
The HPC cluster and how to use it
Eric Spangler

HPC

Accessing the HPC’s cluster

• Windows
• Putty (As your terminal)
• WinScp (for transferring information

between your computer and the cluster)
• Alternatives (Cygwin, MobaXterm,

mRemoteNG, Xshell, Bitvise, VNC, etc...)

• Mac OS X and Linux
• Built in commands
• ssh (As your terminal)
• scp (for transferring data between your

computer and the cluster)
• Usually have to enable ssh port to utilize

the commands

• Hostname is ‘hpclogin.memphis.edu’ or ‘hpc18login2.memphis.edu’
• X2go can be used to connect to the cluster with a desktop environment (XFCE)
• On Mac and Linux, open terminal and type:

• 'ssh [username]@hpclogin.memphis.edu'
• Can only access it on campus or through the campus VPN off campus

• http://www.memphis.edu/its/network/vpn.php

HPC Terminal
• BASH (Borne Again Shell)

• Case sensitive
• 'ls', 'Ls', 'lS', and 'LS' are all different

commands
• Special characters can change the

interpretation of a command
• I suggest you avoid using spaces, ~, ?, <,

>, &, \, %,and * characters in your file
names

• If you have to, use C style escape
sequences, such as ‘\&‘ for &.

• Special sequences:
• 'command > [filename]' - creates a new

file with results of command
• 'command >> [filename]' - appends a file

with results of command
• 'command ~' - tilde (~) is a shortcut to

home directory
• Many more, just look up BASH

documentation

• Basic file system commands:
• 'ls' - list directory contents
• 'cd [directoryName]' - change directory

to directory name
• 'pwd' - print working directory
• 'mkdir [directoryName]' - make a

directory from within the current
directory

• 'cat [filename]' - display what is in file
• 'head [filename]' - display first 10 lines of

file
• 'tail [filename]' - display last 10 lines of

file
• 'cp [filename1] [filename2]' - copy a file

to another file
• 'mv [filename1] [filename2]' - move a file

to another file
• Basic File editors:

• 'vi [filename]' - the VIM file editor
• 'emacs [filename]' - the EMACS file

editor
• 'nano [filename]' - the Nano file editor

HPC Cluster
• 92 Nodes

• 2 ‘master’ nodes for SLURM scheduler
• 2 ‘login’ nodes for submitting jobs
• 72 ‘computeq’ nodes

• 2x20 Core Intel Xeon® Gold 6148 CPUs
• 192 GB DDR4 RAM (2666 MHz, 6 Channels per CPU)
• EDR Infiniband (100 Gb/s, 610 ns latency)

• 6 ‘gpuq’ nodes
• Same as ‘computeq’
• And 2 NVIDIA Tesla® V100 GPUs with 5120 ‘cores’ and 16 GB RAM

per GPU
• 4 ‘bigmemq’ nodes

• Same CPUs and Infiniband as ‘computeq’
• 2 nodes have 768 GB of RAM each
• 2 nodes have 1536 GB of RAM each

• 4 ‘shortq’ nodes
• Same as computeq but with 3 day timelimit

• 2 ‘wholeq’ nodes
• Same as computeq but with 5 day timelimit and whole node allocation

HPC Cluster

• Storage
• DDN GS7K GRIDScalar® (GPFS)

• Connected through Infiniband @ 8.5 GB per second
• Contains 120x4 TB Drives (480 TB Raw, 348 TB Available)
• Mounted as /home (this is backed up through S3)
• Mounted as /home/scratch (this is not backed up)

• Archive (S3 StorageGRID®)
• This is connected through the data center network (Ethernet)
• Contains >1 PB
• Users can also archive their own data here (contact

hpcadmins@memphis.edu)
• Uses AWS commands, very slow @ ~100-500 MB per second

HPC Cluster

HPC Software

• Usually installed in /cm/shared/public/apps or /public/apps
• Usually has a module associated with it:

• ‘module avail’ to see available modules
• ‘module load modulename’ to load module
• ‘module list’ to see currently loaded modules

• If a particular software isn’t present, please contact
hpcadmins@memphis.edu
• Commonly used:

• GCC/Intel compilers ‘module load gcc/8.2.0’ or ‘module load intel/2022.2’
• MATLAB ‘module load matlab’
• Python ‘module load python/2.7.15’ or ‘module load python/3.7.0’
• CUDA ‘module load cuda11.2/toolkit/11.2.2’ only on ‘gpuq’ nodes

