)$ for $\mathrm{ev}_{\phi, \alpha}(f)$. More generally, if just R is a subring of R^{\prime} we write $\phi(f)(\alpha)$ for $\mathrm{ev}_{\phi, \alpha}(f)$.

Lemma 6.4 If R is a subring of R^{\prime} and $\alpha \in R^{\prime}$ then $R[\alpha]$ is isomorphic to a quotient $R[X] / I$ where I is an ideal of $R[X]$ containing no non-zero constants: $I \cap R=\{0\}$.

Proof. Apply 1st Isomorphism Theorem to $\mathrm{ev}_{\alpha}: R[X] \rightarrow R^{\prime}$.
We say $\alpha \in R^{\prime}$ is transcendental over $R \subseteq R^{\prime}$ if the map ev_{α} is injective. In other words, if $f(\alpha)=0$ implies $f(X)=0$. Otherwise we say that α is algebraic over R.

Examples The element $\pi \in \mathbb{R}$ is transcendental over \mathbb{Z}, so $\mathbb{Z}[\pi] \cong \mathbb{Z}[X]$. The elements $i, \sqrt{2}, \sqrt[4]{3} \in \mathbb{C}$ are all algebraic over \mathbb{Z}. However π is algebraic over \mathbb{R} (since it is a root of $X-\pi \in \mathbb{R}[X])$.

Theorem (Division Algorithm) If $f, g \in R[X]$ and the leading coefficient of g is a unit in R, then there exist unique $q, r \in R[X]$ such that $f=q g+r$ and $\operatorname{deg} r<\operatorname{deg} g$ (or $r=0$).

If $a, b \in R$, we say a divides $b, a \mid b$, if there exists $c \in R$ such that $b=c a$.
Examples In any ring, $u \mid 1$ iff $u \in R^{\times}, a \mid 0$ for all a. In $\mathbb{Z}, 7 \mid 21$. In $\mathbb{Q}, 21 \mid 7$.
Lemma 6.5 If $\alpha \in R$ and $f \in R[X]$ then $f(X)=(X-\alpha) q(X)+f(\alpha)$ for some $q \in R[X]$. In particular, $X-\alpha \mid f$ iff $f(\alpha)=0$.

Lemma 6.6 If R is an ID and $f \in R[X], f \neq 0$, then $|\{\alpha \in R: f(\alpha)=0\}| \leq \operatorname{deg} f$.
Lemma 6.7 If R is an $I D$ and G is a finite subgroup of R^{\times}then G is cyclic.
Proof. G is a finite abelian group, so $G \cong C_{d_{1}} \times \cdots \times C_{d_{r}}$. But then $x^{d_{1}}=1$ for all $x \in G$. Thus the polynomial $X^{d_{1}}-1$ has $|G|$ zeros. Thus $|G|=d_{1} d_{2} \ldots d_{r} \leq d_{1}$, so $d_{2}=\cdots=d_{r}=1$ and $G \cong C_{d_{1}}$ is cyclic.

We can generalize polynomial rings to polynomials in many variables. If $\left\{X_{i}\right\}_{i \in I}$ is a set (possibly infinite) of indeterminates, define a term t to be a function $I \rightarrow \mathbb{N}$ which is non-zero for only finitely many $i \in I$. We think of t as corresponding to a finite product $\prod_{i \in I} X_{i}^{t(i)}$. Let T be the set of terms. Now define the ring

$$
R\left[\left\{X_{i}\right\}_{i \in I}\right]=\bigoplus_{t \in T} R=\left\{\left(a_{t}\right)_{t \in T} \mid a_{t}=0 \text { for all but finitely many } t\right\}
$$

with addition of coefficients componentwise $\left(a_{t}\right)+\left(b_{t}\right)=\left(a_{t}+b_{t}\right)$ and multiplication defined by $\left(a_{t}\right)\left(b_{t}\right)=\left(c_{t}\right)$ where $c_{t}=\sum_{r+s=t} a_{r} b_{s}$ (note that this is a finite sum). As for $R[X]$ we can identify R as a subring of $R\left[\left\{X_{i}\right\}_{i \in I}\right]$ and define elements X_{i} so that $\left(a_{t}\right)_{t \in T}$ is equal to the (finite) sum $\sum_{t \in T} a_{t} \prod_{i \in I} X_{i}^{t(i)}$.

Theorem (Universal property of polynomial rings) If $\phi: R \rightarrow R^{\prime}$ is a ring homomorphism and $\alpha_{i} \in R^{\prime}$ for all $i \in I$ then there exists a unique homomorphism $\operatorname{ev}_{\phi,\left(\alpha_{i}\right)}: R\left[\left\{X_{i}\right\}_{i \in I}\right] \rightarrow R^{\prime}$ such that $\mathrm{ev}_{\phi,\left(\alpha_{i}\right)}(a)=\phi(a)$ for all $a \in R$ and $\operatorname{ev}_{\phi,\left(\alpha_{i}\right)}\left(X_{i}\right)=\alpha_{i}$ for all $i \in I$.

If I is finite then we can also identify $R\left[X_{1}, \ldots, X_{n}\right]$ with $R\left[X_{1}, \ldots, X_{n-1}\right]\left[X_{n}\right]$ (use universal properties to define the isomorphism).

