The University of Memphis Department of Mathematical Sciences

MATH 4721-6721	Numerical Analysis	Spring 2015
Instructor:	Dr. Thomas Hagen Dunn Hall 367, Phone: 678-2481, Email: <u>thagen@m</u>	emphis.edu
Class Time/Location:	TR 1:00pm to 2:25pm, Dunn Hall 107	
Office Hours:	By appointment TR 8:45am to 9:30am in Dunn Hall 367 (If you show up without appointment, I might not be in my office.)	
Text:	Numerical Methods by G. Dahlquist and Å. Björck, I edition (April 25, 2003), ISBN-13: 978-0486428079 Other free online sources will be announced in class.	
Course description:	This course will focus on two main objectives: M computational methods ("recipes") and a thorough method's usefulness and potential failures. Standard and Linear Algebra used in the course include the Me expansion, and Gau β elimination. Topics covered include: Interpolation and approximation; numerical differentiation and integration; numerical linear algebra; nonlinear equations; differential equations.	analytical assessment of a techniques from Calculus
Prerequisites:	Calculus I & II or equivalent; basic knowledge in Linear Algebra (matrices and linear equations, rank and null space, invertibility); programming language, preferably MATLAB	42 25
Grades:	There will be two take-home tests plus the final exam, each worth the same. The grade range is from A to F. The plus-minus system will be used. Homework and participation will be factored into your final grade.	Figure: Approximating the quare root of 2 (Babylonia, a. 1700 BC)
Work:	Homework will usually be given every other week and will be due a week later. Homework should be written out in a clear fashion and MUST NOT be submitted in the form of loose sheets. Late work will NOT be acceptable.	Figure: A fixed-point iteration for the equation sin x = x
Undergraduate level:	You may choose to focus on either analytical or computational problems. Grades will be weighted accordingly.	
Graduate level:	You will be held to a higher standard and should expect to work on both analytical and computational problems.	