SLURM

• HPC cluster uses SLURM for job scheduling
• ‘sbatch’ command to submit batch jobs
• ‘srun’ command to submit interactive jobs
• ‘salloc’ and ‘sattach’ to allocate a job and attach to any

job
• ‘squeue’ to view running and pending jobs
• ‘scancel’ to cancel running and pending batch jobs
• ‘sacct’ to view completed and failed jobs
• ‘scontrol’ to view or modify submitted jobs
• ‘sacctmgr’ to view account resources
• ‘sprio’ to view pending job’s priority
• ‘sshare’ to view current user’s fairshare priority

SLURM Partitions
• ‘computeq’ is for general CPU bound jobs
• This is our largest partition
• 4.8 GB RAM per CPU core

• ‘gpuq’ is for general GPU bound jobs
• This uses ‘--gres=gpu:N’ for submissions
• 4.8 GB RAM per CPU core

• ‘bigmemq’ is for general memory bound jobs
• 38.4 GB RAM per CPU core
• 76.8 GB RAM per CPU core

• ‘shortq’ is for general short jobs
• 3 day maximum ‘--timelimit’ for submissions

• ‘wholeq’ is for whole node jobs
• Must use ‘--ntasks=40’ or ‘--cpus-per-task=40’ for submissions

SLURM Accounting

• You can submit jobs only under your account
• We create a default account for every new user
• This account is part of a tree:

• Cluster →uom →college →department →content area →lab
• Users are part of the lab branches
• Coordinators (usually the PI) can modify any job submitted to

their lab account
• We have restrictions on this account:

• Users: 1024 CPU cores, 3 TB RAM
• Accounts: Fairshare Algorithm+priority weights
• These restrictions may change at any time due to

Load, reservations, user requests, or problems

SLURM Priority

• Jobs are assigned a priority when they are submitted
where:
• Priority=Fairshare+JobSize+Age+Partition+QOS+Nice+TRES

• Fairshare Priority:
• Limits users and accounts to a fraction of active cluster jobs
• Fairshare priority penalty decays over 24 hours

• JobSize Priority:
• Larger jobs have higher priority (Fairshare can negate this)
• Shorter jobs have higher priority

• Age
• Longer pending times increase Age priority

• Partition (currently 0)

SLURM Priority (cont)

• Jobs are assigned a priority when they are submitted
where:
• Priority=Fairshare+JobSize+Age+Partition+QOS+Nice+TRES

• QOS (quality of service)
• Each job has a normal QOS currently (0)

• Nice
• Administrative (we increase this if a job has scheduling

difficulties)
• TRES (Trackable RESources)

• Each resource (CPU and Memory) has just 1 weight
• GPU (for --gres) has a very high weight

SLURM Batch Scripts

• Typically BaSH shell script (can use TK/TCL)
• ‘#!/bin/bash’ header for bash
• ‘#!/usr/bin/tclsh’ header for tcl

• ‘sbatch’ options can be added with special comment:
• ‘#SBATCH option’

• Built in SLURM environment variables:
• ‘$SLURM_SUBMIT_DIR’ for full path of submission directory
• ‘$SLURM_JOBID’
• ‘$SLURM_ARRAY_TASK_ID’
• Try ‘man sbatch’ for more details

SLURM Jobs

• Minimum requirements:
• Partition (‘--partition’, ‘-p’)
• CPUs, tasks, or nodes

• ‘--cpus-per-task’ or ‘-c’ for multiple threads/cores per a
node/task (pthreads/OpenMP)

• ‘--ntasks’ or ‘-n’ for multiple message passing tasks (MPI)
• ‘--nodes’ or ‘-N’ for multiple nodes (MPI)

• Time (‘--time’ or ‘-t’)
• Memory

• ‘--mem-per-cpu’ for memory per CPU core
• ‘--mem’ for memory per node

SLURM Jobs

• Useful options:
• Job name (‘--job-name’ or ‘-J’) for identification in

‘squeue’
• Job array (‘--array’ or ‘-a’) for many job submissions
• E-mail job status (‘--mail-user’ and ‘--mail-type’)
• Tasks per node (‘--ntasks-per-node’) for requesting a

specific number of tasks per node (MPI/OpenMP hybrid)
• Output and error (‘--output’ or ‘-o’ and ‘--error’ or ‘-e’)

to redirect script standard output and error (‘stdout’ and
‘stderr’)
• Generic RESource (‘--gres’) used for gpus, licenses, and

interconnects

SLURM Job Examples

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