A Euclidean Domain is an ID for which there is a function $d: R \backslash\{0\} \rightarrow \mathbb{N}$ such that if $a, b \in R, b \neq 0$ then there exists $q, r \in R$ such that $a=q b+r$ with either $d(r)<d(b)$ or $r=0$.

Examples

1. \mathbb{Z} with $d(a)=|a|$.
2. $F[X]$, where F is a field, $d(f)=\operatorname{deg} f$.
3. F, where F is a field, $d(a)=0$.
4. $\mathbb{Z}[i]$, with $d(a+i b)=|a+i b|^{2}=a^{2}+b^{2}$. [Write $a / b=x+i y$ and let $q=x^{\prime}+i y^{\prime}$ with $\left|x-x^{\prime}\right|,\left|y-y^{\prime}\right| \leq \frac{1}{2}$. Then $d(r)=|q b-a|^{2}=|q-a / b|^{2}|b|^{2}=\left(\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}\right) d(b) \leq$ $\frac{1}{2} d(b)$.]

A Principal Ideal Domain (PID) is an ID in which every ideal I is principal, i.e., $I=(a)$ for some $a \in R$.

Theorem 7.1 Every Euclidean Domain is a PID.
Proof. If R is Euclidean then R is an ID, so it is enough to show that any ideal I is principal. Let I be an ideal of R and assume $I \neq(0)$. Pick $b \in I \backslash\{0\}$ with minimal value of $d(b)$ (by well ordering of \mathbb{N}). If $a \in I$ then $a=q b+r$ with $d(r)<d(b)$ or $r=0$. But $r=a-q b \in I$, so by choice of b we must have $r=0$. Thus $a=q b \in(b)$. Thus $I \subseteq(b)$. But $b \in I$, so $(b) \subseteq I$. Thus $I=(b)$ is principal.

Note: PID \nRightarrow Euclidean.
If $I=(a)$ is a principal ideal then $b \in I$ implies there exists a $c \in R$ with $b=c a$. Thus $b \in I$ is equivalent to $a \mid b$. In particular $(b) \subseteq(a) \Longleftrightarrow a \mid b$. If $(a)=(b)$ then $b=u a$ and $a=v b$. Thus either $a=b=0$ or $u v=1$ and $u, v \in R^{\times}$. Conversely, if $a=u b$ with $u \in R^{\times}$then $(a)=(b)$.

The elements $a, b \in R$ are called associates if $b=u a$ for some $u \in R^{\times}$. Equivalently, $a \mid b$ and $b \mid a$ both hold, or $(a)=(b)$. Write $a \sim b$ if a and b are associates.

A greatest common divisor (gcd) of a set of elements $S \subseteq R$ is an element $d \in R$ such that

G1. $d \mid a$ for all $a \in S$, and
G2. if $c \mid a$ for all $a \in S$ then $c \mid d$.
Greatest common divisors are unique up to multiplication by units. To see this, let d, d^{\prime} be two gcds. Then condition G2 with $c=d^{\prime}$ and G1 with $d=d^{\prime}$ imply $d^{\prime} \mid d$. Similarly $d \mid d^{\prime}$, so $d^{\prime}=u d$ for some unit $u \in R^{\times}$.

Lemma 7.2 If R is a PID then gcds of any $S \subseteq R$ exist. Indeed, if $(S)=(d)$ then d is a gcd of S and hence can be written in the form $d=\sum_{i=1}^{n} c_{i} a_{i}$, for some $a_{i} \in S, c_{i} \in R$.
Proof. Since R is a PID, $(S)=(d)$ for some d. If $a \in S$ then $a \in(S)=(d)$, so $d \mid a$. If $c \mid a$ for all $a \in S$, then $a \in(c)$ for all $a \in S$, so $(S)=(d) \subseteq(c)$. Hence $c \mid d$. Thus d is a gcd of S.

Note: In an arbitrary ID, gcds may not exist, and even if they do, they may not be a linear combination of elements of S. For example the elements 2 and X in $\mathbb{Z}[X]$ have 1 as a gcd, but 1 is not of the form $2 c_{1}+X c_{2}, c_{1}, c_{2} \in \mathbb{Z}[X]$. For an example where the gcd does not exist, consider $R=\mathbb{Z}[\sqrt{-5}]$. If $a \in R$ then $|a|^{2} \in \mathbb{Z}$. Hence if $a \mid b$ in R then $\left.|a|^{2}| | b\right|^{2}$ in \mathbb{Z}. Now let $x=-3(3-\sqrt{-5})=(1+2 \sqrt{-5})(1+\sqrt{-5})$ and $y=-7(1+\sqrt{-5})=(1-2 \sqrt{-5})(3-\sqrt{-5})$. Then $1+\sqrt{-5}$ and $3-\sqrt{-5}$ are two common factors of x and y. If d is a gcd of x and y, then $|d|^{2}$ must be a factor of $|x|^{2}=2.3^{2} .7$ and $|y|^{2}=2.3 .7^{2}$. On the other hand, $|d|^{2}$ must be a multiple of $|1+\sqrt{-5}|^{2}=2.3$ and $|3-\sqrt{-5}|^{2}=2.7$. Thus $|d|^{2}=2.3 .7=42$. However, if $d=\alpha+\beta \sqrt{-5}$ then $|d|^{2}=\alpha^{2}+5 \beta^{2}$, which is never equal to 42 .

