The University of Memphis Department of Mathematical Sciences

MATH 4721-6721
Instructor:

Class Time/Location:
Office Hours:

Text:

Course description:

Prerequisites:

Grades:

Work:

Undergraduate level:

Graduate level:

Numerical Analysis
Spring 2015
Dr. Thomas Hagen
Dunn Hall 367, Phone: 678-2481, Email: thagen@memphis.edu
TR 1:00pm to 2:25pm, Dunn Hall 107
By appointment TR 8:45am to 9:30am in Dunn Hall 367
(If you show up without appointment, I might not be in my office.)
Numerical Methods by G. Dahlquist and Å. Björck, Dover Publications; Reprint edition (April 25, 2003), ISBN-13: 978-0486428079
Other free online sources will be announced in class.
This course will focus on two main objectives: Mathematical derivation of computational methods ("recipes") and a thorough analytical assessment of a method's usefulness and potential failures. Standard techniques from Calculus and Linear Algebra used in the course include the Mean Value Theorem, Taylor expansion, and Gau β elimination.
Topics covered include: Interpolation and approximation; numerical differentiation and integration; numerical linear algebra; nonlinear equations; differential equations.

Calculus I \& II or equivalent; basic knowledge in Linear Algebra (matrices and linear equations, rank and null space, invertibility); programming language, preferably MATLAB

There will be two take-home tests plus the final exam, each worth the same. The grade range is from A to F. The plus-minus system will be used. Homework and participation will be factored into your final grade.

Homework will usually be given every other week and will be due a week later. Homework should be written out in a clear fashion and MUST NOT be submitted in the form of loose sheets. Late work will NOT be acceptable.

Figure: Approximating the square root of 2 (Babylonia, ca. 1700 BC)

Figure: A fixed-point iteration for the equation $\sin x=x$

You may choose to focus on either analytical or computational problems. Grades will be weighted accordingly.

You will be held to a higher standard and should expect to work on both analytical and computational problems.

