MATH 7685-8685: Simulation and Statistical Computing

Spring, 2020

TR 2:40-4:05pm (DH231)

Lih-Yuan Deng (DH219, 678-3134)

Department of Mathematical Sciences

The University of Memphis

Office Hours:

TR 10am-11:30am (DH219) or by appointment (O) 901-678-3134, email: lihdeng@memphis.edu.

Course Contents:

- 1. R and High-Performance Computing
- 2. Random Variable Generation
- 3. Monte Carlo Integration
- 4. Monte Carlo Optimization
- 5. Metropolis Hastings Algorithms
- 6. Gibbs Samplers
- 7. Monitoring and Adaptation for MCMC Algorithms

Textbook Used:

Introducing Monte Carlo Methods with R (Use R!), by Christian P. Robert and George Casella (2010) Publisher: Springer, ISBN-13: 978-1441915757 ISBN-10: 1441915753

Software Used:

R will be the major program used symbolic program such as MAPLE/Mathematica/Sage is recommended for this course.

Grading:

Midterm exam or Class Project	25%
Homework (program or written)	20%
Class Participation	15%
Final Exam (Project)	40%

Detailed List of Topics

1. Random Variable Generation

- (a) Uniform simulation
- (b) The inverse transform
- (c) General transformation methods
- (d) A normal generator
- (e) Discrete distributions
- (f) Mixture representations
- (g) Accept reject methods

2. Monte Carlo Integration

- (a) Classical Monte Carlo integration
- (b) Importance sampling

3. Monte Carlo Optimization

- (a) Stochastic gradient methods
- (b) Simulated annealing
- (c) The EM algorithm
- (d) Monte Carlo EM

4. Metropolis Hastings Algorithms

- (a) A peek at Markov chain theory
- (b) Basic Metropolis Hastings algorithms
- (c) A generic Markov chain Monte Carlo algorithm
- (d) The independent Metropolis Hastings algorithm
- (e) Acceptance rates

5. Gibbs Samplers

- (a) The two-stage Gibbs sampler
- (b) The multistage Gibbs sampler
- (c) Missing data and latent variables
- (d) Hierarchical structures

6. Monitoring and Adaptation for MCMC Algorithms

- (a) Monitoring convergence to stationarity
- (b) Monitoring convergence of averages
- (c) Adaptive MCMC