The Euclidean Algorithm

We can turn Lemma 1 into an algorithm in the case when R is Euclidean. Assume we need to find the gcd of $a_{0}=a$ and $a_{1}=b$. Inductively define a_{n+1} for $n \geq 1$ and $a_{n} \neq 0$ by

$$
a_{n-1}=q_{n} a_{n}+a_{n+1}, \quad d\left(a_{n+1}\right)<d\left(a_{n}\right) \text { or } a_{n+1}=0
$$

Since the $d\left(a_{n}\right)$ are a sequence of decreasing non-negative integers, eventually $a_{n+1}=0$. However $a_{i+1} \in\left(a_{i}, a_{i-1}\right)$ and $a_{i-1} \in\left(a_{i}, a_{i+1}\right)$ imply the two ideals $\left(a_{i-1}, a_{i}\right)$ and $\left(a_{i}, a_{i+1}\right)$ are equal. Hence $\left(a_{0}, a_{1}\right)=\left(a_{n}, a_{n+1}\right)=\left(a_{n}\right)$ and a_{n} is a gcd of a_{0} and a_{1}.

This algorithm is called the Euclidean Algorithm. For more than two elements, one can calculate the gcd inductively by using $\operatorname{gcd}\left(c_{1}, c_{2}, \ldots, c_{r}\right)=\operatorname{gcd}\left(c_{1}, \operatorname{gcd}\left(c_{2}, \ldots, c_{r}\right)\right)$.

Exercises

1. Prove that $\operatorname{gcd}\left(c_{1}, \ldots, c_{r}\right)=\operatorname{gcd}\left(c_{1}, \operatorname{gcd}\left(c_{2}, \ldots, c_{r}\right)\right)$ provided the gcds on the RHS exist. What is $\operatorname{gcd}(\emptyset)$?
2. Let $R=\mathbb{Z}[\omega]$ where $\omega=\frac{1}{2}(1+\sqrt{-3})$. Show that $R=\{a+b \omega: a, b \in \mathbb{Z}\}$ and that R is Euclidean.
3. Use the Euclidean algorithm to find the gcd of $7-3 i$ and $5+3 i$ in $\mathbb{Z}[i]$.
4. Determine $((\mathbb{Z} / n \mathbb{Z})[X])^{\times}$. [Hint: Consider the case $n=p^{r}$ first.]
5. Solve the congruences

$$
x \equiv i \bmod 1+i \quad x \equiv 1 \bmod 2-i
$$

in $\mathbb{Z}[i]$ (use Chinese Remainder Theorem).

An element $a \in R$ is irreducible if $a \neq 0, a \notin R^{\times}$, and $a=b c$ implies $b \in R^{\times}$or $c \in R^{\times}$. An element $a \in R$ is a prime if $a \neq 0, a \notin R^{\times}$and $a \mid b c$ implies $a \mid b$ or $a \mid c$.

Lemma 8.1 Let R be an $I D$, and $a \in R$. Then

1. a is a prime element iff (a) is a non-zero prime ideal,
2. a is irreducible iff (a) is maximal among proper principal ideals
(i.e., $(a) \subseteq(b)$ implies $(b)=(a)$ or $(b)=R)$,
3. if a is prime then a is irreducible,
4. if a is irreducible and R is a PID then a is prime.

Proof.

1. If a is prime and $b c \in(a)$ then $a \mid b c$. Hence $a \mid b$ or $a \mid c$, so either $b \in(a)$ or $c \in(a)$. Also, $a \neq 0, a \notin R^{\times} \operatorname{implies}(a) \neq(0), R$. Conversely, if (a) is a prime ideal and $a \mid b c$, then $b c \in(a)$, so either $b \in(a)$ or $c \in(a)$, so either $a \mid b$ or $a \mid c$ and $(a) \neq(0), R$ implies $a \neq 0, a \notin R^{\times}$.
2. If $a \in R$ be irreducible and $(a) \subseteq(b)$ then $a=b c$, so either $c \in R^{\times}$and $(b)=(a)$ or $b \in R^{\times}$and $(b)=R$. Conversely if (a) is maximal among all proper principal ideals and $a=b c$ then $(a) \subseteq(b)$, so either $(a)=(b)$ and c is a unit or $(b)=R$ and b is a unit.
3. If a is a prime and $a=b c$ then $a \mid b c$. Thus either $a \mid b$ and $c \in R^{\times}$, or $a \mid c$ and $b \in R^{\times}$.
4. By part 2, (a) is a maximal ideal. Hence (a) is prime and so a is prime.

A ring R is a Unique Factorization Domain (UFD) if R is an ID such that
U1. Every $a \in R \backslash\{0\}$ can be written in the form $a=u p_{1} \ldots p_{r}$ where $u \in R^{\times}$and the p_{i} are irreducible.

U2. Any two such factorizations are unique in the sense that if $u p_{1} \ldots p_{r}=v q_{1} \ldots q_{s}$ then $r=s$ and there is a permutation $\pi \in S_{r}$ such that $p_{i} \sim q_{\pi(i)}$ for all i.

Lemma $8.2 R$ is a UFD iff R is an ID satisfying
A. there is no infinite sequence $\left(a_{i}\right)_{i \in \mathbb{N}}$ with $a_{i+1} \mid a_{i}$ and $a_{i+1} \nsim a_{i}$, and
B. every irreducible is prime.

Proof.
A \Rightarrow U1. Suppose $a_{1} \in R$ has no such factorization. Then a_{1} is neither a unit nor irreducible, so $a_{1}=b c, b, c \notin R^{\times}$, and either b or c also has no factorization into irreducibles. Assume b has no factorization into irreducibles and set $a_{2}=b$. Repeating this process we get a sequence a_{i} with $a_{i+1} \mid a_{i}$ and $a_{i+1} \nsim a_{i}$.
$\mathrm{B} \Rightarrow \mathrm{U} 2$. Since p_{1} is prime and $p_{1} \mid v q_{1} \ldots q_{s}$, we must have $p_{1} \mid q_{i}$ for some i. But q_{i} is irreducible, so $p_{1} \sim q_{i}$. Cancelling a factor of p_{1} from both sides (R is an ID) and using induction on r gives the result.
U 1 and $\mathrm{U} 2 \Rightarrow \mathrm{~A}$ and B is clear.

A ring is Noetherian if every sequence of ideals I_{i} with $I_{i} \subseteq I_{i+1}$ is eventually constant, $I_{n}=I_{n+1}=\ldots$, for some n.

Lemma $8.3 R$ is Noetherian iff every ideal is finitely generated.
Proof. \Leftarrow : Let $I=\cup I_{n}$. Then I is an ideal, so $I=\left(d_{1}, \ldots, d_{r}\right)$ for some $d_{i} \in R$. But then there is an n_{i} with $d_{i} \in I_{n}$. Let $n=\max n_{i}$, so that $I=\left(d_{1}, \ldots, d_{r}\right) \subseteq I_{n} \subseteq I_{n+1} \subseteq \cdots \subseteq I$, and so $I_{n}=I_{n+1}=\ldots$.
\Rightarrow : Assume I is not finitely generated. Then (using Axiom of choice), pick inductively $d_{n} \in I \backslash\left(d_{1}, \ldots, d_{n-1}\right)$. Then $I_{n}=\left(d_{1}, \ldots d_{n}\right)$ is a strictly increasing sequence of ideals.

Theorem Every PID is a UFD.
Proof. Every ideal in a PID is finitely generated (by one element), so PID \Rightarrow Noetherian. By considering the ideals $\left(a_{i}\right)$, Noetherian rings satisfy condition A of Lemma 8.2. Lemma 8.1 part 4 implies condition B of Lemma 8.2 , so $\mathrm{PID} \Rightarrow$ UFD.

GCDs and factorizations
Lemma 8.4 If R is a UFD and $S \subseteq R$ then a gcd of S exists.
Proof. The relation \sim is an equivalence relation on the set of irreducibles in R. So by choosing a representative irreducible from each equivalence class we can construct a set P of pairwise non-associate irreducible elements of R. We can write any element $a \in R$ as $u \prod_{p \in P} p^{n_{p}}$ and if $b=v \prod_{p \in S} p^{m_{p}}$ then U2 implies $a \mid b$ iff $n_{p} \leq m_{p}$ for all p. Write each $a_{i} \in S$ as $a_{i}=u_{i} \prod_{p \in P} p^{n_{i, p}}$. If we let $d=\prod_{p \in P} p^{m_{p}}$ with $m_{p}=\min _{a_{i} \in S} n_{i, p}$ then it is clear that d is a gcd for S.

A partial converse to Lemma 8.4 is true.
Lemma 8.5 If R is an ID in which the gcd of any pair of elements exists then every irreducible is prime.

Proof. First we prove that if gcds exist then $\operatorname{gcd}(a b, a c) \sim a \operatorname{gcd}(b, c)$. Let $e=\operatorname{gcd}(a b, a c)$ and $d=\operatorname{gcd}(b, c)$. Then $d \mid b, c$, so $a d \mid a b, a c$, so $a d \mid e$. Writing $e=a d u$ then $e \mid a b, a c$, so $d u \mid b, c$, so $d u \mid d$. Thus $u \in R^{\times}$and $e \sim a d$ (or $d=0=e$).
Now let p be an irreducible and assume $p \nmid a, b$. Then $\operatorname{gcd}(p, b) \sim 1$ since the gcd must be a factor or p and $p \nmid b$. Hence $\operatorname{gcd}(p, a b) \mid \operatorname{gcd}(a p, a b) \sim a$. But $\operatorname{gcd}(p, a b) \mid p$, so $\operatorname{gcd}(p, a b) \mid \operatorname{gcd}(a, p) \sim 1$. Hence $\operatorname{gcd}(p, a b) \sim 1$ and $p \nmid a b$. Hence p is prime.

Lemma 8.6 If R is an ID in which every set S has a gcd which can be written in the form $\sum r_{i} a_{i}$ for some $a_{i} \in S, r_{i} \in R$, then R is a PID.

Proof. Let I be an ideal and write $I=(S)$ for some S (e.g., $S=I$). Let $d=\sum r_{i} a_{i}$ be a gcd of S. Then $d \mid a$ for all $a \in S$. Hence $a \in(d)$, so $S \subseteq(d)$. Thus $I \subseteq(d)$. However $d=\sum r_{i} a_{i} \in I$. Then $(d) \subseteq I$. Hence $I=(d)$ is principal.

7261 9. Factorization of Polynomials

Assume throughout this section that R is a UFD.
Let $f(X)=\sum_{i=0}^{n} a_{i} X^{i} \in R[X]$. Define the content of $f(X)$ to be $c(f)=\operatorname{gcd}\left\{a_{0}, a_{1}, \ldots, a_{n}\right\}$. Note that if $f \neq 0$ then $c(f) \neq 0$. We call f primitive iff $c(f) \sim 1$.

Note that monic polynomials are primitive, but not conversely, e.g. $2 X+3 \in \mathbb{Z}[X]$.
Lemma (Gauss) If R is a UFD and $f, g \in R[X]$ are primitive, then so is $f g$.
Proof. Assume otherwise and let p be a prime dividing $c(f g)$. Reducing the polynomials $\bmod p$ we get $\bar{f}, \bar{g} \in(R /(p))[X]$ with $\bar{f}, \bar{g} \neq 0$, but $\bar{f} \bar{g}=\overline{f g}=0$ (the map $f \mapsto \bar{f}$ $R[X] \rightarrow(R /(p))[X]$ is a special case of the evaluation homomorphism $\mathrm{ev}_{\pi, X}$ where X is sent to X and $\mathrm{ev}_{\pi, X}$ acts as the projection map $\pi: R \rightarrow R /(p)$ on constants). Now p is prime, so (p) is a prime ideal and $R /(p)$ is an ID. Hence $\bar{f}, \bar{g} \neq 0$ implies $\bar{f} \bar{g} \neq 0$, a contradiction.

Corollary 9.1 If R is a UFD then $c(f g) \sim c(f) c(g)$.
Proof. The result clearly holds if f or g is zero, so assume $f, g \neq 0$ and hence $c(f) \neq$ 0 . Since $\operatorname{gcd}\left\{a a_{i}\right\} \sim a \operatorname{gcd}\left\{a_{i}\right\}, c(a f) \sim a c(f)$ for all $a \in R$. But $f / c(f) \in R[X]$, so $c(f) c(f / c(f))=c(f)$ and so $f / c(f)$ is primitive. Now $f g /(c(f) c(g))=(f / c(f))(g / c(g))$ is primitive. Hence $c(f g) \sim c(f) c(g) c(f g / c(f) c(g)) \sim c(f) c(g)$.

Lemma 9.2 If $\operatorname{deg} f>0$ and f is irreducible in $R[X]$ then f is irreducible in $F[X]$, where $F=\operatorname{Frac} R$ is the field of fractions of R.

Proof. Suppose $f=g h$ in $F[X]$. By multiplying by denominators, there exist non-zero $a, b \in R$ with $a g, b h \in R[X]$. Thus $a b f=(a g)(b h) \in R[X]$ and $c(a b f) \sim c(a g) c(b h)$. But $f=c(f)(f / c(f))$ is a factorization of f in $R[X]$ and if $\operatorname{deg} f>0, f / c(f) \notin(R[X])^{\times}=$ R^{\times}. Thus $c(f) \in R^{\times}$and so $c(a b f) \sim a b$. Now $a b / c(a g) c(b h)=u \in R^{\times}$and $f=$ $\left(u^{-1} a g / c(a g)\right)(b h / c(b h))$ is a factorization of f in $R[X]$. Hence either $\operatorname{deg} g=0$ or $\operatorname{deg} f=0$ and so g or h is a unit in $F[X]$.

Lemma 9.3 If R is a UFD then $f \in R[X]$ is irreducible iff either (a) $f \in R$ is an irreducible in R, or (b) f is primitive in $R[X]$ and irreducible in $F[X]$.

Proof. Assume first that $\operatorname{deg} f=0$. If $f=a b$ in $R, f=a b$ in $R[X]$. Conversely, if $f=g h$ in $R[X]$ then $\operatorname{deg} g=\operatorname{deg} h=0$, so $f=g h$ in R. Since $R^{\times}=(R[X])^{\times}$, irreducibility in $R[X]$ is equivalent to irreducibility in R. Assume now that $\operatorname{deg} f>0$. If f is irreducible in $R[X]$ then by the previous lemma, f is irreducible in $F[X]$. Also, $f=c(f)(f / c(f))$, so $c(f) \in(R[X])^{\times}=R^{\times}$and f is primitive. Conversely, if f is primitive and irreducible in $F[X]$ and $f=g h$ in $R[X]$, then $f=g h$ in $F[X]$, so wlog $g \in(F[X])^{\times} \cap R[X]=R$. But then $g \mid c(f)$ in R, so $g \in R^{\times}=(R[X])^{\times}$. Thus f is irreducible in $R[X]$.

Theorem 9.4 If R is a UFD then $R[X]$ is a UFD.
Proof. Write $f=c(f) f^{\prime}$ where f^{\prime} is primitive. Now $c(f)=u p_{1} \ldots p_{r}$ where $u \in R^{\times}=$ $(R[X])^{\times}$and p_{i} are irreducible in R. If $f^{\prime}=g h$ with $g, h \notin(R[X])^{\times}=R^{\times}$then $c(g) c(h) \sim 1$, so g, h are primitive and $\operatorname{deg} g, \operatorname{deg} h>0$ (since otherwise either g or h would lie in R^{\times}). By induction on the degree, f^{\prime} is the product of irreducible primitive polynomials $f^{\prime}=\prod f_{i}$. Hence f has a factorization into irreducibles.
Now assume $f=u p_{1} \ldots p_{r} f_{1} \ldots f_{t}=v q_{1} \ldots q_{s} g_{1} \ldots g_{u}$ where $u, v \in R^{\times}, p_{1}, q_{j}$ are irreducible in R and f_{i}, g_{j} are primitive and irreducible in $F[X]$. The ring $F[X]$ is a PID, so is a UFD. The elements $u p_{1} \ldots p_{r}$ and $v q_{1} \ldots q_{s}$ are units in $F[X]$, so $t=u$ and wlog $f_{i}=\gamma_{i} g_{i}$ for some $\gamma_{i} \in(F[X])^{\times}=F \backslash\{0\}$. Write $\gamma_{i}=a_{i} / b_{i}$ with $a_{i}, b_{i} \in R$. Now $b_{i} f_{i}=a_{i} g_{i}$, so $b_{i} \sim c\left(b_{i} f_{i}\right)=c\left(a_{i} g_{i}\right) \sim a_{i}$. Thus $\gamma_{i} \in R^{\times}$and $f_{i} \sim g_{i}$ in $R[X]$. Now $c(f) \sim u p_{1} \ldots p_{r} \sim v q_{1} \ldots q_{s}$, so by unique factorization in $R, r=s$ and wlog $p_{i} \sim q_{i}$ in R and hence in $R[X]$. Hence the factorization of f is unique in $R[X]$.

Factorization methods

Evaluation method: If $g \mid f$ in $R[X]$ then $g(c) \mid f(c)$ in R for all $c \in R$.
Example: If $f=X^{3}-4 X+1 \in \mathbb{Z}[X]$, then $f(\pm 2)=1$. If $f=g h$ then we can assume wlog that g is linear. But then $g(\pm 2)= \pm 1$. The only linear polynomials with this property are $\pm X / 2$ which do not lie in $\mathbb{Z}[X]$. Hence f is irreducible in $\mathbb{Z}[X]$ (and hence also in $\mathbb{Q}[X]$).
Reduction mod p : If $f=g h$ in $R[X]$ and p is a prime then $\bar{f}=\bar{g} \bar{h}$ in $(R /(p))[X]$.
Example: If $f=X^{4}-X^{2}+4 X+3 \in \mathbb{Z}[X]$, then if $p=2, \bar{f}=X^{4}+X^{2}+1=$ $\left(X^{2}+X+1\right)\left(X^{2}+X+1\right)$ in $(\mathbb{Z} / 2 \mathbb{Z})[X]$ and if $p=3$ then $\bar{f}=X^{4}-X^{2}+X=X\left(X^{3}-X+1\right)$ in $(\mathbb{Z} / 3 \mathbb{Z})[X]$. In $\mathbb{Z}[X], f$ cannot factor as a product of two quadratics (since there is no quadratic factor mod 3), nor can it have a linear factor (no linear factor mod 2), hence f is irreducible in $\mathbb{Z}[X]$.

Lemma (Eisenstein's irreducibility criterion) Assume R is a UFD, $f=\sum_{i=0}^{n} a_{n} X^{n} \in$ $R[X]$, is primitive, and p is a prime such that $p \nmid a_{n}, p \mid a_{i}$ for $i<n$ and $p^{2} \not \backslash a_{0}$. Then f is irreducible in $R[X]$.
Proof. Suppose $f=g h$. Then $\bar{g} \bar{h}=a_{n} X^{n}$ in $(R /(p))[X]$. Thus $\bar{g}=a X^{i}$ and $\bar{h}=b X^{j}$ for some $a, b \in R /(p)$ and $i+j=n$. But $\operatorname{deg} g+\operatorname{deg} h=n$ and $i \leq \operatorname{deg} g, j \leq \operatorname{deg} h$. Hence $i=\operatorname{deg} g$ and $j=\operatorname{deg} h$. If g and h are not units in $R[X]$ and f is primitive then $\operatorname{deg} g, \operatorname{deg} h>0$. Hence $\bar{g}(0)=\bar{h}(0)=0$, so $p \mid g(0), h(0)$. Thus $p^{2} \mid g(0) h(0)=f(0)=a_{0}$, a contradiction. Hence f is irreducible.

Exercises

1. Show that for p a prime in $\mathbb{Z}, f(X)=1+X+\ldots X^{p-1}=\left(X^{p}-1\right) /(X-1)$ is irreducible in $\mathbb{Q}[X]$ [Hint: consider $f(X+1)$ and use Eisenstein's criterion].
2. Let $f=X^{3}-X+1$. Show that $(\mathbb{Z} / 3 \mathbb{Z})[X] /(f)$ is a field with 27 elements.

7261 10. Symmetric Polynomials

A polynomial $f\left(X_{1}, \ldots, X_{n}\right) \in R\left[X_{1}, \ldots, X_{n}\right]$ is called symmetric if

$$
f\left(X_{1}, \ldots, X_{n}\right)=f\left(X_{\pi(1)}, \ldots, X_{\pi(n)}\right)
$$

for any permutation $\pi \in S_{n}$.
Examples $X_{1}^{2}+X_{2}^{2}+X_{3}^{2}$ and $X_{1} X_{2}+X_{2} X_{3}+X_{3} X_{1}$ are symmetric polynomials in the ring $\mathbb{Z}\left[X_{1}, X_{2}, X_{3}\right]$, however $X_{1}^{2} X_{2}+X_{2}^{2} X_{3}+X_{3}^{2} X_{1}$ is not symmetric (consider the permutation $\pi=(12)$).

The elementary symmetric polynomials $\sigma_{r} \in R\left[X_{1}, \ldots, X_{n}\right]$ are defined by $\sigma_{r}=$ $\sum_{i_{1}<i_{2}<\cdots<i_{r}} X_{i_{1}} \ldots X_{i_{r}}=\sum_{|S|=r} \prod_{i \in S} X_{i}$ where in the second expression the sum is over all subsets S of $\{1, \ldots, n\}$ of size r.

Examples For $n=3, \sigma_{0}=1, \sigma_{1}=X_{1}+X_{2}+X_{3}, \sigma_{2}=X_{1} X_{2}+X_{2} X_{3}+X_{3} X_{1}$, $\sigma_{3}=X_{1} X_{2} X_{3}$.

Note: $\left(X+X_{1}\right)\left(X+X_{2}\right) \ldots\left(X+X_{n}\right)=X^{n}+\sigma_{1} X^{n-1}+\sigma_{2} X^{n-2}+\cdots+\sigma_{n}$.
Define the degree of $c X_{1}^{a_{1}} \ldots X_{n}^{a_{n}} \in R\left[X_{1}, \ldots, X_{n}\right], c \neq 0$, as the n-tuple $\left(a_{1}, \ldots, a_{n}\right)$. More generally define the degree of $f=\sum_{a_{1}, \ldots, a_{n}} c_{a_{1}, \ldots, a_{n}} X_{1}^{a_{1}} \ldots X_{n}^{a_{n}}$ as the maximum value of $\left(a_{1}, \ldots, a_{n}\right)$ over all $c_{a_{1}, \ldots, a_{n}} \neq 0$, where n-tuples are ordered lexicographically: $\left(a_{1}, \ldots, a_{n}\right)<\left(b_{1}, \ldots, b_{n}\right)$ iff there exists an i such that $a_{i}<b_{i}$ and $a_{j}=b_{j}$ for all $j<i$.

Example In $R\left[X_{1}, X_{2}, X_{3}\right], \operatorname{deg}\left(X_{1}^{2} X_{2}^{9}+X_{1}^{7} X_{3}\right)=(7,0,1)$.
In $R\left[X_{1}, \ldots, X_{n}\right]$, $\operatorname{deg} \sigma_{r}=(1, \ldots, 1,0, \ldots, 0)$, where there are r ones and $n-r$ zeros.
Lemma 10.1 The lexicographic ordering on \mathbb{N}^{n} is a well ordering: \mathbb{N}^{n} is totally ordered and every non-empty $S \subseteq \mathbb{N}^{n}$ has a minimal element.

Proof. To prove every $S \neq \emptyset$ has a minimal element, inductively construct sets S_{i} with $S_{0}=S$ and S_{i} equal to the set of elements $\left(a_{1}, \ldots, a_{n}\right)$ of S_{i-1} for which a_{i} is minimal. It is clear that $S_{i} \neq \emptyset$ and the (unique) element of S_{n} is the minimal element of S.

Lemma 10.2 If $f \in R\left[X_{1}, \ldots, X_{n}\right]$ is symmetric and $\operatorname{deg} f=\left(a_{1}, \ldots, a_{n}\right)$ then $a_{1} \geq$ $a_{2} \geq \cdots \geq a_{n}$.

Proof. Assume otherwise and let $a_{i}<a_{j}$ with $i>j$. Then if $\pi=(i j), f\left(X_{1}, \ldots, X_{n}\right)=$ $f\left(X_{\pi(1)}, \ldots, X_{\pi(n)}\right)$ has a term with degree $\left(a_{\pi(1)}, \ldots, a_{\pi(n)}\right)$ which is larger than $\left(a_{1}, \ldots, a_{n}\right)$, contradicting the definition of the degree.

Lemma 10.3 If $f, g \in R\left[X_{1}, \ldots, X_{n}\right]$ and f, g are monic (the term with degree equal to $\operatorname{deg} f$ or $\operatorname{deg} g$ has coefficient 1) then $\operatorname{deg} f g=\operatorname{deg} f+\operatorname{deg} g$ where addition of degrees is performed componentwise: $\left(a_{1}, \ldots, a_{n}\right)+\left(b_{1}, \ldots, b_{n}\right)=\left(a_{1}+b_{1}, \ldots, a_{n}+b_{n}\right)$.

Proof. Prove that in the lexicographical ordering, $\mathbf{a}<\mathbf{b}$ and $\mathbf{c} \leq \mathbf{d}$ imply $\mathbf{a}+\mathbf{c}<\mathbf{b}+\mathbf{d}$. The rest of the proof is the same as for the one variable case.

Theorem 10.1 The polynomial $f \in R\left[X_{1}, \ldots, X_{n}\right]$ is symmetric iff $f \in R\left[\sigma_{1}, \ldots, \sigma_{n}\right]$.
Clearly σ_{i} is symmetric, and the set of symmetric polynomials forms a subring of the ring $R\left[X_{1}, \ldots, X_{n}\right]$. Hence every element of $R\left[\sigma_{1}, \ldots, \sigma_{n}\right]$ is symmetric. We now need to show every symmetric polynomial can be written as a polynomial in $\sigma_{1}, \ldots, \sigma_{n}$. We use induction on $\operatorname{deg} f$. Let f be a counterexample with minimal $\operatorname{deg} f$ (using Lemma 1). Let $\operatorname{deg} f=$ $\left(a_{1}, \ldots, a_{n}\right)$ and let the leading term have coefficient $c \in R$. Then $g=c \sigma_{1}^{a_{1}-a_{2}} \sigma_{2}^{a_{2}-a_{3}} \ldots \sigma_{n}^{a_{n}}$ has $\operatorname{deg} g=\left(a_{1}, \ldots, a_{n}\right)=\operatorname{deg} f$ (by Lemma 3) and the same leading coefficient c. Thus $\operatorname{deg}(f-g)<\operatorname{deg} f$. Now g is symmetric, so $f-g$ is symmetric. By induction on $\operatorname{deg} f$, $f-g \in R\left[\sigma_{1}, \ldots, \sigma_{n}\right]$. But $g \in R\left[\sigma_{1}, \ldots, \sigma_{n}\right]$. Hence $f \in R\left[\sigma_{1}, \ldots, \sigma_{n}\right]$, contradicting the choice of f.

If $\alpha \in R^{\prime}$ and R is a subring of R^{\prime}, we call α algebraic over R if the map $\mathrm{ev}_{\alpha}: R[X] \rightarrow$ R^{\prime} is not injective, i.e., there exists a non-zero $f(X) \in R[X]$ with $f(\alpha)=0$. More generally we say $\alpha_{1}, \ldots, \alpha_{n}$ are algebraically dependent if $\mathrm{ev}_{\alpha_{1}, \ldots, \alpha_{n}}: R\left[X_{1}, \ldots, X_{n}\right] \rightarrow$ R^{\prime} is not injective, or equivalently there exists a non-zero polynomial $f \in R\left[X_{1}, \ldots, X_{n}\right]$ with $f\left(\alpha_{1}, \ldots, \alpha_{n}\right)=0$. We say $\alpha_{1}, \ldots, \alpha_{n}$ are algebraically independent over R if they are not algebraically dependent.

Theorem 10.2 The elements $\sigma_{1}, \ldots, \sigma_{n}$ are algebraically independent over R. The elements X_{i} are algebraic over $R\left[\sigma_{1}, \ldots, \sigma_{n}\right]$.

Proof. Assume $\sum c_{a_{1}, \ldots, a_{n}} \sigma_{1}^{a_{1}} \ldots \sigma_{n}^{a_{n}}=0$ in $R\left[X_{1}, \ldots, X_{n}\right]$. Among the (finite set of) $\left(b_{1}, \ldots, b_{n}\right)$ such that $c_{b_{1}, \ldots, b_{n}} \neq 0$, pick one such that $\left(b_{1}+\cdots+b_{n}, b_{2}+\cdots+b_{n}, \ldots, b_{n}\right)$ is maximal in the lexicographical ordering. The map sending $\left(a_{1}, \ldots, a_{n}\right)$ to $\left(a_{1}+\cdots+\right.$ $\left.a_{n}, a_{2}+\cdots+a_{n}, \ldots, a_{n}\right)$ is an injection \mathbb{N}^{d} to \mathbb{N}^{d}, so this $\left(b_{1}, \ldots, b_{n}\right)$ is uniquely determined. Now $\operatorname{deg} \sum c_{a_{1}, \ldots, a_{n}} \sigma_{1}^{a_{1}} \ldots \sigma_{n}^{a_{n}}=\left(b_{1}+\cdots+b_{n}, b_{2}+\cdots+b_{n}, \ldots, b_{n}\right)$ contradicting $\sum c_{a_{1}, \ldots, a_{n}} \sigma_{1}^{a_{1}} \ldots \sigma_{n}^{a_{n}}=0$. Thus $\sigma_{1}, \ldots, \sigma_{n}$ are algebraically independent. The elements X_{i} are algebraic over $R\left[\sigma_{1}, \ldots, \sigma_{n}\right]$ since they are roots of $X_{n}-\sigma_{1} X^{n-1}+\cdots \pm \sigma_{n}=0$.

As a consequence of Theorem 2 , any symmetric polynomial $f \in R\left[X_{1}, \ldots, X_{n}\right]$ can be written as $g\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ with g a unique element of $R\left[X_{1}, \ldots, X_{n}\right]$. For example, $X_{1}^{2}+$ $X_{2}^{2}+X_{3}^{2}=\sigma_{1}^{2}-2 \sigma_{2}$.

Exercises

1. Let $\delta=\prod_{i<j}\left(X_{i}-X_{j}\right) \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$. Show that δ^{2} is symmetric and for $n=3$ express δ^{2} in terms of $\sigma_{1}, \sigma_{2}, \sigma_{3}$.
2. Let $f(X)=X^{3}-3 X+5$ have complex roots $\alpha_{1}, \alpha_{2}, \alpha_{3}$. Find a polynomial with complex roots $\alpha_{1}^{2}, \alpha_{2}^{2}, \alpha_{3}^{2}$.
